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Abstract. Carbon nanotubes (CNTs) possess a range of unusually interesting and useful
physicochemical properties. In this paper, the mechanical properties of single wall CNTs are
investigated via free vibration normal modes using molecular mechanics models. The force field
used is empirical and the usual assumptions of potential energy contributions coming from bond-
stretching, bond angle bending, and bond twisting for two, three, and four atom interactions
respectively, are made. The validity of continuum behaviour is examined by comparing
the modal spacing obtained from the molecular mechanics models and that obtained from
classical continuum elastodynamics. The breakdown of continuum behaviour is systematically
characterised for various combinations of length to diameter ratio as well as for the number of
atoms per circumference.

1. Introduction

Normal Mode Analysis is an important tool for studying the structure and dynamics of nanosized
systems. The vibrational frequencies obtained can be used to relate observed spectra to details
of the molecular structure, dynamics, heat capacities and other thermodynamic properties. It is
based on the harmonic approximation in the limit of small amplitude motion. Once the force-
field parameters that describe the atomic interactions have been obtained either via detailed ab-

initio quantum mechanical calculations or laboratory experiments, the mechanics of the group
of atoms can be satisfactorily modelled using of classical methods. The normal mode analysis
provides information on possible synchronous motions: in particular, their frequency and the
relative atomic amplitudes and directions.

To understand the overall mechanical behaviour, and also to make use of classical models
for this class of problems, continuum models have been frequently proposed [1]. For carbon
nanotubes (CNTs), the model consists of a long thin tube of spatially homogeneous and isotropic
of matter. The validity of these models for various tube geometries has been examined here.

2. Molecular modelling

A carbon nanotube can be regarded as a large molecule constisting of carbon atoms. The
atomic nuclei can be approximiated by material points. The general expression of the total steric
potential energy, omitting the electrostatic and nonbonded interactions, is a sum of energies [2]

U =
∑

bonds

Ur +
∑

bond angles

Uθ +
∑

4−atom interactions

Uφ (1)



where Ur is the potential energy associated with bond stretching, Uθ that for bond angle
bending, and Uφ for dihedral angle torsion. As is common for molecular mechanics models,
these interactions are kept as quadratic forms:
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where kr, is the bond stretching constant, kθ is the bond angle bending force constant and kφ is
the torsional stiffness, respectively. If qi is the ith generalised co-ordinate, then the Lagrangian
L of the system is given by the difference in the kinetic energy T and the potential energy U

L(q, q̇) = T (q̇) − U(q) ≈ (1/2)q̇T Mq̇ − (1/2)qT Kq (3)

when the energy terms have been linearised; accounting for terms up to the quadratic. M and
K are the mass and the Hessian matrices (stiffness matrix in theoretical mechanics literature),
q is the vector of generalised co-ordinates, and a dot represents differentiation with respect to
time. Using Hamilton’s principle (or equivalently using Lagrange’s equations), the well-known
governing equations of motion Mq̈+Kq = 0 are obtained. Looking for non-trivial synchronous
motion (i.e. in- or out-of-phase motion) leads to the eigenvalue problem [3] Kui = λiMui, where
λi = ω2

i , i = 1, 2, . . . 3N is the ith eigenvalue that represents the square of the natural frequency
ωi, and ui, i = 1, 2, . . . 3N is the corresponding eigenvector (normal mode).

Before normal modes can be calculated, the configuration of the atoms must be brought
to the equilibrium via appropriate energy minimisation. While slightly imcomplete energy
minimisation may be satisfactory for many molecular dynamics simulations where trajectories of
motion with respect to time are to be calculated, the procedure often poses practical problems
for the normal mode analysis. This is particularly true for systems with large number of
degrees-of-freedom. When energy minimisation is partially incomplete, the configuration does
not correspond to the equilibrium and the struture thus obtained is (minorly) unstable. A
consequence of this is that the Hessian is not positive definite; and that some of the eigenvalues
may be slightly negative (physical considerations dictate that we must have six zero eigenvalues
corresponding to the six rigid body modes and the remaining must be all positive).

The above mentioned difficulty has been encountered by other authors as well. We have
taken the approach of [4] to overcome this problem. Molecular dynamics (MD) simulations were
carried out at a low temperature (0.1K) for the structure whose energy minimisation is slightly
incomplete; the Hessian was calculated at each time step. Strictly, there is no meaning of ‘time
dependent Hessian’ for a stable (energy minimised) structure because Hessian is the curvature
tensor of the energy surface in the space spanned by the configuration space variables qi: a time
independent (but, possibly, non-linear) quantity. However, the way Hessians are often computed
(effectively by numerical differentiation of the energy landscape), a set of constants (representing
entries in the Hessian matrix) are obtained at each time step. These constants oscillate (see
figure 1, for a typical entry) and the Hessian averaged over time is the so-called ‘Time Averaged
Hessian’. When averaging of the Hessians is performed for moderate time scales, significant
improvement in the positive semidefiniteness is observed.

A variety of CNT structures were created using Tubegen [5] and were divided into two groups,
one with a fixed diameter and the other with a fixed length/diameter ratio, as listed in Table
1. Energy minimisation and molecular dynamics were performed using the open source code
GROMACS [6]. The input data into GROMACS required minor changes in the forcefield files.
The bond constants and lengths were taken from literature [1].

3. Results and discussions in the light of continuum thoery

After averaging Hessians, as described in the previous section, the first six eigenvalues were found
to be numerically acceptable (the largest negative or positive value in the first six eigenvalues
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Figure 1. Temporal evolution of a typical
diagonal entry of the Hessian matrix.

