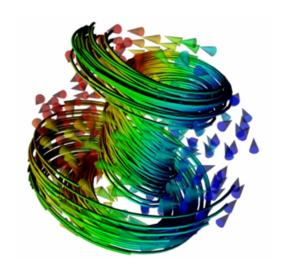
Introduction to

Python for Computational Science and Engineering

(A beginner's guide)



Hans Fangohr
Faculty of Engineering and the Environment
University of Southampton

September 19, 2016

Contents

1	Intr	oduction
	1.1	Computational Modelling
		1.1.1 Introduction
		1.1.2 Computational Modelling
		1.1.3 Programming to support computational modelling
	1.2	Why Python for scientific computing?
		1.2.1 Optimisation strategies
		1.2.2 Get it right first, then make it fast
		1.2.3 Prototyping in Python
	1.3	Literature
		1.3.1 Recorded video lectures on Python for beginners
		1.3.2 Python tutor mailing list
	1.4	Python version
	1.5	These documents
	1.6	Your feedback
2	A p	owerful calculator 1
	2.1	Python prompt and Read-Eval-Print Loop (REPL)
	2.2	Calculator
	2.3	Integer division
		2.3.1 How to avoid integer division
		2.3.2 Why should I care about this division problem?
	2.4	Mathematical functions
	2.5	Variables
		2.5.1 Terminology
	2.6	Impossible equations
		2.6.1 The += notation
_	ъ.	
3		a Types and Data Structures 2
	3.1	What type is it?
	3.2	Numbers
		3.2.1 Integers
		3.2.2 Integer limits
		3.2.3 Floating Point numbers
		3.2.4 Complex numbers
	2.2	3.2.5 Functions applicable to all types of numbers
	3.3	Sequences
		3.3.1 Sequence type 1: String
		3.3.2 Sequence type 2: List
		3.3.3 Sequence type 3: Tuples
		3.3.4 Indexing sequences
		3.3.5 Slicing sequences
		3.3.6 Dictionaries
	3.4	Passing arguments to functions
		3.4.1 Call by value
		3.4.2 Call by reference
		3.4.3 Argument passing in Python
		3.4.4 Performance considerations

		3.4.5 Inadvertent modification of data	38
		3.4.6 Copying objects	39
	3.5	Equality and Identity/Sameness	40
		3.5.1 Equality	40
			41
			41
4	Intr	rospection	4 3
	4.1	•	43
		v	46
	4.2		47
	4.3		47
	4.4		48
	4.5	1	55
5	Inp	ut and Output	56
	_	•	56
			56
		* *	57
		1 0	58
			59
		1 — 1 —	60
			61
	5.2		62
			62
6	Con	ntrol Flow	6 4
	6.1		64
			64
	6.2		66
	6.3		67
	6.4		68
	6.5	1	68
	6.6		69
			71
		· ·	72
			72
7	Fun	actions and modules	7 3
	7.1		73
	7.2		73
	7.3	Θ	74
	7.4	· · · · · · · · · · · · · · · · · · ·	76
	7.5		77
	7.0		 77
		• •	78
		0	79
			79
		1	80

8	Functional tools	81						
	8.1 Anonymous functions							
	8.2 Map	. 82						
	8.3 Filter							
	8.4 List comprehension							
	8.5 Reduce							
	8.6 Why not just use for-loops?							
	8.7 Speed	. 87						
9	Common tasks	90						
	9.1 Many ways to compute a series	. 90						
	9.2 Sorting							
	9.2.1 Efficiency							
10	From Matlab to Python	94						
	10.1 Important commands							
	10.1.1 The for-loop							
	10.1.2 The if-then statement							
	10.1.3 Indexing							
	10.1.4 Matrices							
11	Python shells	96						
	11.1 IDLE							
	11.2 Python (command line)	. 96						
	11.3 Interactive Python (IPython)	. 96						
	11.3.1 IPython console	. 96						
	11.3.2 Jupyter Notebook	. 97						
	11.4 Spyder	. 98						
	11.5 Editors	. 98						
12	Symbolic computation 99							
	12.1 SymPy	. 99						
	12.1.1 Output							
	12.1.2 Symbols							
	12.1.3 isympy							
	12.1.4 Numeric types							
	12.1.5 Differentiation and Integration							
	12.1.6 Ordinary differential equations							
	12.1.7 Series expansions and plotting							
	12.1.8 Linear equations and matrix inversion							
	12.1.9 Non linear equations							
	12.1.10 Output: LaTeX interface and pretty-printing							
	12.1.11 Automatic generation of C code							
	12.2 Related tools							
13	Numerical Computation	115						
13	13.1 Numbers and numbers							
	13.1.1 Limitations of number types							
	13.1.2 Using floating point numbers (carelessly)							
	13.1.2 Using floating point numbers (carelessly)							
	13.1.4 Using floating point numbers carefully 2							
	10.1.1 Come module point numbers calciumy 2	· 117						

