

and skills

ICSS[]

Institute for Complex Systems Simulation

Magnon driven domain wall motion with Dzyaloshinskii-Moriya interaction

W. Wang¹, M. Albert¹, M. Beg¹, M. Bisotti¹, D. Chernyshenko¹, D. Cortes¹, I. Hawke², H. Fangohr¹

¹Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, UK ²Mathematical Sciences, University of Southampton, SO17 1BJ, Southampton, UK

Motivation

Spin waves (magnons) and domain wall (DW) motion:

- Angular momentum conservation.
- Spin waves dispersion is biased by DMI.
- How does the DMI influence the DW motion?

Model

Spin waves are excited locally by $\mathbf{h}(t) = h_0 \sin(\omega t) \mathbf{e}_y$

DW motion without easy plane anisotropy

 $v_e = -\frac{\rho^2}{2} V_g$

negative

The conservation of angular momentum [2]

- V_g is the group velocity of spin waves
- $\rho\,$ is the amplitude of spin waves

Spin wave decaying

 $\Gamma_{\pm} = 2/(\alpha\omega) [\gamma_0 Ak \pm D(\omega \mp D\gamma_0 k)/(K_{\perp} + 2K + 2Ak^2)]$

DW motion with easy plane anisotropy

Domain wall profile and spin waves excitation

$$dP_{\rm DW}/dt = -dP_{\rm magnons}/dt = -nV_g\delta p \quad \Rightarrow \quad \dot{\Phi} = -\frac{1}{4}\rho^2 V_g\delta k$$

Introduce an external field to describe the DW motion,

 $H_x = \dot{\Phi}/\gamma = -\frac{1}{4}\rho^2 \delta k V_g/\gamma$ $v_d = \frac{\gamma \Delta H_x}{\alpha} / \sqrt{1 + \frac{\kappa}{2} \left(1 - \sqrt{1 - h^2}\right)}$

Assume the frequency remains the same,

 $m_x = -\tanh(x/\Delta),$ $m_y = \operatorname{sech}(x/\Delta)\cos(x/\xi + \Phi),$ $m_z = \operatorname{sech}(x/\Delta)\sin(x/\xi + \Phi),$ Δ is the DW width, $\xi = 2A/D$ Φ is the DW tilt angle Reflectionless potential Dispersion relation inside the DW, $\omega_{DW} = \gamma_0 (\tilde{K} + Ak^2)$

Outside the DW, $\omega_{\pm} = \gamma_0 (K + Ak^2 \pm Dk).$

References

 W. Wang, et.al., Magnon driven domain wall motion with Dzyaloshinskii-Moriya interaction http://arxiv.org/abs/1406.5997
P. Yan and X. Wang, Phys. Rev. Lett. **107**, 177207 (2011)
A. Kosevich, B. Ivanov, and A. Kovalev, Phys. Rep. **194**, 117 (1990)
P. Yan, et. al, Phys. Rev. B **88**, 144413 (2013). δk can be obtained by

 $\omega_{\pm} = \gamma_0 \left[\sqrt{(K + Ak^2)(K + K_{\perp} + Ak^2)} \pm Dk \right]$

Conclusion

The linear momentum exchange is significantly more efficient than angular momentum transfer in moving the DW due to DMI in the presence of easy plane anisotropy [arXiv:1406.5997].

Acknowledgements

We acknowledge financial support from EPSRC's DTC grant EP/ G03690X/1.