CNT Chirality Cell L/D No. of
Name count ratio atoms

A (5,5) (1,1,13) 4.60 260
B (5,5) (1,1,26) 9.60 520
C (5,5) (1,1,39) 14.60 780
D (5,5) (1,1,52) 19.84 1040
E (5,5) (1,1,69) 26.10 1380
F (5,5) (1,1,79) 29.29 1580
G (5,5) (1,1,31) 11.43 620
H (7,7) (1,1,44) 11.57 1232
I (10,10) (1,1,64) 11.37 2560

Table 1. Parameters of the CNTs simulated.
L=length, D=diameter of the tube.

was at least 1/1000th of the eigenvalue corresponding to the fundamental frequency, i.e. the
7th eigenvalue). Frequencies of the oscillatory modes are presented in Table 2. The results are
normalised with respect to the fundamental frequency in each case in order to study the modal
spacing.

We observe in all cases that the second natural frequency is very close to the fundamental.
This is expected because a perfectly symmetrical cylinder has repeated eigenvalues for the
fundamental. The two frequencies correspond to the bending modes about two different axes
that are perpendicular to the axis of the cylinder. The values, slightly different than unity,
indicate the slight breakdown of the degeneracy because of the lack of cylindrical symmetry as
well as asymmetry introduced by the numerics. A general statement about the degenracy of
modes can be made: bending modes will appear in doublets whereas extensional and torsional
modes will not have any degeneracy.

For a thin beam made of continuum, the modal spacing is given by the classical Euler’s
formula [7]. For free-free beams, the ratio of the first, the second, the third and the fourth
natural frequencies is given by 1:2.58:5.41:8.93. Of all the CNTs simulated, the length (L) to
the diameter (D) ratio is largest for the nanotube labelled F. There are three pairs of natural
frequencies approximately at 2.74/2.78, 5.26/5.31, and 8.46/8.52 for this nanotube. The values
progressively deviate from their Euler-Bernoulli continuum counterpart with increasing mode
number. This is explained by the fact that with increasing mode number, the characteristic
length in the axial direction progressively shortens, thus violating the slender beam assumptions.
Such effects have been well known in classical mechanics and corrections have been proposed to
account for deviations from infinitesimal slenderness of beams. Perhaps the most important of
these are correection due to shear effects (proposed by Timoshenko [8]) and that of rotary inertia
[7] (see, article 186). The shear correction becomes important with increasing wavenumber (i.e.
shorter wavelength) and rotary intertia becomes important for high frequencies. The need for
correction of this kind is obvious from the normal mode calculations presented in Table 2 for
progressively shorter beams. For example, the second bending mode for beam A is 2.08 times
the fundamental (4th and 5th rows, 1st column of Table 2) as opposed to 2.58 for slender beams.

There are modes for nanotube E that do not appear in pairs. They are either extensional or
torsional modes (for example, at the normalised frequency 6.41, 9.78, 12.82, etc.). The order in
which these modes appear depends on the aspect ratio (L/D) of the nanotube. For example,
the first such mode for tube A is the third vibratory mode at normalised frequency 1.47.

The second bending mode for beam I (which has the largest number of atoms in this study)



Mode number A B C D E F G H I

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.006 1.008 1.004 1.004 1.012 1.053 1.008 1.003 1.002
3 1.473 2.469 2.605 2.672 2.710 2.737 2.537 2.541 2.549
4 2.083 2.486 2.623 2.687 2.728 2.775 2.555 2.547 2.553
5 2.088 2.544 3.684 4.860 5.171 5.255 2.979 3.016 3.062
6 2.104 3.882 4.750 5.005 5.203 5.305 4.499 4.513 4.536
7 2.198 4.271 4.782 5.037 6.408 7.372 4.529 4.522 4.542
8 2.244 4.299 5.623 7.421 8.255 8.463 4.547 4.670 4.793
9 2.408 5.082 7.235 7.832 8.309 8.522 5.954 6.031 5.227
10 2.560 6.198 7.283 7.884 9.784 11.251 6.676 6.701 5.291
11 2.694 6.231 7.365 9.718 11.844 12.234 6.718 6.712 5.414
12 2.728 7.226 9.920 11.015 11.922 12.320 8.918 7.307 5.486
13 2.934 7.390 9.983 11.087 12.816 14.741 8.942 7.430 5.674
14 3.005 7.425 11.039 14.440 15.832 16.485 8.989 7.514 5.932
15 3.092 7.598 11.227 14.535 15.937 16.598 9.068 7.628 6.123

Table 2. Normal mode frequencies scaled with respect to the fundamental in each case.

is about 2.55 times the fundamental which is fairly close to the thin beam value of 2.58. The
values are even better than those for the thinnest (i.e. largest L/D) beam F. The reason is a
lack of atoms for adequate continuum representation in case of tube F.

When weak forces e.g. van Der Waals and electrostatic interactions were included in the
model, the effect on the normal mode frequency was not significant.

4. Conclusions

Normal mode calculations for single wall carbon nanotubes were presented based on the ‘time
averaged Hessians’. The natural frequencies show modal separation that progressively resembles
those of thin continuum beams with (i) increase in the aspect ratio (L/D), and (ii) increase in
the number of atoms in the model. The results suggest inclusion of Timoshenko and Rayleigh
type corrections to the Euler-Bernoulli theory.

These improvements on the natural frequencies of carbon nanotubes can be very useful for
CNT-attached atomic force microscopy, where a nanotube is placed at the end of the silicon tip.
The Euler-Bernoulli theory is often used for the calculation of the position of the scanned atoms
[9], both in contact and phase mode.
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