		13.1.5 Symbolic calculation	20
		13.1.6 Summary	21
		13.1.7 Exercise: infinite or finite loop	
14	Nun	erical Python (numpy): arrays	22
		Numpy introduction	
	11.1	14.1.1 History	
		14.1.2 Arrays	
		14.1.3 Convert from array to list or tuple	
		14.1.4 Standard Linear Algebra operations	
		O I	
		14.1.5 More numpy examples114.1.6 Numpy for Matlab users1	
		14.1.0 Numpy for Madab users	<i>∠1</i>
15	Visu	lising Data 1	27
	15.1	Matplotlib (Pylab) – plotting $y=f(x)$, (and a bit more)	28
		15.1.1 Matplotlib and Pylab	28
		15.1.2 First example	
		15.1.3 How to import matplotlib, pylab, pyplot, numpy and all that 1	
		15.1.4 IPython's inline mode	
		15.1.5 Saving the figure to a file	
		15.1.6 Interactive mode	
			33
			37
		15.1.9 Histograms	
			42
			45
	15.2		45
	10.2	15.2.1 Basics, rotating and zooming	
			46
			47
	150	15.2.5 3d vision	
	15.3	Visualising higher dimensional data	
			48
		15.3.2 Writing vtk files from Python (pyvtk)	48
16	Nun	erical Methods using Python (scipy)	49
	16.1	Overview	49
	16.2	SciPy	49
	16.3	Numerical integration	51
		· · · · · · · · · · · · · · · · · · ·	52
			52
	16.4		52
			57
	16.5		57
	10.0		58
			58
			59
	166		59 59
		1	61
	111/	III VE TITITIV	

	16.8 Fourier transforms	162
	16.9 Optimisation	164
	16.10Other numerical methods	
	16.11scipy.io: Scipy-input output	166
17	Where to go from here?	168
	17.1 Advanced programming	169
	17.2 Compiled programming language	169
	17.3 Testing	
	17.4 Simulation models	
	17.5 Software engineering for research codes	169
	17.6 Data and visualisation	
	17.7 Version control	
	17.8 Parallel execution	169
	17.8.1 Acknowledgements	

1 Introduction

This text summarises a number of core ideas relevant to Computational Engineering and Scientific Computing using Python. The emphasis is on introducing some basic Python (programming) concepts that are relevant for numerical algorithms. The later chapters touch upon numerical libraries such as numpy and scipy each of which deserves much more space than provided here. We aim to enable the reader to learn independently how to use other functionality of these libraries using the available documentation (online and through the packages itself).

1.1 Computational Modelling

1.1.1 Introduction

Increasingly, processes and systems are researched or developed through computer simulations: new aircraft prototypes such as for the recent A380 are first designed and tested virtually through computer simulations. With the ever increasing computational power available through supercomputers, clusters of computers and even desktop and laptop machines, this trend is likely to continue.

Computer simulations are routinely used in fundamental research to help understand experimental measurements, and to replace – for example – growth and fabrication of expensive samples/experiments where possible. In an industrial context, product and device design can often be done much more cost effectively if carried out virtually through simulation rather than through building and testing prototypes. This is in particular so in areas where samples are expensive such as nanoscience (where it is expensive to create small things) and aerospace industry (where it is expensive to build large things). There are also situations where certain experiments can only be carried out virtually (ranging from astrophysics to study of effects of large scale nuclear or chemical accidents). Computational modelling, including use of computational tools to post-process, analyse and visualise data, has been used in engineering, physics and chemistry for many decades but is becoming more important due to the cheap availability of computational resources. Computational Modelling is also starting to play a more important role in studies of biological systems, the economy, archeology, medicine, health care, and many other domains.

