

Demagnetisation energy and magnetisation variation effects on the confined isolated skyrmion state dynamics

Marijan Beg^{*}, Maximilian Albert, Marc-Antonio Bisotti, David Cortés-Ortuño, Weiwei Wang, Rebecca Carey, Mark Vousden, Ondrej Hovorka, and Hans Fangohr

Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom *email: m.beg@soton.ac.uk

EPSRC Engineering and Physical Sciences Research Council

Introduction

- For simplicity, in micromagnetic studies, demagnetisation energy contribution is neglected and/or three dimensional samples are modeled using two-dimensional meshes.

Isolated skyrmion power spectral densities

- Recent study [1] demonstrated that using these assumptions is **not justified** when studying the stability of skyrmionic states in confined helimagnetic nanostructures.

- In this work [2], we study whether these model simplifications are justified when **dynamics of skyrmionic states is explored**.

- We demonstrate that although the magnetisation dynamics associated to the eigenmodes do not change significantly, their **frequencies change substantially**.

Methods

- Geometry and material parameters:

- **Dynamics** (LLG equation):

 $\overrightarrow{\partial \mathbf{m}} = -\gamma_0^* \mathbf{m} \times \mathbf{H}_{\text{eff}} + \alpha \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t}$ $\text{damping} \downarrow$

- Full 3D finite elements simulation model
 No assumption about translational invariance in the out-of-plane direction
- **Eigenvalue method** [3] allows us to compute all existing eigenmodes
- We perform the **ringdown method** [4] to determine what eigenmodes can be excited using a particular experimentally feasible excitation
 After full 3D ringdown simulations, we (i) artificially

Demagnetisation and magnetisation variation effects

set the demagnetisation energy contribution
to zero and (ii) model thin film sample using
two-dimensional mesh
Power spectral densities are computed using
spatially averaged and spatially resolved

References

analyses

[1] Beg, M. et al., Scientific Reports 5, 17137 (2015).
[2] Beg, M. et al. arXiv 1604.08347 (2016).
[3] D'Aquino, M. et al., J. Comput. Phys. 228, 6130 (2009).
[4] McMichael, R. D. and Stiles, M. D., J. Appl. Phys. 97, 10J901 (2005).

Conclusion

- Using full three-dimensional model, employing two different methods (eigenvalue and ringdown), we **explored the dynamics** of isolated skyrmion state.

- By artificially setting the demagnetisation energy to zero and modeling the threedimensional thin film sample with two-dimensional mesh, we computed power spectral densities for an in-plane and an out-of-plane excitations.

- We conclude that although the magnetisation dynamics associated to particular eigenmodes do not change significantly, their **frequencies change substantially**.