
Solving partial differential equations (PDEs)

Hans Fangohr

Engineering and the Environment
University of Southampton

United Kingdom
fangohr@soton.ac.uk

May 3, 2012

1 / 47

Outline I

1 Introduction: what are PDEs?

2 Computing derivatives using finite differences

3 Diffusion equation

4 Recipe to solve 1d diffusion equation

5 Boundary conditions, numerics, performance

6 Finite elements

7 Summary

2 / 47

This lecture

tries to compress several years of material into 45 minutes

has lecture notes and code available for download at
http://www.soton.ac.uk/∼fangohr/teaching/comp6024

3 / 47

http://www.soton.ac.uk/~fangohr/teaching/comp6024

What are partial differential equations (PDEs)

Ordinary Differential Equations (ODEs)
one independent variable, for example t in

d2x

dt2
= − k

m
x

often the indepent variable t is the time
solution is function x(t)
important for dynamical systems, population growth,
control, moving particles

Partial Differential Equations (ODEs)
multiple independent variables, for example t, x and y in

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
solution is function u(t, x, y)
important for fluid dynamics, chemistry,
electromagnetism, . . . , generally problems with spatial
resolution

4 / 47

2d Diffusion equation

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
u(t, x, y) is the concentration [mol/m3]

t is the time [s]

x is the x-coordinate [m]

y is the y-coordinate [m]

D is the diffusion coefficient [m2/s]

Also known as Fick’s second law. The heat equation has the
same structure (and u represents the temperature).
Example:
http://www.youtube.com/watch?v=WC6Kj5ySWkQ

5 / 47

http://www.youtube.com/watch?v=WC6Kj5ySWkQ

Examples of PDEs

Cahn Hilliard Equation (phase separation)

Fluid dynamics (including ocean and atmospheric models,
plasma physics, gas turbine and aircraft modelling)
Structural mechanics and vibrations, superconductivity,
micromagnetics, . . .

6 / 47

http://en.wikipedia.org/wiki/Cahn–Hilliard_equation

Computing derivatives

using finite differences

7 / 47

Overview

Motivation:

We need derivatives of functions for example for
optimisation and root finding algorithms
Not always is the function analytically known (but we
are usually able to compute the function numerically)
The material presented here forms the basis of the
finite-difference technique that is commonly used to
solve ordinary and partial differential equations.

The following slides show

the forward difference technique
the backward difference technique and the
central difference technique to approximate the
derivative of a function.
We also derive the accuracy of each of these methods.

8 / 47

The 1st derivative

(Possible) Definition of the derivative (or “differential
operator” d

dx
)

f ′(x) ≡ df

dx
(x) = lim

h→0

f(x+ h)− f(x)

h

Use difference operator to approximate differential
operator

f ′(x) =
df

dx
(x) = lim

h→0

f(x+ h)− f(x)

h
≈ f(x+ h)− f(x)

h

⇒ can now compute an approximation of f ′(x) simply by
evaluating f (twice).

This is called the forward difference because we use f(x)
and f(x+ h).

Important questions: How accurate is this approximation?

9 / 47

Accuracy of the forward difference

Formal derivation using the Taylor series of f around x

f(x + h) =

∞∑
n=0

hn
f (n)(x)

n!

= f(x) + hf ′(x) + h2
f ′′(x)

2!
+ h3

f ′′′(x)

3!
+ . . .

Rearranging for f ′(x)

hf ′(x) = f(x + h)− f(x)− h2
f ′′(x)

2!
− h3

f ′′′(x)

3!
− . . .

f ′(x) =
1

h

(
f(x + h)− f(x)− h2

f ′′(x)

2!
− h3

f ′′′(x)

3!
− . . .

)
=

f(x + h)− f(x)

h
−

h2 f
′′(x)
2! − h3 f

′′′(x)
3!

h
− . . .

=
f(x + h)− f(x)

h
− h

f ′′(x)

2!
− h2

f ′′′(x)

3!
− . . .

