Solving partial differential equations (PDEs)

Hans Fangohr

Engineering and the Environment
University of Southampton
United Kingdom
fangohr@soton.ac.uk
May 3, 2012

Outline I

1 Introduction: what are PDEs?

2 Computing derivatives using finite differences

3 Diffusion equation

4 Recipe to solve 1d diffusion equation

5 Boundary conditions, numerics, performance

6 Finite elements

7 Summary

This lecture

- tries to compress several years of material into 45 minutes

■ has lecture notes and code available for download at http://www.soton.ac.uk/~fangohr/teaching/comp6024

What are partial differential equations (PDEs)

- Ordinary Differential Equations (ODEs)
- one independent variable, for example t in

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{k}{m} x
$$

- often the indepent variable t is the time
- solution is function $x(t)$

■ important for dynamical systems, population growth, control, moving particles
■ Partial Differential Equations (ODEs)

- multiple independent variables, for example t, x and y in

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

- solution is function $u(t, x, y)$
- important for fluid dynamics, chemistry, electromagnetism, ..., generally problems with spatial resolution

2d Diffusion equation

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

■ $u(t, x, y)$ is the concentration $\left[\mathrm{mol} / \mathrm{m}^{3}\right.$]

- t is the time [s]
- x is the x -coordinate [m]
- y is the y-coordinate [m]
$\square D$ is the diffusion coefficient $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
Also known as Fick's second law. The heat equation has the same structure (and u represents the temperature).
Example:
http://www.youtube.com/watch?v=WC6Kj5ySWkQ

Examples of PDEs

■ Cahn Hilliard Equation (phase separation)

■ Fluid dynamics (including ocean and atmospheric models, plasma physics, gas turbine and aircraft modelling)
■ Structural mechanics and vibrations, superconductivity, micromagnetics, ...

Computing derivatives using finite differences

- Motivation:
- We need derivatives of functions for example for optimisation and root finding algorithms
■ Not always is the function analytically known (but we are usually able to compute the function numerically)
- The material presented here forms the basis of the finite-difference technique that is commonly used to solve ordinary and partial differential equations.
- The following slides show

■ the forward difference technique

- the backward difference technique and the
- central difference technique to approximate the derivative of a function.
- We also derive the accuracy of each of these methods.
- (Possible) Definition of the derivative (or "differential operator" $\frac{d}{d x}$)

$$
f^{\prime}(x) \equiv \frac{\mathrm{d} f}{\mathrm{~d} x}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Use difference operator to approximate differential operator

$$
f^{\prime}(x)=\frac{\mathrm{d} f}{\mathrm{~d} x}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \approx \frac{f(x+h)-f(x)}{h}
$$

■ \Rightarrow can now compute an approximation of $f^{\prime}(x)$ simply by evaluating f (twice).

- This is called the forward difference because we use $f(x)$ and $f(x+h)$.
- Important questions: How accurate is this approximation?

Accuracy of the forward difference

■ Formal derivation using the Taylor series of f around x

$$
\begin{aligned}
f(x+h) & =\sum_{n=0}^{\infty} h^{n} \frac{f^{(n)}(x)}{n!} \\
& =f(x)+h f^{\prime}(x)+h^{2} \frac{f^{\prime \prime}(x)}{2!}+h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+\ldots
\end{aligned}
$$

- Rearranging for $f^{\prime}(x)$

$$
\begin{aligned}
h f^{\prime}(x) & =f(x+h)-f(x)-h^{2} \frac{f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots \\
f^{\prime}(x) & =\frac{1}{h}\left(f(x+h)-f(x)-h^{2} \frac{f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots\right) \\
& =\frac{f(x+h)-f(x)}{h}-\frac{h^{2} \frac{f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}}{h}-\ldots \\
& =\frac{f(x+h)-f(x)}{h}-h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots
\end{aligned}
$$

Accuracy of the forward difference (2)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\underbrace{h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots}_{E_{\text {forw }}(h)} \\
& f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+E_{\text {forw }}(h)
\end{aligned}
$$

- Therefore, the error term $E_{\text {forw }}(h)$ is

$$
E_{\text {forw }}(h)=-h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots
$$

- Can also be expressed as

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+\mathcal{O}(h)
$$

The 1st derivative using the backward difference

- Another definition of the derivative (or "differential operator" $\frac{\mathrm{d}}{\mathrm{d} x}$)

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(x)=\lim _{h \rightarrow 0} \frac{f(x)-f(x-h)}{h}
$$

■ Use difference operator to approximate differential operator

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(x)=\lim _{h \rightarrow 0} \frac{f(x)-f(x-h)}{h} \approx \frac{f(x)-f(x-h)}{h}
$$

- This is called the backward difference because we use $f(x)$ and $f(x-h)$.
■ How accurate is the backward difference?

