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Abstract— We study the Anisotropic Magneto-Resistance
(AMR) of a two-dimensional periodic square array of connected
permalloy rings with periodicity of 1µm combining experimental
and computational techniques.

The computational model consists of two parts: (i) the compu-
tation of the magnetization and (ii) the computation of the current
density. For (i), we use standard micromagnetic methods. For (ii),
we start from a potential difference applied across the sample,
compute the resulting electric potential and subsequently the
corresponding current density based on a uniform conductivity.
We take into account the backreaction of the magnetoresistive
effects onto the current density by self consistently computing
the current density and conductivity until they converge.

We compare the experimentally measured AMR curve (as a
function of the applied field) with the numerically computed
results and find good agreement. The numerical data provides
insight into the characteristics of the AMR data.

Finally, we demonstrate the importance of taking into account
the spatial variation of the current density when computing the
AMR.

I. INTRODUCTION

In recent years the exploration of magnetic structures at
sub-micron length scale has produced a major impact on
fundamental physics and technological applications. Magnetic
Random Access Memories (MRAM) are among the latest
achievements of such research, and arrays of tiny magnetic
elements are the most promising candidates for the next
generation of data storage devices.

The control of the switching behaviour in these elements is
one of the major issues to be addressed in patterned magnetic
data storage. Ring structures are potential candidates for such
storage media [1] and resistive effects are an important factor
in their design. Magnetic properties of isolated nano-rings have
been reported in several publications [2], [3], [4], and here we
investigate the transport properties of a system of connected
rings.

II. THE SAMPLE

Fig. 1(a) shows a Scanning Elecron Microscopy (SEM)
image of the sample we study. Periodic square arrays of
25 nm thick permalloy nano-rings have been prepared by
e-beam lithography on a (100) silicon wafer spin-coated with
bi-layer resists (PMMA and P(MMA-MAA) copolymer). Us-
ing e-beam evaporation in a high vacuum, a permalloy film

Fig. 1. (a) SEM image of the connected rings array and (b) model used in the
simulations, where the field H is applied nearly along the y-axis (α = 88◦).
The potential is applied between the top and bottom of the system, with the
contact regions along the cut rings.

was deposited, and after a lift-off in acetone the arrays of
magnetic permalloy rings were obtained. The distance between
the centres of the rings is 1000 nm.

III. COMPUTATIONAL MODEL

To study the transport properties of this system we use mi-
cromagnetic simulations to find the magnetization distribution
for each applied field and solve the equations describing the
AMR effect via the finite element method as detailed below.

For the micromagnetic modelling we use OOMMF [5] to
simulate a 3 by 3 ring array as shown in Fig. 1(b). According
to the experimental sample, the dimensions for the inner and
outer radius are 325 nm and 550 nm, respectively.

The AMR is the result of the electrons spin-orbit interaction,
so that the scattering of the conduction electrons depends
on the orientation of the magnetization with respect to the
direction of the electric current [6]. The net effect is to have
maxima in the local resistivity when the local magnetization
M is parallel or antiparallel to the local electric current density
J. With θ = 6 (M,J) being the angle between M and J, the
resistivity ρ is given by [7]

ρ(θ) = ρ0(1 + α · cos2 θ) (1)

where ρ0 is the resistivity of the material in the absence of
AMR and α is a coefficient that for permalloy is between 1%
and 5%. In our analysis we used ρ0 = 15 µΩ/cm [7] and
α = 3.5% [8].



To compute the AMR numerically, we compute the electric
potential Φ for the system which defines the electric field E
via

E = −∇Φ. (2)

Given E and a conductivity σ (which is a function of position)
we can compute the current density

J = σE = −σ∇Φ (3)

with suitable boundary conditions.
In more detail, we need to consider the conservation of

charge ∂ρ
∂t + ∇ · J = 0 which simplifies in the electrostatic

case to
∇ · J = 0. (4)

We also need to impose the boundary condition, outside the
contact regions, that the current must not leave the sample

n̂ · J = 0 (5)

where n̂ is a vector normal to the surface. Combining (4), (3)
and (2), we obtain:

∇ · J = ∇ · (σE) = −∇ · (σ∇Φ) = 0. (6)

Together with (5) and fixing the values for Φ where the
electric contacts are mounted on the sample, the problem is
fully defined and can be solved numerically to obtain Φ and
therefore E and J for a given conductivity σ. (We do not need
to consider the Lorentz force acting on the current density
as the applied field is in the plane of the film.) Because the
conductivity σ

σ(θ) =
1

ρ(θ)
=

σ0

1 + α · cos2 θ
(7)

is a function of the angle θ between magnetization M and
current density J, we need to solve (7) and (6) iteratively
until we reach self-consistency for both the current and the
conductivity distributions.

Experimentally a current density above the order of
108 A/cm2 affects the magnetization distribution, but the very
low current density regime (of the order of 103 A/cm2) con-
sidered in our analysis makes the equilibrium magnetization
independent of the applied electric field for each value of the
external magnetic field. Therefore we assume the transfer of
momentum between the current and the magnetization to be
negligible, and the only interaction between the two fields
occurs through the conductivity redistribution.