10 / 47

Accuracy of the forward difference (2)

f ′(x) =
f(x+ h)− f(x)

h
− hf

′′(x)

2!
− h2f

′′′(x)

3!
− . . .︸ ︷︷ ︸

Eforw(h)

f ′(x) =
f(x+ h)− f(x)

h
+ Eforw(h)

Therefore, the error term Eforw(h) is

Eforw(h) = −hf
′′(x)

2!
− h2f

′′′(x)

3!
− . . .

Can also be expressed as

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

11 / 47

The 1st derivative using the backward difference

Another definition of the derivative (or “differential
operator” d

dx
)

df

dx
(x) = lim

h→0

f(x)− f(x− h)

h

Use difference operator to approximate differential
operator

df

dx
(x) = lim

h→0

f(x)− f(x− h)

h
≈ f(x)− f(x− h)

h

This is called the backward difference because we use
f(x) and f(x− h).

How accurate is the backward difference?

12 / 47

Accuracy of the backward difference

Formal derivation using the Taylor Series of f around x

f(x− h) = f(x)− hf ′(x) + h2
f ′′(x)

2!
− h3f

′′′(x)

3!
+ . . .

Rearranging for f ′(x)

hf ′(x) = f(x)− f(x− h) + h2
f ′′(x)

2!
− h3

f ′′′(x)

3!
− . . .

f ′(x) =
1

h

(
f(x)− f(x− h) + h2

f ′′(x)

2!
− h3

f ′′′(x)

3!
− . . .

)
=

f(x)− f(x− h)

h
+

h2 f
′′(x)
2! − h3 f

′′′(x)
3!

h
− . . .

=
f(x)− f(x− h)

h
+ h

f ′′(x)

2!
− h2

f ′′′(x)

3!
− . . .

13 / 47

Accuracy of the backward difference (2)

f ′(x) =
f(x)− f(x− h)

h
+ h

f ′′(x)

2!
− h2f

′′′(x)

3!
− . . .︸ ︷︷ ︸

Eback(h)

f ′(x) =
f(x)− f(x− h)

h
+ Eback(h) (1)

Therefore, the error term Eback(h) is

Eback(h) = h
f ′′(x)

2!
− h2f

′′′(x)

3!
− . . .

Can also be expressed as

f ′(x) =
f(x)− f(x− h)

h
+O(h)

14 / 47

Combining backward and forward differences (1)

The approximations are

forward:

f ′(x) =
f(x+ h)− f(x)

h
+ Eforw(h) (2)

backward

f ′(x) =
f(x)− f(x− h)

h
+ Eback(h) (3)

Eforw(h) = −hf
′′(x)

2!
− h2

f ′′′(x)

3!
− h3

f ′′′′(x)

4!
− h4

f ′′′′′(x)

5!
− . . .

Eback(h) = h
f ′′(x)

2!
− h2

f ′′′(x)

3!
+ h3

f ′′′′(x)

4!
− h4

f ′′′′′(x)

5!
+ . . .

⇒ Add equations (2) and (3) together, then the error cancels
partly!

15 / 47

Combining backward and forward differences (2)

Add these lines together

f ′(x) =
f(x + h)− f(x)

h
+ Eforw(h)

f ′(x) =
f(x)− f(x− h)

h
+ Eback(h)

2f ′(x) =
f(x + h)− f(x− h)

h
+ Eforw(h) + Eback(h)

Adding the error terms:

Eforw(h) + Eback(h) = −2h2
f ′′′(x)

3!
− 2h4

f ′′′′′(x)

5!
− . . .

The combined (central) difference operator is

f ′(x) =
f(x + h)− f(x− h)

2h
+ Ecent(h)

with

Ecent(h) = −h2 f
′′′(x)

3!
− h4

f ′′′′′(x)

5!
− . . .

16 / 47

Central difference

Can be derived (as on previous slides) by adding forward
and backward difference

Can also be interpreted geometrically by defining the
differential operator as

df

dx
(x) = lim

h→0

f(x+ h)− f(x− h)

2h

and taking the finite difference form

df

dx
(x) ≈ f(x+ h)− f(x− h)

2h

Error of the central difference is only O(h2), i.e. better
than forward or backward difference

It is generally the case that symmetric differences
are more accurate than asymmetric expressions.