Accuracy of the backward difference

- Formal derivation using the Taylor Series of f around x

$$
f(x-h)=f(x)-h f^{\prime}(x)+h^{2} \frac{f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+\ldots
$$

- Rearranging for $f^{\prime}(x)$

$$
\begin{gathered}
h f^{\prime}(x)=f(x)-f(x-h)+h^{2} \frac{f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots \\
f^{\prime}(x)=\frac{1}{h}\left(f(x)-f(x-h)+h^{2} \frac{f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots\right) \\
=\frac{f(x)-f(x-h)}{h}+\frac{h^{2} \frac{f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}}{h}-\ldots \\
=\frac{f(x)-f(x-h)}{h}+h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots
\end{gathered}
$$

Accuracy of the backward difference (2)

$$
\begin{align*}
& f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\underbrace{h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots}_{E_{\text {back }}(h)} \\
& f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+E_{\text {back }}(h) \tag{1}
\end{align*}
$$

- Therefore, the error term $E_{\text {back }}(h)$ is

$$
E_{\mathrm{back}}(h)=h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-\ldots
$$

- Can also be expressed as

$$
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\mathcal{O}(h)
$$

Combining backward and forward differences (1)

The approximations are

- forward:

$$
\begin{equation*}
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+E_{\text {forw }}(h) \tag{2}
\end{equation*}
$$

■ backward

$$
\begin{equation*}
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+E_{\mathrm{back}}(h) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& E_{\text {forw }}(h)=-h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-h^{3} \frac{f^{\prime \prime \prime \prime}(x)}{4!}-h^{4} \frac{f^{\prime \prime \prime \prime \prime}(x)}{5!}-\ldots \\
& E_{\text {back }}(h)=h \frac{f^{\prime \prime}(x)}{2!}-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}+h^{3} \frac{f^{\prime \prime \prime \prime}(x)}{4!}-h^{4} \frac{f^{\prime \prime \prime \prime \prime \prime}(x)}{5!}+\ldots
\end{aligned}
$$

\Rightarrow Add equations (2) and (3) together, then the error cancels partly!

Combining backward and forward differences (2)

Add these lines together

$$
\begin{gathered}
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+E_{\mathrm{forw}}(h) \\
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+E_{\mathrm{back}}(h) \\
2 f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{h}+E_{\mathrm{forw}}(h)+E_{\mathrm{back}}(h)
\end{gathered}
$$

Adding the error terms:

$$
E_{\text {forw }}(h)+E_{\mathrm{back}}(h)=-2 h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-2 h^{4} \frac{f^{\prime \prime \prime \prime \prime}(x)}{5!}-\ldots
$$

The combined (central) difference operator is

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+E_{\text {cent }}(h)
$$

with

$$
E_{\text {cent }}(h)=-h^{2} \frac{f^{\prime \prime \prime}(x)}{3!}-h^{4} \frac{f^{\prime \prime \prime \prime \prime}(x)}{5!}
$$

Central difference

- Can be derived (as on previous slides) by adding forward and backward difference
- Can also be interpreted geometrically by defining the differential operator as

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}
$$

and taking the finite difference form

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

- Error of the central difference is only $\mathcal{O}\left(h^{2}\right)$, i.e. better than forward or backward difference

It is generally the case that symmetric differences are more accurate than asymmetric expressions.