1.1.2 Computational Modelling

To study a process with a computer simulation we distinguish two steps: the first one is to develop a *model* of the real system. When studying the motion of a small object, such as a penny, say, under the influence of gravity, we may be able to ignore friction of air: our model — which might only consider the gravitational force and the penny's inertia, i.e. $a(t) = F/m = -9.81 \text{m/s}^2$ — is an approximation of the real system. The model will normally allow us to express the behaviour of the system (in some approximated form) through mathematical equations, which often involve ordinary differential equations (ODEs) or partial differential equations (PDEs).

In the natural sciences such as physics, chemistry and related engineering, it is often not so difficult to find a suitable model, although the resulting equations tend to be very difficult to solve, and can in most cases not be solved analytically at all.

On the other hand, in subjects that are not as well described through a mathematical framework and depend on behaviour of objects whose actions are impossible to predict deterministically (such as humans), it is much more difficult to find a good model to describe reality. As a rule of thumb, in these disciplines the resulting equations are easier to solve, but they are harder to find and the validity of a model needs to be questioned much more. Typical examples are attempts to simulate the economy, the use of global resources, the behaviour of a panicking crowd, etc.

So far, we have just discussed the development of *models* to describe reality, and using these models does not necessarily involve any computers or numerical work at all. In fact, if a model's

equation can be solved analytically, then one should do this and write down the solution to the equation.

In practice, hardly any model equations of systems of interest can be solved analytically, and this is where the computer comes in: using numerical methods, we can at least study the model *for a particular set of boundary conditions*. For the example considered above, we may not be able to easily see from a numerical solution that the penny's velocity under the influence of gravity will change linearly with time (which we can read easily from the analytical solution that is available for this simple system: $v(t) = t \cdot 9.81 \text{m/s}^2 + v_0$)).

The numerical solution that can be computed using a computer would consist of data that shows how the velocity changes over time for a particular initial velocity v0 (v0 is a boundary condition here). The computer program would report a long lists of two numbers keeping the (i) value of time ti for which a particular (ii) value of the velocity vi has been computed. By plotting all vi against ti, or by fitting a curve through the data, we may be able to understand the trend from the data (which we can just see from the analytical solution of course).

It is clearly desirable to find an analytical solutions wherever possible but the number of problems where this is possible is small. Usually, the obtaining numerical result of a computer simulation is very useful (despite the shortcomings of the numerical results in comparison to an analytical expression) because it is the only possible way to study the system at all.

The name *computational modelling* derives from the two steps: (i) *modelling*, i.e. finding a model description of a real system, and (ii) solving the resulting model equations using *computational* methods because this is the only way the equations can be solved at all.

1.1.3 Programming to support computational modelling

A large number of packages exist that provide computational modelling capabilities. If these satisfy the research or design needs, and any data processing and visualisation is appropriately supported through existing tools, one can carry out computational modelling studies without any deeper programming knowledge.

In a research environment – both in academia and research on new products/ideas/... in industry – one often reaches a point where existing packages will not be able to perform a required simulation task, or where more can be learned from analysing existing data in news ways etc.

At that point, programming skills are required. It is also generally useful to have a broad understanding of the building blocks of software and basic ideas of software engineering as we use more and more devices that are software-controlled.

It is often forgotten that there is nothing the computer can do that we as humans cannot do. The computer can do it much faster, though, and also with making far fewer mistakes. There is thus no magic in computations a computer carries out: they could have been done by humans, and – in fact – were for many years (see for example Wikipedia entry on Human Computer).

Understanding how to build a computer simulation comes roughly down to: (i) finding the model (often this means finding the right equations), (ii) knowing how to solve these equations numerically, (ii) to implement the methods to compute these solutions (this is the programming bit).

1.2 Why Python for scientific computing?

The design focus on the Python language is on productivity and code readability, for example through:

- Interactive python console
- Very clear, readable syntax through whitespace indentation
- Strong introspection capabilities

- Full modularity, supporting hierarchical packages
- Exception-based error handling
- Dynamic data types & automatic memory management

As Python is an interpreted language, and it runs many times slower than compiled code, one might ask why anybody should consider such a 'slow' language for computer simulations?

There are two replies to this criticism:

1. *Implementation time versus execution time*: It is not the execution time alone that contributes to the cost of a computational project: one also needs to consider the cost of the development and maintenance work.