17 / 47

Example (1)

Using forward difference to estimate the derivative of
f(x) = exp(x)

f ′(x) ≈ f ′forw =
f(x+ h)− f(x)

h
=

exp(x+ h)− exp(x)

h

Numerical example:

h = 0.1, x = 1

f ′(1) ≈ f ′forw(1.0) = exp(1.1)−exp(1)
0.1

= 2.8588

Exact answers is f ′(1.0) = exp(1) = 2.71828

(Central diff: f ′cent(1.0) = exp(1+0.1)−exp(1−0.1)
0.2 = 2.72281)

18 / 47

Example (2)

Comparison: forward difference, central difference and exact
derivative of f(x) = exp(x)

0 1 2 3 4 5
x

0

20

40

60

80

100

120

140

d
f/

d
x
(x

)

Approximations of df/dx for f(x)=exp(x)

forward h=1
central h=1
forward h=0.0001
exact

19 / 47

Summary

Can approximate derivatives of f numerically using only
function evaluations of f

size of step h very important

central differences has smallest error term

name formula error

forward f ′(x) = f(x+h)−f(x)
h

O(h)

backward f ′(x) = f(x)−f(x−h)
h

O(h)

central f ′(x) = f(x+h)−f(x−h)
2h

O(h2)

20 / 47

Appendix: source to compute figure on page 19 I

EPS=1 #very large EPS to provoke inaccuracy

def forwarddiff(f,x,h=EPS):

df/dx = (f(x+h)-f(x))/h + O(h)

return (f(x+h)-f(x))/h

def backwarddiff(f,x,h=EPS):

df/dx = (f(x)-f(x-h))/h + O(h)

return (f(x)-f(x-h))/h

def centraldiff(f,x,h=EPS):

df/dx = (f(x+h) - f(x-h))/h + O(h^2)

return (f(x+h) - f(x-h))/(2*h)

if __name__ == "__main__":

#create example plot

import pylab

import numpy as np

a=0 #left and

b=5 #right limits for x

N=11 #steps

21 / 47

Appendix: source to compute figure on page 19 II

def f(x):

""" Our test funtion with

convenient property that

df/dx = f"""

return np.exp(x)

xs=np.linspace(a,b,N)

forward = []

forward_small_h = []

central = []

for x in xs:

forward.append(forwarddiff(f,x))

central.append(centraldiff(f,x))

forward_small_h.append(

forwarddiff(f,x,h=1e-4))

pylab.figure(figsize =(6 ,4))

pylab.axis([a,b,0,np.exp(b)])

pylab.plot(xs,forward ,’^’,label=’forward h=%g’%EPS)

pylab.plot(xs,central ,’x’,label=’central h=%g’%EPS)

pylab.plot(xs,forward_small_h ,’o’,

label=’forward h=%g’% 1e-4)

xsfine = np.linspace(a,b,N*100)

22 / 47

Appendix: source to compute figure on page 19 III

pylab.plot(xsfine ,f(xsfine),’-’,label=’exact ’)

pylab.grid()

pylab.legend(loc=’upper left’)

pylab.xlabel("x")

pylab.ylabel("df/dx(x)")

pylab.title("Approximations of df/dx for f(x)=exp(x)")

pylab.plot()

pylab.savefig(’central -and -forward -difference.pdf’)

pylab.show()

23 / 47

Note: Euler’s (integration) method — derivation

using finite difference operator

Use forward difference operator to approximate
differential operator

dy

dx
(x) = lim

h→0

y(x+ h)− y(x)

h
≈ y(x+ h)− y(x)

h

Change differential to difference operator in dy
dx

= f(x, y)

f(x, y) =
dy

dx
≈ y(x+ h)− y(x)

h
hf(x, y) ≈ y(x+ h)− y(x)

=⇒ yi+1 = yi + hf(xi, yi)

⇒ Euler’s method (for ODEs) can be derived from the
forward difference operator.