Example (1)

Using forward difference to estimate the derivative of $f(x)=\exp (x)$

$$
f^{\prime}(x) \approx f_{\text {forw }}^{\prime}=\frac{f(x+h)-f(x)}{h}=\frac{\exp (x+h)-\exp (x)}{h}
$$

Numerical example:

- $h=0.1, x=1$
- $f^{\prime}(1) \approx f_{\text {forw }}^{\prime}(1.0)=\frac{\exp (1.1)-\exp (1)}{0.1}=2.8588$
- Exact answers is $f^{\prime}(1.0)=\exp (1)=2.71828$
- (Central diff: $\left.f_{\text {cent }}^{\prime}(1.0)=\frac{\exp (1+0.1)-\exp (1-0.1)}{0.2}=2.72281\right)$

Example (2)

Comparison: forward difference, central difference and exact derivative of $f(x)=\exp (x)$

Approximations of $d f / d x$ for $f(x)=\exp (x)$

Summary

- Can approximate derivatives of f numerically using only function evaluations of f
- size of step h very important
- central differences has smallest error term

name	formula	error
forward	$f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}$	$\mathcal{O}(h)$
backward	$f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}$	$\mathcal{O}(h)$
central	$f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}$	$\mathcal{O}\left(h^{2}\right)$

Appendix: source to compute figure on page

```
EPS=1 #very large EPS to provoke inaccuracy
def forwarddiff(f,x,h=EPS):
    # df/dx = (f(x+h)-f(x) )/h + O(h)
    return ( f(x+h)-f(x) )/h
def backwarddiff(f,x,h=EPS):
    # df/dx = (f(x)-f(x-h) )/h + O(h)
    return ( f(x)-f(x-h) )/h
def centraldiff(f,x,h=EPS):
    # df/dx = (f(x+h) - f(x-h))/h + O(h^2)
    return (f(x+h) - f(x-h))/(2*h)
if __name__ == "__main__":
    #create example plot
    import pylab
    import numpy as np
    a=0 #left and
    b=5 #right limits for x
    N=11 #steps
```


Appendix: source to compute figure on page

```
def f(x):
    """Our test funtion with
    convenient property that
    df/dx = f"""
    return np.exp(x)
xs=np.linspace(a,b,N)
forward = []
forward_small_h = []
central = []
for x in xs:
    forward.append( forwarddiff(f,x) )
    central.append( centraldiff(f,x) )
    forward_small_h.append(
        forwarddiff(f,x,h=1e-4))
pylab.figure(figsize=(6,4))
pylab.axis([a,b,0,np.exp(b)])
pylab.plot(xs,forward,'~',label=' forward h=%g'%EPS)
pylab.plot(xs,central,'x',label='central h=%g'%EPS)
pylab.plot(xs,forward_small_h,'o',
    label='forward h=%g'% 1e-4)
xsfine = np.linspace(a,b,N*100)
```


Appendix: source to compute figure on page 19 III

```
pylab.plot(xsfine,f(xsfine),'-',label='exact')
pylab.grid()
pylab.legend(loc='upper left')
pylab.xlabel("x")
pylab.ylabel("df/dx(x)")
pylab.title("Approximations of df/dx for f(x)=exp(x)")
pylab.plot()
pylab.savefig('central-and-forward-difference.pdf')
pylab.show()
```


Note: Euler's (integration) method - derivation using finite difference operator

■ Use forward difference operator to approximate differential operator

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}(x)=\lim _{h \rightarrow 0} \frac{y(x+h)-y(x)}{h} \approx \frac{y(x+h)-y(x)}{h}
$$

- Change differential to difference operator in $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$

$$
\begin{aligned}
f(x, y)=\frac{\mathrm{d} y}{\mathrm{~d} x} & \approx \frac{y(x+h)-y(x)}{h} \\
h f(x, y) & \approx y(x+h)-y(x) \\
\Longrightarrow y_{i+1} & =y_{i}+h f\left(x_{i}, y_{i}\right)
\end{aligned}
$$

$■ \Rightarrow$ Euler's method (for ODEs) can be derived from the forward difference operator.