In the early days of scientific computing (say in the 1960/70/80), compute time was so expensive that it made perfect sense to invest many person months of a programmer's time to improve the performance of a calculation by a few percent.

Nowadays, however, the CPU cycles have become much cheaper than the programmer's time. For research codes which often run only a small number of times (before the researchers move on to the next problem), it may be economic to accept that the code runs only at 25% of the expected possible speed if this saves, say, a month of a researcher's (or programmers) time. For example: if the execution time of the piece of code is 10 hours, and one can predict that it will run about 100 times, then the total execution time is approximately 1000 hours. It would be great if this could be reduced to 25% and one could save 750 (CPU) hours. On the other hand, is an extra wait (about a month) and the cost of 750 CPU hours worth investing one month of a person's time [who could do something else while the calculation is running]? Often, the answer is not.

Code readability & maintenance - short code, fewer bugs: A related issue is that a research code is not only used for one project, but carries on to be used again and again, evolves, grows, bifurcates etc. In this case, it is often justified to invest more time to make the code fast. At the same time, a significant amount of programmer time will go into (i) introducing the required changes, (ii) testing them even before work on speed optimisation of the changed version can start. To be able to maintain, extend and modify a code in often unforeseen ways, it can only be helpful to use a language that is easy to read and of great expressive power.

2. Well-written Python code can be very fast if time critical parts in executed through compiled language.

Typically, less than 5% percent of the code base of a simulation project need more than 95% of the execution time. As long as these calculations are done very efficiently, one doesn't need to worry about all other parts of the code as the overall time their execution takes is insignificant.

The compute intense part of the program should to be tuned to reach optimal performance. Python offers a number of options.

• For example, the numpy Python extension provides a Python interface to the compiled and efficient LAPACK libraries that are the quasi-standard in numerical linear algebra. If the problems under study can be formulated such that eventually large systems of algebraic equations have to be solved, or eigenvalues computed, etc, then the compiled code in the LAPACK library can be used (through the Python-numpy package). At this stage, the calculations are carried out with the same performance of Fortran/C as it is essentially Fortran/C code that is used. Matlab, by the way, exploits exactly this: the Matlab scripting language is very slow (about 10 time slower than Python), but Matlab gains its power from delegating the matix operation to the compiled LAPACK libraries.

- Existing numerical C/Fortran libraries can be interfaced to be usable from within Python (using for example Swig, Boost.Python and Cython).
- Python can be extended through compiled languages if the computationally demanding part of the problem is algorithmically non-standard and no existing libraries can be used.
 - Commonly used are C, Fortran and C++ to implement fast extensions.
- We list some tools that are used to use compiled code from Python:
 - \triangleright The scipy.weave extension is useful if just a short expression needs to be expressed in C.
 - ▶ The Cython interface is growing in popularity to (i) semi-automatically declare variable types in Python code, to translate that code to C (automatically) and to then use the compiled C code from Python. Cython is also used to quickly wrap an existing C library with an interface so the C library can be used from Python.
 - ▷ Boost.Python is specialised for wrapping C++ code in Python.

The conclusion is that Python is "fast enough" for most computational tasks, and that its user friendly high-level language often makes up for reduced speed in comparison to compiled lower-level languages. Combining Python with tailor-written compiled code for the performance critical parts of the code, results in virtually optimal speed in most cases.

1.2.1 Optimisation strategies

We generally understand reduction of execution time when discussing "code optimisation" in the context of computational modelling, and we essentially like to carry out the required calculations as fast as possible. (Sometimes we need to reduce the amount of RAM, the amount of data input output to disk or the network.) At the same time, we need to make sure that we do not invest inappropriate amounts of programming time to achieve this speed up: as always there needs to be a balance between the programmers' time and the improvement we can gain from this.

1.2.2 Get it right first, then make it fast

To write fast code effectively, we note that the right order is to (i) first write a program that carries out the correct calculation. For this, choose a language/approach that allows you to *write the code quickly and make it work quickly* — regardless of execution speed. Then (ii) either change the program or re-write it from scratch in the same language to make the execution faster. During the process, keep comparing results with the slow version written first to make sure the optimisation does not introduce errors. (Once we are familiar with the concept of regression tests, they should be used here to compare the new and hopefully faster code with the original code.)