24 / 47

Note: Newton’s (root finding) method —

derivation from Taylor series

We are looking for a root, i.e. we are looking for a x so that
f(x) = 0.

We have an initial guess x0 which we refine in subsequent iterations:

xi+1 = xi − hi where hi =
f(xi)

f ′(xi)
. (4)

.

This equation can be derived from the Taylor series of f around x.
Suppose we guess the root to be at x and x + h is the actual
location of the root (so h is unknown and f(x + h) = 0):

f(x + h) = f(x) + hf ′(x) + . . .

0 = f(x) + hf ′(x) + . . .

=⇒ 0 ≈ f(x) + hf ′(x)

⇐⇒ h ≈ − f(x)

f ′(x)
. (5)

25 / 47

The diffusion equation

26 / 47

Diffusion equation

The 2d operator ∂2

∂x2
+ ∂2

∂y2
is called the Laplace

operator ∆, so that we can also write

∂u

∂t
= D

(
∂2

∂x2
+

∂2

∂y2

)
= D∆u

The diffusion equation (with constant diffusion
coefficient D) reads ∂u

∂t
= D∆u where the Laplace

operator depends on the number d of spatial dimensions

d = 1: ∆ = ∂2

∂x2

d = 2: ∆ = ∂2

∂x2
+ ∂2

∂y2

d = 3: ∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

27 / 47

1d Diffusion equation ∂u
∂t = D∂2u

∂x2

In one spatial dimension, the diffusion equation reads

∂u

∂t
= D

∂2u

∂x2

This is the equation we will use as an example.

Let’s assume an initial concentration
u(x, t0) = 1

σ
√
2π

exp
(
− (x−xmean)2

σ2

)
with xmean = 0 and

width σ = 0.5.

6 4 2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u
(x

,t
_0

)

(x,t0)

28 / 47

1d Diffusion eqn ∂u
∂t = D∂2u

∂x2 , time integration I

Let us assume that we have some way of computing
D ∂2u

∂x2
at time t0 and let’s call this g(x, t0), i.e.

g(x, t0) ≡ D
∂2u(x, t0)

∂x2

We like to solve

∂u(x, t)

∂t
= g(x, t0)

to compute u(x, t1) at some later time t1.

Use finite difference time integration scheme:

Introduce a time step size h so that t1 = t0 + h.

29 / 47

1d Diffusion eqn ∂u
∂t = D∂2u

∂x2 , time integration II

Change differential operator to forward difference operator

g(x, t0) =
∂u(x, t)

∂t
= lim

h→0

u(x, t0 + h)− u(x, t0)

h
(6)

≈ u(x, t0 + h)− u(x, t0)

h
(7)

Rearrange to find u(x, t1) ≡ u(x, t0 + h) gives

u(x, t1) ≈ u(x, t0) + hg(x, t0)

We can generalise this using ti = t0 + ih to read

u(x, ti+1) ≈ u(x, ti) + hg(x, ti) (8)

→ If we can find g(x, ti), we can compute u(x, ti+1)

30 / 47

1d Diffusion eqn ∂u
∂t = D∂2u

∂x2 , spatial part I

∂u

∂t
= D

∂2u

∂x2
= g(x, t)

Need to compute g(x, t) = D ∂2u(x,t)
∂x2

for a given u(x, t).

Can ignore the time dependence here, and obtain

g(x) = D
∂2u(x)

∂x2
.

Recall that
∂2u

∂x2
=

∂

∂x

∂u

∂x

and we that know how to compute ∂u
∂x

using central
differences.