Note: Newton's (root finding) method derivation from Taylor series

- We are looking for a root, i.e. we are looking for a x so that $f(x)=0$.
- We have an initial guess x_{0} which we refine in subsequent iterations:

$$
\begin{equation*}
x_{i+1}=x_{i}-h_{i} \quad \text { where } \quad h_{i}=\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \tag{4}
\end{equation*}
$$

- This equation can be derived from the Taylor series of f around x. Suppose we guess the root to be at x and $x+h$ is the actual location of the root (so h is unknown and $f(x+h)=0$):

$$
\begin{align*}
f(x+h) & =f(x)+h f^{\prime}(x)+\ldots \\
0 & =f(x)+h f^{\prime}(x)+\ldots \\
\Longrightarrow 0 & \approx f(x)+h f^{\prime}(x) \\
\Longleftrightarrow h & \approx-\frac{f(x)}{f^{\prime}(x)} \tag{5}
\end{align*}
$$

The diffusion equation

Diffusion equation

- The 2d operator $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is called the Laplace operator Δ, so that we can also write

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=D \Delta u
$$

■ The diffusion equation (with constant diffusion coefficient D) reads $\frac{\partial u}{\partial t}=D \Delta u$ where the Laplace operator depends on the number d of spatial dimensions

- $d=1: \Delta=\frac{\partial^{2}}{\partial x^{2}}$

■ $d=2: \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
■ $d=3: \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

1d Diffusion equation $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial n^{2}}$

- In one spatial dimension, the diffusion equation reads

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

This is the equation we will use as an example.

- Let's assume an initial concentration
$u\left(x, t_{0}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(x-x_{\text {mean }}\right)^{2}}{\sigma^{2}}\right)$ with $x_{\text {mean }}=0$ and width $\sigma=0.5$.

1d Diffusion eqn $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}$, time integration I

■ Let us assume that we have some way of computing $D \frac{\partial^{2} u}{\partial x^{2}}$ at time t_{0} and let's call this $g\left(x, t_{0}\right)$, i.e.

$$
g\left(x, t_{0}\right) \equiv D \frac{\partial^{2} u\left(x, t_{0}\right)}{\partial x^{2}}
$$

- We like to solve

$$
\frac{\partial u(x, t)}{\partial t}=g\left(x, t_{0}\right)
$$

to compute $u\left(x, t_{1}\right)$ at some later time t_{1}.
■ Use finite difference time integration scheme:
■ Introduce a time step size h so that $t_{1}=t_{0}+h$.

1d Diffusion eqn $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial n^{2}}$, time integration II

■ Change differential operator to forward difference operator

$$
\begin{align*}
g\left(x, t_{0}\right)=\frac{\partial u(x, t)}{\partial t} & =\lim _{h \rightarrow 0} \frac{u\left(x, t_{0}+h\right)-u\left(x, t_{0}\right)}{h}(6) \\
& \approx \frac{u\left(x, t_{0}+h\right)-u\left(x, t_{0}\right)}{h} \tag{7}
\end{align*}
$$

■ Rearrange to find $u\left(x, t_{1}\right) \equiv u\left(x, t_{0}+h\right)$ gives

$$
u\left(x, t_{1}\right) \approx u\left(x, t_{0}\right)+h g\left(x, t_{0}\right)
$$

■ We can generalise this using $t_{i}=t_{0}+i h$ to read

$$
\begin{equation*}
u\left(x, t_{i+1}\right) \approx u\left(x, t_{i}\right)+h g\left(x, t_{i}\right) \tag{8}
\end{equation*}
$$

\rightarrow If we can find $g\left(x, t_{i}\right)$, we can compute $u\left(x, t_{i+1}\right)$

1d Diffusion eqn $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}$, spatial part I

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}=g(x, t)
$$

- Need to compute $g(x, t)=D \frac{\partial^{2} u(x, t)}{\partial x^{2}}$ for a given $u(x, t)$.
- Can ignore the time dependence here, and obtain

$$
g(x)=D \frac{\partial^{2} u(x)}{\partial x^{2}} .
$$

- Recall that

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x} \frac{\partial u}{\partial x}
$$

and we that know how to compute $\frac{\partial u}{\partial x}$ using central differences.

