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Abstract— Exchange springs are formed in multi-layers of
alternating hard and soft ferromagnetic materials which are
exchange coupled at their interfaces. These systems are rich
of interesting physical properties, which can be tuned by se-
lecting suitable geometries and compositions. In this work we
present a computational study of the dynamics of a tri-layer
DyFe2/YFe2/DyFe2 exchange spring system near the bending field
(the field required to twist the magnetization of the soft YFe2

layer out of the aligned state). The dynamical reaction of the
system to small variations of the applied field is studied and
its oscillatory nature is analyzed numerically. The behaviors of
the decay times, the frequencies and amplitudes reveal enhanced
responses of the system near the bending field.

I. INTRODUCTION

Exchange spring systems are composites of magnetically
hard and soft materials that are exchange-coupled across
their interfaces. They are promising candidates for many
technological applications. They could be used to obtain
high densities in storage media, while keeping acceptable
writability and thermal stability [1]. They could also be used as
high-performance permanent magnets [2] or as GMR (Giant
Magneto Resistance) sensors. An important feature of these
systems appears when a suitable external field is applied: the
magnetization of the soft material responds in a position-
dependent way, being bounded to the magnetization of the
hard material near the interfaces and twisting towards the
applied field in the bulk. This resembles a mechanical torsion
spring, thus comes the name “exchange spring”. The torsion
is exhibited only when the applied field exceeds a particular
value called the bending field. For lower values the fully
aligned state is preferred, because it turns out to minimize the
energy, as shown by simple theoretical models [3]. The slope
of the magnetization (with respect to varying the applied field)
is large close to the bending field. This may be of technological
relevance as a small applied field results in a large change in
magnetization. Moreover Brillouin light scattering experiments
have shown interesting properties near the bending field, where
the measured magnon frequency reaches a minimum value [4].

In this work we study the dynamics of a model of a
hard-soft-hard exchange spring system in the vicinity of the
bending field. We have chosen material parameters similar to
a DyFe2/YFe2/DyFe2 sample, which has been the subject of
experimental investigation in our group.
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Fig. 1. The geometry of the system and the orientation of the easy axes u1,
u2 and u3 for the cubic anisotropy (a). Its initial configuration (b) minimizes
the energy when Happ < Hb, but for higher fields an exchange spring is
developed (c).

II. MODEL

The system is a thin film made of one central magnetically
soft YFe2 layer sandwiched between two thinner magneti-
cally hard DyFe2 layers (see fig. 1a). Three different kinds
of atoms are present in this system: one rare earth metal
(Dy) and two transition metals (Fe and Y). The yttrium has
negligible magnetic moment: only the iron moments contribute
to the magnetization of the central layer. Conversely in the
two external layers both the atomic species of the DyFe2

compound give a relevant contribution to the magnetization.
For the temperature considered here (100 K) the magnetic
moment of iron is weaker than the one of dysprosium and is
forced to be antiparallel to it by the strong antiferromagnetic
coupling, which makes the DyFe2 a ferrimagnet. Moreover
Dy experiences a strong magnetocrystalline cubic anisotropy
which makes the two external layers magnetically hard. The
Fe-Fe exchange coupling is even stronger than the Dy-Fe cou-
pling [5] and opposes to the spatial variation in the orientation
of the magnetizations. The coupling occurs also across the
boundary surfaces between the layers. This is what allows
the system to develop exchange spring configurations, keeping
the iron moments bounded to the dysprosium moments of the
hard layers at the boundaries. The effects of strain on the
magnetic anisotropy of MBE-grown DyFe2/YFe2 superlattices
are negligible at temperatures below ∼ 100 K [6].

We study the system with a unidimensional model along
the out-of-plane direction, neglecting spatial variations of the
magnetization across the plane of the layers. The configuration
of the magnetic moments in the system is represented by
two continuous magnetization fields MDy(z) and MFe(z)
defined over the one-dimensional space: MDy is the moment



density of Dy atoms in DyFe2 and MFe is the moment
density of Fe atoms in DyFe2 and YFe2. Their norms are
MDy = ‖MDy‖ and MFe = ‖MFe‖, which at the temperature
of 100 K are MDy = 1.73 × 106 A/m and, for both DyFe2

and YFe2, MFe = 0.55 × 106 A/m. The Brown’s theory of
micromagnetics is used to derive the effective fields acting on
MDy and MFe:

HDy = Happ + Hd + Hanis + (J/µ0)MFe

HFe = Happ + Hd + Hexch + (J/µ0)MDy

The applied field acts on both dysprosium and iron. HDy

also receives a cubic anisotropy contribution, whose three
axes are shown in fig. 1a. The three coefficients used in
the anisotropy expansion [7] are K1 = 33.9 × 106 J/m3,
K2 = −16.2×106 J/m3 and K3 = 16.4×106 J/m3. The iron
experiences an exchange field Hexch = 2A

µ0MFe
∇2mFe, where

A = 1.46 × 10−11 J/m is the exchange coupling constant,
µ0 is the free space permeability and mFe = MFe/MFe. The
dipolar field Hd is calculated as Hd = −Mzz, where Mz

is the out-of-plane component of the total magnetization field
and z is the unit vector which points towards the positive
z direction. This contribution evidently tries to reduce the
surface magnetic charges, pulling the magnetization into the
plane of the film. The Dy-Fe coupling is modeled by an extra
energy term U = J

∫
MDy·MFe dz in the Hamiltonian, where

J = 2× 10−4 N/A2 is the coupling constant [5] and the inte-
gral is done over the hard layers, where both magnetizations
are defined. The Landau-Lifshitz-Gilbert equation is then used
to calculate the dynamics of the magnetizations.