31 / 47

Second order derivatives from finite differences I

Recall central difference equation for first order derivative

df

dx
(x) ≈ f(x+ h)− f(x− h)

2h

will be more convenient to replace h by 1
2
h:

df

dx
(x) ≈

f(x+ 1
2
h)− f(x− 1

2
h)

h

32 / 47

Second order derivatives from finite differences II

Apply the central difference equation twice to obtain d2f
dx2

:

d2f

dx2
(x) =

d

dx

df

dx
(x)

≈ d

dx

(
f(x+ 1

2
h)− f(x− 1

2
h)

h

)
=

1

h

(
d

dx
f

(
x+

1

2
h

)
− d

dx
f

(
x− 1

2
h

))
≈ 1

h

(
f(x+ h)− f(x)

h
− f(x)− f(x− h)

h

)
=

f(x+ h)− 2f(x) + f(x− h)

h2
(9)

33 / 47

Recipe to solve ∂u
∂t = D∂2u

∂x2

1 Discretise solution u(x, t) into discrete values

2 uij ≡ u(xj, ti) where

xj ≡ x0 + j∆x and
ti ≡ t0 + i∆t.

3 Start with time iteration i = 0

4 Need to know configuration u(x, ti).

5 Then compute g(x, ti) = D ∂2u
∂x2

using finite differences
(9).

6 Then compute u(x, ti+1) based on g(x, ti) using (8)

7 increase i to i+ 1, then go back to 5.

34 / 47

A sample solution ∂u
∂t = D∂2u

∂x2 , I

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

a,b=-5,5 # size of box

N = 51 # number of subdivisions

x=np.linspace(a,b,N) # positions of subdivisions

h=x[1]-x[0] # discretisation stepsize in x-direction

def total(u):

""" Computes total number of moles in u."""

return ((b-a)/ float(N)*np.sum(u))

def gaussdistr(mean ,sigma ,x):

""" Return gauss distribution for given numpy array x"""

return 1./(sigma*np.sqrt (2*np.pi))*np.exp(

-0.5*(x-mean)**2/ sigma **2)

#starting configuration for u(x,t0)

u = gaussdistr(mean=0.,sigma =0.5,x=x)

35 / 47

A sample solution ∂u
∂t = D∂2u

∂x2 , II

def compute_g(u, D, h):

""" given a u(x,t) in array , compute g(x,t)=D*d^2u/dx^2

using central differences with spacing h,

and return g(x,t). """

d2u_dx2 = np.zeros(u.shape ,np.float)

for i in range(1,len(u)-1):

d2u_dx2[i] = (u[i+1] - 2*u[i]+u[i-1])/h**2

#special cases at boundary: assume Neuman boundary

#conditions , i.e. no change of u over boundary

#so that u[0]-u[-1]=0 and thus u[-1]=u[0]

i=0

d2u_dx2[i] = (u[i+1] - 2*u[i]+u[i])/h**2

#same at other end so that u[N-1]-u[N]=0

#and thus u[N]=u[N -1]

i=len(u)-1

d2u_dx2[i] = (u[i] - 2*u[i]+u[i-1])/h**2

return D*d2u_dx2

def advance_time(u, g, dt):

""" Given the array u, the rate of change array g,

and a timestep dt , compute the solution for u

after t, using simple Euler method."""

u = u +dt*g

36 / 47

A sample solution ∂u
∂t = D∂2u

∂x2 , III

return u

#show example , quick and dirtly , lots of global variables

dt = 0.01 #step size or time

stepsbeforeupdatinggraph = 20 #plotting is slow

D = 1. #Diffusion coefficient

stepsdone = 0 #keep track of iterations

def do_steps(j,nsteps=stepsbeforeupdatinggraph):

""" Function called by FuncAnimation class. Computes

nsteps iterations , i.e. carries forward solution from

u(x,t_i) to u(x,t_{i+nsteps }).

"""

global u,stepsdone

for i in range(nsteps):

g = compute_g(u, D, h)

u = advance_time(u, g, dt)

stepsdone += 1

time_passed = stepsdone * dt

print("stepsdone =%5d, time =%8gs , total(u)=%8g" %

(stepsdone ,time_passed ,total(u)))

l.set_ydata(u) # update data in plot

fig1.canvas.draw()# redraw the canvas

37 / 47

A sample solution ∂u
∂t = D∂2u

∂x2 , IV

return l,

fig1 = plt.figure () #setup animation

l,= plt.plot(x,u,’b-o’) #plot initial u(x,t)

#then compute solution and animate

line_ani = animation.FuncAnimation(fig1 ,

do_steps , range (10000))

plt.show()

38 / 47

Boundary conditions I

For ordinary differential equations (ODEs), we need to
know the initial value(s) to be able to compute a solution.