Second order derivatives from finite differences I

- Recall central difference equation for first order derivative

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

■ will be more convenient to replace h by $\frac{1}{2} h$:

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(x) \approx \frac{f\left(x+\frac{1}{2} h\right)-f\left(x-\frac{1}{2} h\right)}{h}
$$

Second order derivatives from finite differences II

- Apply the central difference equation twice to obtain $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$:

$$
\begin{align*}
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\mathrm{~d} f}{\mathrm{~d} x}(x) \\
& \approx \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{f\left(x+\frac{1}{2} h\right)-f\left(x-\frac{1}{2} h\right)}{h}\right) \\
& =\frac{1}{h}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f\left(x+\frac{1}{2} h\right)-\frac{\mathrm{d}}{\mathrm{~d} x} f\left(x-\frac{1}{2} h\right)\right) \\
& \approx \frac{1}{h}\left(\frac{f(x+h)-f(x)}{h}-\frac{f(x)-f(x-h)}{h}\right) \\
& =\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \tag{9}
\end{align*}
$$

Recipe to solve $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial n^{2}}$

1 Discretise solution $u(x, t)$ into discrete values
$2 u_{j}^{i} \equiv u\left(x_{j}, t_{i}\right)$ where

- $x_{j} \equiv x_{0}+j \Delta x$ and
- $t_{i} \equiv t_{0}+i \Delta t$.

3 Start with time iteration $i=0$
4 Need to know configuration $u\left(x, t_{i}\right)$.
5 Then compute $g\left(x, t_{i}\right)=D \frac{\partial^{2} u}{\partial x^{2}}$ using finite differences (9).

6 Then compute $u\left(x, t_{i+1}\right)$ based on $g\left(x, t_{i}\right)$ using (8)
7 increase i to $i+1$, then go back to 5 .

A sample solution $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}, I$

```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
a,b=-5,5 # size of box
N = 51 # number of subdivisions
x=np.linspace(a,b,N) #positions of subdivisions
h=x[1]-x[0] #discretisation stepsize in x-direction
def total(u):
    """Computes total number of moles in u."""
    return ((b-a)/float(N)*np.sum(u))
def gaussdistr(mean,sigma,x):
    """Return gauss distribution for given numpy array x"""
    return 1./(sigma*np.sqrt(2*np.pi))*np.exp(
    -0.5*(x-mean)**2/sigma**2)
#starting configuration for u(x,t0)
u = gaussdistr(mean=0., sigma=0.5, x=x)
```


A sample solution $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}$, II

```
def compute_g( u, D, h ):
    """given a u(x,t) in array, compute g(x,t)=D*d`2u/dx^2
    using central differences with spacing h,
    and return g(x,t). """
    d2u_dx2 = np.zeros(u.shape,np.float)
    for i in range(1,len(u)-1):
            d2u_dx2[i] = (u[i+1] - 2*u[i]+u[i-1])/h**2
    #special cases at boundary: assume Neuman boundary
    #conditions, i.e. no change of u over boundary
    #so that u[0]-u[-1]=0 and thus u[-1]=u[0]
    i=0
    d2u_dx2[i] = (u[i+1] - 2*u[i]+u[i])/h**2
    #same at other end so that u[N-1]-u[N]=0
    #and thus u[N]=u[N-1]
    i=len(u)-1
    d2u_dx2[i] = (u[i] - 2*u[i]+u[i-1])/h**2
    return D*d2u_dx2
def advance_time( u, g, dt):
    """Given the array u, the rate of change array g,
    and a timestep dt, compute the solution for u
    after t, using simple Euler method."""
    u = u +dt*g
```


A sample solution $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}$, III

return u

```
#show example, quick and dirtly, lots of global variables
dt = 0.01 #step size or time
stepsbeforeupdatinggraph = 20 #plotting is slow
D = 1. #Diffusion coefficient
stepsdone = # #keep track of iterations
```

def do_steps (j, nsteps=stepsbeforeupdatinggraph):
"""Function called by FuncAnimation class. Computes
nsteps iterations, i.e. carries forward solution from
$u\left(x, t_{-} i\right)$ to $u\left(x, t_{-}\{i+n s t e p s\}\right)$.
"""
global u,stepsdone
for i in range(nsteps):
$\mathrm{g}=$ compute_g($\mathrm{u}, \mathrm{D}, \mathrm{h})$
$u=$ advance_time (u, g, dt)
stepsdone $+=1$
time_passed $=$ stepsdone $*$ dt
print ("stepsdone $=\% 5 \mathrm{~d}$, time= $\% 8 \mathrm{gs}$, total(u) $=\% 8 \mathrm{~g}$ " $\%$
(stepsdone, time_passed, total(u)))
l.set_ydata(u) \# update data in plot
fig1.canvas.draw()\# redraw the canvas

```
return l,
fig1 = plt.figure() #setup animation
l,= plt.plot(x,u,'b-o') #plot initial u(x,t)
    #then compute solution and animate
line_ani = animation.FuncAnimation(fig1,
    do_steps, range(10000))
plt.show()
```