The unidimensional model is a severe approximation for a
description of the switching processes, where domain walls
can form and play an important role, but for our investigation
near the bending field the model should be quite accurate.

III. RESULTS

For the simulations we use the Nmag micromagnetic sim-
ulation package [8], choosing the first order FEM (Finite
Element Method) to discretize the space. The chosen mesh is
a unidimensional lattice with constant spacing ∆z = 0.5 nm.
We first calculate the hysteresis loop of the sample covering
a wide range for the applied field Happ: from −60 T to
60 T in 250 steps (see fig. 2). Happ is directed along the
positive x axis. To avoid the system to be trapped in an
unstable equilibrium configuration, we follow the standard
practice of adding a small constant deviation to the applied
field: Hdev = (0, 1, 1)× 0.005 T. The high field required for
the switching (around 55 T) represents a clear manifestation of
Brown’s paradox. In this paper, however, we are not concerned
with this, since we are exploring a low-field region near the
bending field, where the unidimensional model should be
rather accurate. The bending field has been located around
Hb ≈ 4.3 T. The results, which are shown in fig. 2, have
been successfully validated against the ones obtained using
the single-field model used by Zimmermann et al. [9].

After these preliminary calculations we start the main
simulation. We prepare the system in the configuration where
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Fig. 2. The hysteresis loop. The field is applied in the in-plane x direction.
The curve around the bending field is shown in the inset in more detail.

MDy lies in the plane of the film and points along the positive
x axis, while MFe points along the opposite direction (see
fig. 1b). This is an equilibrium configuration when the applied
field Happ is zero, which is the situation we choose to start
with in our simulation. To study a certain applied field Happ

we first set the damping parameter in the Landau-Lifshitz-
Gilbert equation to a high value (α = 0.5), to quickly reach
convergence. We then set the damping to the realistic value
(α = 0.02), increase the field intensity by a small amount ∆H
and let the system evolve towards equilibrium. The trajectory
of the mean magnetization 〈M〉 is then studied carefully.
This procedure is repeated in sequence for many values of
Happ near the bending field. In particular we choose values
of Happwhich all point along the positive x direction with
intensities which range from 0 to 12 T. We use more values
of Happ near the bending field, to better resolve the behavior
of the system in that region. For all the considered applied
fields we use the same value of ∆H = 0.05 T. A piece of the
〈M〉 trajectory, projected in the yz plane, is shown in fig. 3.
These curves should reflect the changes in the magnetization
of the soft layer only, because the magnetization of the hard
layers is almost fixed for the considered range of the applied
field. The alternating switching between the high and the low
damping parameter can be distinguished clearly. The shape
of these curves are all similar one to the other: they are
spirals compressed along the out-of-plane z-direction. The
graph shows only a few trajectories for Happ < Hb. For higher
fields the spirals become much wider. In fig. 3 (bottom) the y-
component of the mean magnetization is plotted as a function
of time for the case Happ = 4.20 T, just below the bending
field. We fit these results to the equations of motion for a
damped harmonic oscillator:

My(t) = My,0 + ∆My e−λyt cos(ωy(t− t0) + ϕy)
Mz(t) = Mz,0 + ∆Mz e−λzt cos(ωz(t− t0) + ϕz)

We analyze the trajectories individually, to extract the frequen-
cies, the decay times and the amplitudes of the oscillations
produced as a reaction to the small perturbation ∆H . Fig. 4
collects the results of the fits. The corresponding curves match
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Fig. 3. Top: The trajectories of 〈M〉 for Happ = 3.60, 3.80, 4.00, 4.20 T.
At each step the system reaches the equilibrium configuration for Happ =
Hn with a high damping parameter α = 0.5 (dotted line). Then the field is
changed to Happ = Hn + ∆H and α = 0.02 is used to study the response
(solid line) to the small increase in the field intensity. Bottom: 〈My〉 is also
plotted as a function of time for Happ = 4.20 T together with the fitted
curve.

closely the data. An example is shown in fig. 3. The graphs in
fig. 4 show clearly that near the bending field the dynamical
reaction of the system is amplified: the same perturbation ∆H
produces wider oscillations with smaller frequency and which
last longer (higher decay time λ−1). The plot of the frequen-
cies shows a minimum near Hb and a qualitative behavior
which is consistent with previous experimental and theoretical
results [4]. The amplitudes, whose magnitude depends on the
value chosen for ∆H , show an interesting feature: the shapes
of the spiral trajectories (fig. 3) change with the applied field,
being elongated in the in-plane y direction for Happ � Hb

and in the out-of-plane z direction for Happ � Hb. We have
repeated our studies increasing ∆H by a factor of 5 and
decreasing it by a factor of 10. This does affect frequencies
and decay times by less than 0.015% and 0.2%, respectively.

IV. SUMMARY

We have carried out micromagnetic simulations of the
dynamics of a tri-layer DyFe2/YFe2/DyFe2 exchange spring
system with realistic crystal field anisotropy near the bending
field, showing how the magnetization reacts to small incre-
ments in the intensity of the applied field. We have shown that
the dynamics of the components of the mean magnetization
can be fitted with excellent results against the equation of
motion of damped harmonic oscillators. We obtained the
frequencies, the decay times and the amplitudes of these
oscillations and find that they have a minimum frequency,
a maximum decay time and a maximum amplitude near the
bending field.
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Fig. 4. The parameters obtained from the fits. In the three top graphs solid
lines are used for the values obtained fitting the z component 〈Mz〉, while
the crosses are used for 〈My〉.
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