
Introduction

- For simplicity, in micromagnetic studies, 
demagnetisation energy contribution is 
neglected and/or three dimensional samples 
are modeled using two-dimensional meshes.

- Recent work [1] demonstrated that using these 
assumptions is not justified when studying the 
stability of skyrmionic states in confined 
helimagnetic nanostructures. 

- In this work [2], we study whether these model 
simplifications are justified when dynamics of 
skyrmionic states is explored.

- We demonstrate that although the magnetisation 
dynamics associated to the eigenmodes do not 
change significantly, their frequencies change 
substantially.  
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- Using full three-dimensional model, employing two different methods (eigenvalue and ringdown), 
we explored the dynamics of an isolated skyrmion state.
- By artificially setting the demagnetisation energy to zero and modeling the three-
dimensional thin film sample with two-dimensional mesh, we computed power spectral 
densities for an in-plane and an out-of-plane excitations.
- We conclude that although the magnetisation dynamics associated to particular eigenmodes do not 
change significantly, their frequencies change substantially. 
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Demagnetisation and magnetisation variation effects

Methods
- Geometry and material parameters

Ms = 384 kA/m

A = 8.78 pJ/m

D = 1.58 mJ/m2

FeGe [1]:

- Hamiltonian

symmetric exchange
Dzyaloshinskii-Moriya

Zeeman
demagnetisation

- Dynamics (LLG equation)

- Full 3D finite elements simulation model
- No assumption about translational invariance 
in the out-of-plane direction
- Eigenvalue method [3] allows us to compute all 
existing eigenmodes
- We perform the ringdown method [4] to 
determine what eigenmodes can be excited using a 
particular experimentally feasible excitation
- After full 3D ringdown simulations, we (i) artificially 
set the demagnetisation energy contribution 
to zero and (ii) model thin film sample using 
two-dimensional mesh
- Power spectral densities are computed using 
spatially averaged and spatially resolved 
analyses

precession

damping

Conclusion

Demagnetisation energy and magnetisation variation
effects on the confined isolated skyrmion state dynamics
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