The values of the magnetization obtained from the OOMMF
structured grid are interpolated over a two dimensional un-
structured mesh with an average edge length of 30 nm
(Fig. 1(b)). This mesh is used to solve equations (7) and (6) to
(iteratively) compute the equilibrium angle θ between M and
J. All calculations apart from the micromagnetic modelling
are performed using nmag [9], a multiphysics package based
on the finite element method. (In principle, nmag is able to
also do the micromagnetic simulations although at the time
of writing it was not yet sufficiently fast to deal with such
a large computational problem.) While we have computed
magnetization data on the 3x3 ring system shown in Fig. 1(b),

Fig. 2. (a) Simulated hysterises loop, (b) experimentally obtained AMR, (c)
numerically obtained AMR. The marked points I, II and III in (c) are discussed
in detail and shown in Fig. 3. Note that the experimental AMR data in (b)
contains both branches (for increasing and decreasing applied magnetic field)
whereas the simulated data (c) contains only AMR values for increasing field.

for our analysis of the conductivity we use only the central
ring to minimise surface effects.

The AMR ratio rAMR is then computed for each point on
the hysteresis curve in terms of the resistance R = V/I as

rAMR =
R(H)

R(H = 0)
− 1 (8)

where V is the voltage between the top and bottom interfaces
of the system, I is the integral of the current density J over
the contacts surface and H the applied magnetic field.

IV. RESULTS

We study the AMR for an external magnetic field acting
(nearly) along the y-axis (see Fig. 1(b)). The field is varied
from -1 T to 1 T in steps of 2 mT, and for each field strength
the corresponding conductivity and AMR value is computed.
The resulting hysteresis loop is shown in Fig. 2(a) together
with the AMR data obtained experimentally (Fig. 2(b)) and
numerically (Fig. 2(c)). The qualitative agreement between the
measured and simulated AMR curve is good. We do not expect
quantitative agreement as our model uses a small number of
rings compared to the real sample and, although we restrict
the analysis to the central ring, surface effects may still play
a relevant role on the magnetization distribution.

We will now discuss the origins of the observed AMR data
for the points labelled I, II and III in Fig. 2(c). Fig. 3 shows the
magnetization and current distribution (left) and the resulting
conductivity (right) for each of the points I, II and III. From
Eq. (7) the conductivity is largest when the current density and
the magnetization are orthogonal to each other, and smallest
when they are parallel.

At point I, the applied field of 1000 mT is fairly strong and
the magnetization is mostly aligned with the negative y-axis.
The current density needs to follow the shape of the sample
and is slightly larger at the inner boundary of each ring.



Fig. 3. (a) Magnetization and current density evolution in a section of
the ring (with the full picture obtainable by symmetry considerations) and
(b) corresponding conductivity distributions for the cases marked in Fig. 2.
The magnetization M is represented by the black arrows, the current density
J by the white ones. The conductivity distribution is shown using bubbles
with radius proportional to the local conductivity value σ. The colour scale,
expressed in S/m, is the same for all plots.

Because of the alignment between the current density and
the magnetization the conductivity for point I (b) is low in the
middle section (i.e. East (E) and West (W) from the centre of
the ring, see Fig. 3-II (b)) where the magnetization and current
density are mostly parallel. The conductivity is large in the
diagonal parts (i.e. North-East, North-West, South-West and
South-East of the centre of the ring) where there is (roughly)
a 45 degree angle between the magnetization and the current
density.

At point II, the resistance in Fig. 2(c) reaches the maximum
and the applied field is –18 mT. The conductivity (II (b)) is
small virtually everywhere throughout the ring in comparison
to I (b). This is due to magnetization in the diagonal parts
of the ring aligning with the shape of the ring (to reduce the
demagnetising energy) and hence with the direction of the
current at this applied field.

At point III, the applied field is slightly positive (22 mT) and
just below the coercive field (Hc = 23 mT), and the average
magnetization is still pointing downwards in the negative y-
direction. It can be seen that the magnitude of the y-component
of the magnetization in the diagonal parts of the ring is smaller
than at point II. For this reason there is a larger angle between
current density (which has not significantly changed from
point I, to II to III) and magnetization, and consequently we
see an increased conductivity in these areas.

Finally, we test how important it actually is to compute the
spatially varying current density. We compute the conductivity

Fig. 4. (a) The magnetization and current density and (b) the conductivity
distributions in the uniform current model at the coercive field (point III). The
arrows on the edge of the ring in (a) are intended for visualization purposes.

for point III by (wrongly) assuming that the current density
would be uniform and would be pointing in the negative
y-direction everywhere. The results are shown in Fig. 4.
The conductivity is significantly overestimated (compare with
III (b) in Fig. 3). The AMR ratio obtained from this uniform-
current calculation is ≈ −4 ·10−3. Based on the data shown in
Fig. 2(c), this corresponds to an applied field of ≈ ±200 mT
whereas the actual applied field was 22 mT.

V. SUMMARY

We have studied the AMR curve for square arrays of
connected rings. Experimental and numerical data agree rather
well, and the numerical data allows to intepret the experi-
mental curve. The relation between the AMR and the current
distribution is non-linear in the conductivity of the material
and we have used a self-consistent approach to determine the
AMR values numerically. Finally, we have demonstrated that
it is vital to compute the current density correctly to accurately
calculate AMR values numerically.
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