A common pattern in Python is to start writing pure Python code, then start using Python libraries that use compiled code internally (such as the fast arrays Numpy provides, and routines from scipy that go back to established numerical codes such as ODEPACK, LAPACK and others). If required, one can – after careful profiling – start to replace parts of the Python code with a compiled language such as C and Fortran to improve execution speed further (as discussed above).

1.2.3 Prototyping in Python

It turns out that – even if a particular code has to be written in, say, C++ – it is (often) more time efficient to prototype the code in Python, and once an appropriate design (and class structure) has been found, to translate the code to C++.

1.3 Literature

While this text starts with an introduction of (some aspects of) the basic Python programming language, you may find - depending on your prior experience - that you need to refer to secondary sources to fully understand some ideas.

We repeatedly refer to the following documents:

- Allen Downey, *Think Python*. Available online in html and pdf athttp://www.greenteapress.com/thinkpython/thinkpython.html, or from Amazon.
- The Python documentation http://www.python.org/doc/, and:
- The Python tutorial (http://docs.python.org/tutorial/)

You may also find the following links useful:

- The numpy home page (http://numpy.scipy.org/)
- The scipy home page (http://scipy.org/)
- The matplotlib home page (http://matplotlib.sourceforge.net/).
- The Python style guide (http://www.python.org/dev/peps/pep-0008/

1.3.1 Recorded video lectures on Python for beginners

Do you like to listen/follow lectures? There is a series of 24 lectures titled *Introduction to Computer Science and Programming* delivered by Eric Grimsom and John Guttag from the MIT available at http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/ This is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals.

1.3.2 Python tutor mailing list

There is also a Python tutor mailing list (http://mail.python.org/mailman/listinfo/tutor) where beginners are welcome to ask questions regarding Python. Both using the archives and posting your own queries (or in fact helping others) may help with understanding the language. Use the normal mailing list etiquette (i.e. be polite, concise, etc). You may want to read http://www.catb.org/esr/faqs/smart-questions.html for some guidance on how to ask questions on mailing lists.

1.4 Python version

There are two version of the Python language out there: Python 2.x and Python 3.x. They are (slightly) different — the changes in Python 3.x were introduced to address shortcomings in the design of the language that were identified since Python's inception. A decision was made that some incompatibility should be accepted to achieve the higher goal of a better language for the future.

For scientific computation, it is crucial to make use of numerical libraries such as numpy, scipy and the plotting package matplotlib.

All of these are now available for Python 3, and we will use Python 3.x in this book.

However, there is a lot of code still in use that was written for Python 2, and it's useful to be aware of the differences. The most prominent example is that in Python 2.x, the print command is special, whereas in Python 3 it is an ordinary function. For example, in Python 2.7, we can write:

```
print "Hello World"
```

where as in Python 3, this would cause a SyntaxError. The right way to use print in Python 3 would be as a function, i.e.

```
In [1]: print("Hello World")
Hello World
```

See Section 5 for further details.

Fortunately, the function notation (i.e. with the parantheses) is also allowed in Python 2.7, so our examples should execute in Python 3.x and Python 2.7. (There are other differences.)

1.5 These documents

This material has been converted from Latex to a set of Jupyter Notebooks, making it possible to interact with the examples. You can run any code block with an In []: prompt by clicking on it and pressing shift-enter, or by clicking the button in the toolbar.

See Section 11 for more information on Jupyter and other Python interfaces.

1.6 Your feedback

is desired. If you find anything wrong in this text, or have suggestions how to change or extend it, please feel free to contact Hans at fangohr@soton.ac.uk.

If you find a URL that is not working (or pointing to the wrong material), please let Hans know as well. As the content of the Internet is changing rapidly, it is difficult to keep up with these changes without feedback.

2 A powerful calculator

2.1 Python prompt and Read-Eval-Print Loop (REPL)

Python is an *interpreted* language. We can collect sequences of commands into text files and save this to file as a *Python program*. It is convention that these files have the file extension ".py", for example hello.py.

We can also enter individual commands at the Python prompt which are immediately evaluated and carried out by the Python interpreter. This is very useful for the programmer/learner to understand how to use certain commands (often before one puts these commands together in a longer Python program). Python's role can be described as Reading the command, Evaluating it, Printing the evaluated value and repeating (Loop) the cycle – this is the origin of the REPL abbreviation.

