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Theoretical background for one-dimensional case
In the case of 1D curvilinear magnetic wire it is convenient to use its natural parametrization by arc length s of a general form ¥ = (s)

Homogeneous state Periodical state and work in the curvilinear Frenet-Serret (TNB) reference frame (ér, €, €3). The total energy in the TNB reference frame has a form:
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where K = Ky + mM? is the effective anlsotropy constant, with Ky > 0, w = \/A/K is the characteristic magnetic length, with A being an
exchange constant. The tensors 775 and .7 %™ are mesoscale DMI and anisotropy tensors, respectively, with:

. D' = (D!, D', D.) = D'/v/AK being the reduced vector of the intrinsic DMI;

L DE = (=20(&), 0, —2 5(E) is the vector of the extrinsic DMI, with o = w 7 and > = w « being the reduced curvature and torsion.

Helix wire

In the following, it is instructive to introduce the vector of the mesoscale DMI:
D = D'+ D" = (D.—20, D, D.—2).

In the case of 2D curvilinear magnetic systems this theory remains valid but becomes more complex, due to differentiation along two or-
thogonal directions on the curvilinear plane.

Magnetic states on spherical shells Microscopic numerical experiments with magnetic wires

In the case of a thin spherical shell with radius R and easy-normal anisotropy there exsit a class of az-
imuthally symmetric solutions m = éysinf + n'cos . The function 8 = (1) satisfies the following
equation:

2
27522:: + 52 — g] + 2 cot ) sin® 6 {1 + DBC] =0,
where D, = 2A/R is the strength of the curvature-induced effective DMI that solely is exchange-driven.
This geometrical DMI contribution copetes with the intrinsic spin-orbit driven DMI. Full compensation

takes place when D = — D,

0" + cot 99’ — sinf cos b
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It is possible to access the value for intrinsic DMI from the analysis of the microscopic images of the pe-
riodical magnetic states taken by using microscopic techniques, e.g. Lorentz electron microscopy, elec-

—0.8 —0.6 -0.4 —0.2 0.0 0.2 0.4 0.6 tron holography, magnetic transmission X-ray microscope (MTXM) and X-ray magnetic circular dichro-
D/VAK . .. . . : - .
| | | | ' D/AK ism photoelectron emission microscope (XMCD-PEEM). We illustrate this possibility for an exemplarily
Dependences of the skyrmion radius R on the dimensionless DMI constant D' = D/ ' choosen XMCD-PEEM-like experiment, where the x-ray beam hits the samples under the angle of 25°
In the case of curvilinear systems resulting skyrmion with respect to the surface plane.
b b d dent on both ti _ o . . L
number A become dependent on both a magnetic Q (a) The helicoidal state in a straight wire with D%, = 2.7.

and a geometrical O, topological charges, which provide _ _ _ _ o _
5 g tOPOIO5 & P (b) The quasitangential state in a helix wire with 2 = 0.8, = 0.5, D, = 0,C = +1.

a topological charge shift: N = |
NeO-0 (c) The periodical state with 3¢ = 0.8, 0 = 0.5, DL, =2.7,C = +1.
B _ ¢ | | Colors of the surface of the magnetization rotation and the XMCD-PEEM-like contrast are equal and
Thus, for the case of magnetic skyrmion on thin reveal the magnetization parallel (red) and antiparallel (blue) to the x-ray beam.

magnetic spherical shell, the corresponding magnetic _ - _ o
. B . (d1-d3) Fourier spectra of the XMCD-PEEM-like signal along the wires for the helicoidal,
topological charge @ = 0. Therefore, the skyrmion _ _ o _
quasitangential and periodical states, respectively.

magnetic configuration can be created by means of a
uniform magnetic field.
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