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Introduction

For simplicity, In micromagnetic studies,
demagnetisation energy contribution IS
neglected and/or three dimensional samples
are modeled using two-dimensional meshes.

- Recent study [1] demonstrated that using these
assumptions is not justified when studying the
stability of skyrmionic states in confined
helimagnetic nanostructures.

- In this work [2], we study whether these model
simplifications are justified when dynamics of
skyrmionic states is explored.

- We demonstrate that although the magnetisation
dynamics associated to the eigenmodes do not
change significantly, their frequencies change
substantially.

Methods
- Geometry and material parameters:
ZA H
FeGe [1]:
M. = 384 kA/m
o\t

A = 8.78 pJ/m
D = 1.58 m)/m?
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d=150 nm

- Hamiltonian:

symmetric exchange
r |—>Dzyaloshinskii-Moriya

w=A(Vm)? 4+ Dm - (V x m) — uoM;H - m + wq
Zeeman « J
demagnetisation

- Dynamics (LLG equation):
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- Full 3D finite elements simulation model

- No assumption about translational invariance
In the out-of-plane direction

- Eigenvalue method [3] allows us to compute all
existing eigenmodes

We perform the ringdown method [4] to
determine what eigenmodes can be excited using a
particular experimentally feasible excitation

- After full 3D ringdown simulations, we (i) artificially
set the demagnetisation energy contribution
to zero and (ii) model thin film sample using
two-dimensional mesh

Power spectral densities are computed using
spatially averaged and spatially resolved
analyses
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Isolated skyrmion power spectral dens
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Conclusion

- Using full three-dimensional model, employing two different methods (eigenvalue and ringdown),
we explored the dynamics of isolated skyrmion state.

- By artificially setting the demagnetisation

energy to zero and modeling the three-

dimensional thin film sample with two-dimensional mesh, we computed power spectral
densities for an in-plane and an out-of-plane excitations.

- We conclude that although the magnetisation dynamics associated to particular eigenmodes do not
change significantly, their frequencies change substantially.