Python comes with a basic terminal prompt; you may see examples from this with >>> marking the input:

```
>>> 2 + 2
```

We are using a more powerful REPL interface, the Jupyter Notebook. Blocks of code appear with an In prompt next to them:

```
In [1]: 4 + 5
Out[1]: 9
```

To edit the code, click inside the code area. You should get a green border around it. To run it, press Shift-Enter.

2.2 Calculator

Basic operations such as addition (+), subtraction (-), multiplication (*), division (/) and exponentiation (**) work (mostly) as expected:

```
In [2]: 10 + 10000
Out[2]: 10010
In [3]: 42 - 1.5
Out[3]: 40.5
In [4]: 47 * 11
Out[4]: 517
In [5]: 10 / 0.5
Out[5]: 20.0
In [6]: 2**2 # Exponentiation ('to the power of') is **, NOT ^
Out[6]: 4
In [7]: 2**3
Out[7]: 8
In [8]: 2**4
Out[8]: 16
In [9]: 2 + 2
Out[9]: 4
In [10]: # This is a comment
         2 + 2
Out[10]: 4
In [11]: 2 + 2 # and a comment on the same line as code
Out[11]: 4
```

and, using the fact that $\sqrt[n]{x} = x^{1/n}$, we can compute the $\sqrt{3} = 1.732050...$ using **:

```
In [12]: 3**0.5
Out [12]: 1.7320508075688772
```

Parenthesis can be used for grouping:

```
In [13]: 2 * 10 + 5
Out[13]: 25
In [14]: 2 * (10 + 5)
Out[14]: 30
```

2.3 Integer division

In Python 3, division works as you'd expect:

```
In [15]: 15/6
Out [15]: 2.5
```

In Python 2, however, 15/6 will give you 2.

This phenomenon is known (in many programming languages, including C) as *integer division*: because we provide two integer numbers (15 and 6) to the division operator (/), the assumption is that we seek a return value of type integer. The mathematically correct answer is (the floating point number) 2.5. (\rightarrow numerical data types in Section 13.)

The convention for integer division is to truncate the fractional digits and to return the integer part only (i.e. 2 in this example). It is also called "floor division".

2.3.1 How to avoid integer division

There are two ways to avoid the problem of integer division:

1. Use Python 3 style division: this is available even in Python 2 with a special import statement:

```
python >>> from __future__ import division >>> 15/6 2.5

If you want to use the from __future__ import division feature in a python program, it would normally be included at the beginning of the file.
```

2. Alternatively, if we ensure that at least one number (numerator or denominator) is of type float (or complex), the division operator will return a floating point number. This can be done by writing 15. instead of 15, of by forcing conversion of the number to a float, i.e. use float (15) instead of 15:

```
python >>> 15./6 2.5 >>> float(15)/6 2.5 >>> 15/6.
2.5 >>> 15/float(6) 2.5 >>> 15./6. 2.5
```

If we really want integer division, we can use //: 1//2 returns 0, in both Python 2 and 3.

2.3.2 Why should I care about this division problem?

Integer division can result in surprising bugs: suppose you are writing code to compute the mean value m = (x + y)/2 of two numbers x and y. The first attempt of writing this may read:

```
m = (x + y) / 2
```

Suppose this is tested with x = 0.5, y = 0.5, then the line above computes the correct answers m = 0.5 (because 0.5 + 0.5 = 1.0, i.e. a 1.0 is a floating point number, and thus 1.0/2 evaluates to 0.5). Or we could use x = 10, y = 30, and because 10 + 30 = 40 and 40/2 evaluates to 20, we get the correct answer m = 20. However, if the integers x = 0 and y = 1 would come up, then the code returns m = 0 (because 0 + 1 = 1 and 1/2 evaluates to 0) whereas m = 0.5 would have been the right answer.

We have many possibilities to change the line of code above to work safely, including these three versions:

```
m = (x + y) / 2.0

m = float(x + y) / 2

m = (x + y) * 0.5
```

This integer division behaviour is common amongst most programming languages (including the important ones C, C++ and Fortran), and it is important to be aware of the issue.

