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Introduction

- For simplicity, in micromagnetic studies,
demagnetisation energy contribution IS
neglected and/or three dimensional samples
are modeled using two-dimensional meshes.

- Recent work [1] demonstrated that using these
assumptions is not justified when studying the
stability of skyrmionic states in confined
helimagnetic nanostructures.

- In this work [2], we study whether these model
simplifications are justified when dynamics of
skyrmionic states is explored.

- We demonstrate that although the magnetisation
dynamics associated to the eigenmodes do not
change significantly, their frequencies change
substantially.

Methods

- Geometry and material parameters
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- Full 3D finite elements simulation model

- No assumption about translational invariance
In the out-of-plane direction

- Eigenvalue method [3] allows us to compute all
existing eigenmodes

- We perform the ringdown method [4] to
determine what eigenmodes can be excited using a
particular experimentally feasible excitation

- After full 3D ringdown simulations, we (i) artificially
set the demagnetisation energy contribution
to zero and (ii) model thin film sample using
two-dimensional mesh

- Power spectral densities are computed using
spatially averaged and spatially resolved
analyses
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Conclusion

- Using full three-dimensional model, employing two different methods (eigenvalue and ringdown),
we explored the dynamics of an isolated skyrmion state.
- By artificially setting the demagnetisation energy to zero and modeling the three-
dimensional thin film sample with two-dimensional mesh, we computed power spectral
densities for an in-plane and an out-of-plane excitations.
- We conclude that although the magnetisation dynamics associated to particular eigenmodes do not
change significantly, their frequencies change substantially.