For partial differential equations (PDEs), we need to
know the initial values and extra information about the
behaviour of the solution u(x, t) at the boundary of the
spatial domain (i.e. at x = a and x = b in this example).

Commonly used boundary conditions are

Dirichlet boundary conditions: fix u(a) = c to some
constant.

Would correspond here to some mechanism that keeps
the concentration u at position x = a constant.

39 / 47

Boundary conditions II

Neuman boundary conditions: fix the change of u across
the boundary, i.e.

∂u

∂x
(a) = c.

For positive/negative c this corresponds to an imposed
concentration gradient.

For c = 0, this corresponds to conservation of the atoms
in the solution: as the gradient across the boundary
cannot change, no atoms can move out of the box.
(Used in our program on slide 35)

40 / 47

Numerical issues

The time integration scheme we use is explicit because we
have an explicit equation that tells us how to compute
u(x, ti+1) based on u(x, ti) (equation (8) on slide 30)

An implicit scheme would compute u(x, ti+1) based on
u(x, ti) and on u(x, ti+1).

The implicit scheme is more complicated as it requires
solving an additional equation system just to find
u(x, ti+1) but allows larger step sizes ∆t for the time.

The explicit integration scheme becomes quickly unstable
if ∆t is too large. ∆t depends on the chose spatial
discretisation ∆x.

41 / 47

Performance issues

Our sample code is (nearly) as slow as possible

interpreted language
explicit for loops
enforced small step size from explicit scheme

Solutions:

Refactor for-loops into matrix operations and use
(compiled) matrix library (numpy for small systems, use
scipy.sparse for larger systems)
Use library function to carry out time integration (will
use implicit method if required), for example
scipy.integrate.odeint.

42 / 47

Finite Elements

Another widely spread way of solving PDEs is using so-called
finite elements.

Mathematically, the solution u(x) for a problem like
∂2u
∂x2

= f(x) is written as

u(x) =
N∑
i=1

uiφi(x) (10)

where each ui is a number (a coefficient), and each φi(x)
a known function of space.
The φi are called basis or shape functions.
Each φi is normally chosen to be zero for nearly all x, and
to be non-zero close to a particular node in the finite
element mesh.
By substitution (10) into the PDE, a matrix system can
be obtained, which – if solved – provides the coefficients
ui, and thus the solution.

43 / 47

Finite Elements vs Finite differences

Finite differences

are mathematically much simpler and
for simple geometries (such as cuboids) easier to
program

Finite elements

have greater flexibility in the shape of the domain,
the specification and implementation of boundary
conditions is easier
but the basic mathematics and code is more
complicated.

44 / 47

Practical observation on time integration

Usually, we solve the spatial part of a PDE using some
discretisation scheme such as finite differences and finite
elements).

This results in a set of coupled ordinary differential
equations (where time is the independent variable).
Can think of this as one ODE for every cube from our
discretisation.

This temporal part is then solved using time integration
schemes for (systems of) ordinary differential equations.

45 / 47

Summary

Partial differential equations important in many contexts

If no analytical solution known, use numerics.

Discretise the problem through

finite differences (replace differential with difference
operator, corresponds to chopping space and time in
little cuboids)
finite elements (project solution on localised basis
functions, often used with tetrahedral meshes)
related methods (finite volumes, meshless methods).

Finite elements and finite difference calculations are
standard tools in many areas of engineering, physics,
chemistry, but increasingly in other fields.

46 / 47

changeset: 53:a22b7f13329e

tag: tip

user: Hans Fangohr [MBP13] <fangohr@soton.ac.uk>

date: Fri Dec 16 10:57:15 2011 +0000

47 / 47

	Introduction: what are PDEs?
	Computing derivatives using finite differences
	Diffusion equation
	Recipe to solve 1d diffusion equation
	Boundary conditions, numerics, performance
	Finite elements
	Summary