■ For ordinary differential equations (ODEs), we need to know the initial value(s) to be able to compute a solution.
■ For partial differential equations (PDEs), we need to know the initial values and extra information about the behaviour of the solution $u(x, t)$ at the boundary of the spatial domain (i.e. at $x=a$ and $x=b$ in this example).
■ Commonly used boundary conditions are

- Dirichlet boundary conditions: fix $u(a)=c$ to some constant.
Would correspond here to some mechanism that keeps the concentration u at position $x=a$ constant.

Boundary conditions II

■ Neuman boundary conditions: fix the change of u across the boundary, i.e.

$$
\frac{\partial u}{\partial x}(a)=c .
$$

- For positive/negative c this corresponds to an imposed concentration gradient.
- For $c=0$, this corresponds to conservation of the atoms in the solution: as the gradient across the boundary cannot change, no atoms can move out of the box. (Used in our program on slide 35)
- The time integration scheme we use is explicit because we have an explicit equation that tells us how to compute $u\left(x, t_{i+1}\right)$ based on $u\left(x, t_{i}\right)$ (equation (8) on slide 30)
■ An implicit scheme would compute $u\left(x, t_{i+1}\right)$ based on $u\left(x, t_{i}\right)$ and on $u\left(x, t_{i+1}\right)$.
■ The implicit scheme is more complicated as it requires solving an additional equation system just to find $u\left(x, t_{i+1}\right)$ but allows larger step sizes Δt for the time.
■ The explicit integration scheme becomes quickly unstable if Δt is too large. Δt depends on the chose spatial discretisation Δx.

■ Our sample code is (nearly) as slow as possible

- interpreted language
- explicit for loops

■ enforced small step size from explicit scheme
■ Solutions:

- Refactor for-loops into matrix operations and use (compiled) matrix library (numpy for small systems, use scipy.sparse for larger systems)
- Use library function to carry out time integration (will use implicit method if required), for example scipy.integrate.odeint.

Another widely spread way of solving PDEs is using so-called finite elements.

■ Mathematically, the solution $u(x)$ for a problem like $\frac{\partial^{2} u}{\partial x^{2}}=f(x)$ is written as

$$
\begin{equation*}
u(x)=\sum_{i=1}^{N} u_{i} \phi_{i}(x) \tag{10}
\end{equation*}
$$

where each u_{i} is a number (a coefficient), and each $\phi_{i}(x)$ a known function of space.

- The ϕ_{i} are called basis or shape functions.

■ Each ϕ_{i} is normally chosen to be zero for nearly all x, and to be non-zero close to a particular node in the finite element mesh.

- By substitution (10) into the PDE, a matrix system can be obtained, which - if solved - provides the coefficients u_{i}, and thus the solution.

■ Finite differences

- are mathematically much simpler and
- for simple geometries (such as cuboids) easier to program
- Finite elements
- have greater flexibility in the shape of the domain,
- the specification and implementation of boundary conditions is easier
- but the basic mathematics and code is more complicated.

■ Usually, we solve the spatial part of a PDE using some discretisation scheme such as finite differences and finite elements).
■ This results in a set of coupled ordinary differential equations (where time is the independent variable). Can think of this as one ODE for every cube from our discretisation.

- This temporal part is then solved using time integration schemes for (systems of) ordinary differential equations.

■ Partial differential equations important in many contexts
■ If no analytical solution known, use numerics.
■ Discretise the problem through

- finite differences (replace differential with difference operator, corresponds to chopping space and time in little cuboids)
- finite elements (project solution on localised basis functions, often used with tetrahedral meshes)
- related methods (finite volumes, meshless methods).

Finite elements and finite difference calculations are standard tools in many areas of engineering, physics, chemistry, but increasingly in other fields.
changeset: 53:a22b7f13329e
tag:
user:
date:
tip
Hans Fangohr [MBP13] fangohr@soton.ac.uk Fri Dec 16 10:57:15 $2011+0000$