2.4 Mathematical functions

Because Python is a general purpose programming language, commonly used mathematical functions such as sin, cos, exp, log and many others are located in the mathematics module with name math. We can make use of this as soon as we *import* the math module:

Using the dir function, we can see the directory of objects available in the math module:

```
'atanh',
'ceil',
'copysign',
'cos',
'cosh',
'degrees',
'e',
'erf',
'erfc',
'exp',
'expm1',
'fabs',
'factorial',
'floor',
'fmod',
'frexp',
'fsum',
'gamma',
'hypot',
'isfinite',
'isinf',
'isnan',
'ldexp',
'lgamma',
'log',
'log10',
'log1p',
'log2',
'modf',
'pi',
'pow',
'radians',
'sin',
'sinh',
'sqrt',
'tan',
'tanh',
'trunc']
```

As usual, the \mathtt{help} function can provide more information about the module (\mathtt{help} (\mathtt{math})) on individual objects:

```
In [18]: help(math.exp)
Help on built-in function exp in module math:
exp(...)
    exp(x)

Return e raised to the power of x.
```

The mathematics module defines to constants π and e:

```
In [19]: math.pi
Out[19]: 3.141592653589793
In [20]: math.e
Out[20]: 2.718281828459045
In [21]: math.cos(math.pi)
Out[21]: -1.0
In [22]: math.log(math.e)
Out[22]: 1.0
```

2.5 Variables

A *variable* can be used to store a certain value or object. In Python, all numbers (and everything else, including functions, modules and files) are objects. A variable is created through assignement:

```
In [23]: x = 0.5
```

Once the variable x has been created through assignment of 0.5 in this example, we can make use of it:

A variable is overriden if a new value is assigned:

The equal sign ('=') is used to assign a value to a variable.

```
In [28]: width = 20 height = 5 * 9 width * height
```

```
Out[28]: 900
```

A value can be assigned to several variables simultaneously:

```
In [29]: x = y = z = 0  # initialise x, y and z with 0
x

Out[29]: 0
In [30]: y
Out[30]: 0
In [31]: z
Out[31]: 0
```

NameError: name 'n' is not defined

Variables must be created (assigned a value) before they can be used, or an error will occur:

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using Python as a desk calculator, it is somewhat easier to continue calculations, for example:

This variable should be treated as read-only by the user. Don't explicitly assign a value to it — you would create an independent local variable with the same name masking the built-in variable with its magic behavior.

2.5.1 Terminology

Strictly speaking, the following happens when we write

```
In [35]: x = 0.5
```

First, Python creates the object 0.5. Everything in Python is an object, and so is the floating point number 0.5. This object is stored somewhere in memory. Next, Python binds a name to the object. The name is x, and we often refer casually to x as a variable, an object, or even the value 0.5. However, technically, x is a name that is bound to the object 0.5. Another way to say this is that x is a reference to the object.

While it is often sufficient to think about assigning 0.5 to a variable x, there are situations where we need to remember what actually happens. In particular, when we pass references to objects to functions, we need to realise that the function may operate on the object (rather than a copy of the object). This is discussed in more detail in Section 3.

2.6 Impossible equations

In computer programs we often find statements like

```
In [36]: x = x + 1
```

If we read this as an equation as we are use to from mathematics, x = x + 1 we could subtract x on both sides, to find that 0 = 1. We know this is not true, so something is wrong here.

The answer is that "equations" in computer codes are not equations but *assignments*. They always have to be read in the following way two-step way:

- 1. Evaluate the value on the right hand side of the equal sign
- 2. Assign this value to the variable name shown on the left hand side. (In Python: bind the name on the left hand side to the object shown on the right hand side.)

Some computer science literature uses the following notation to express assignments and to avoid the confusion with mathematical equations:

$$x \leftarrow x + 1$$

Let's apply our two-step rule to the assignment x = x + 1 given above:

- 1. Evaluate the value on the right hand side of the equal sign: for this we need to know what the current value of x is. Let's assume x is currently 4. In that case, the right hand side x+1 evaluates to 5.
- 2. Assign this value (i.e. 5) to the variable name shown on the left hand side x.

Let's confirm with the Python prompt that this is the correct interpretation:

```
In [37]: x = 4

x = x + 1

x

Out [37]: 5
```

2.6.1 The += notation

Because it is a quite a common operation to increase a variable x by some fixed amount c, we can write

```
x += c
instead of
x = x + c
```

Our initial example above could thus have been written

The same operators are defined for multiplication with a constant (\star =), subtraction of a constant (-=) and division by a constant (/=).

Note that the order of + and = matters:

```
In [39]: x += 1
```

will increase the variable x by one where as

```
In [40]: x =+ 1
```

will assign the value +1 to the variable x.

3 Data Types and Data Structures

3.1 What type is it?

Python knows different data types. To find the type of a variable, use the type () function:

3.2 Numbers

Further information

- Informal introduction to numbers. Python tutorial, section 3.1.1
- Python Library Reference: formal overview of numeric types, http://docs.python.org/library/stdtypes.html#numeric-types-int-float-long-complex
- Think Python, Sec 2.1

The in-built numerical types are integers and floating point numbers (see Section 3.2.3) and complex floating point numbers (Section 3.2.4).

3.2.1 Integers

We have seen the use of integer numbers already in Section 2. Be aware of integer division problems (Section 2.3).

If we need to convert string containing an integer number to an integer we can use int() function:

```
In [5]: a = '34' # a is a string containing the characters 3 and 4

x = int(a) # x is in integer number
```

The function int () will also convert floating point numbers to integers:

```
In [6]: int(7.0)
Out[6]: 7
In [7]: int(7.9)
Out[7]: 7
```

Note than int will truncate any non-integer part of a floating point number. To round an floating point number to an integer, use the round() command:

```
In [8]: round(7.9)
Out[8]: 8
```

3.2.2 Integer limits

Integers in Python 3 are unlimited; Python will automatically assign more memory as needed as the numbers get bigger. This means we can calculate very large numbers with no special steps.

```
In [9]: 35**42
Out[9]: 70934557307860443711736098025989133248003781773149967193603515625
```

In many other programming languages, such as C and FORTRAN, integers are a fixed size—most frequently 4 bytes, which allows 2^{32} different values—but different types are available with different sizes. For numbers that fit into these limits, calculations can be faster, but you may need to check that the numbers don't go beyond the limits. Calculating a number beyond the limits is called *integer overflow*, and may produce bizarre results.

Even in Python, we need to be aware of this when we use numpy (see Section 14). Numpy uses integers with a fixed size, because it stores many of them together and needs to calculate with them efficiently. Numpy data types include a range of integer types named for their size, so e.g. int16 is a 16-bit integer, with 2^{16} possible values.

Integer types can also be *signed* or *unsigned*. Signed integers allow positive or negative values, unsigned integers only allow positive ones. For instance:

- uint16 (unsigned) ranges from 0 to $2^{16} 1$
- int16 (signed) ranges from -2^{15} to $2^{15} 1$

3.2.3 Floating Point numbers

A string containing a floating point number can be converted into a floating point number using the float () command:

```
In [10]: a = '35.342'
b = float(a)
b

Out[10]: 35.342

In [11]: type(b)

Out[11]: float
```

3.2.4 Complex numbers

Python (as Fortran and Matlab) has built-in complex numbers. Here are some examples how to use these:

```
Out[16]: (-8+6j)
In [17]: x * x.conjugate()
Out[17]: (10+0j)
In [18]: 3 * x
Out[18]: (3+9j)
```

Note that if you want to perform more complicated operations (such as taking the square root, etc) you have to use the cmath module (Complex MATHematics):

3.2.5 Functions applicable to all types of numbers

The abs () function returns the absolute value of a number (also called modulus):

Note that abs () also works for complex numbers (see above).

3.3 Sequences

Strings, lists and tuples are *sequences*. They can be *indexed* and *sliced* in the same way.

Tuples and strings are "immutable" (which basically means we can't change individual elements within the tuple, and we cannot change individual characters within a string) whereas lists are "mutable" (.i.e we can change elements in a list.)

Sequences share the following operations a[i] returns i-th element of a a[i:j] returns elements i up to j-1 len(a) returns number of elements in sequence min(a) returns smallest value in sequence max(a) returns largest value in sequence x in a returns True if x is element in a a + b concatenates a and b n * a creates n copies of sequence a

3.3.1 Sequence type 1: String

In [30]: len('another test')

Out[30]: 12

Further information

• Introduction to strings, Python tutorial 3.1.2

A string is a (immutable) sequence of characters. A string can be defined using single quotes:

```
In [21]: a = 'Hello World'
  double quotes:
In [22]: a = "Hello World"
  or triple quotes of either kind
In [23]: a = """Hello World"""
          a = '''Hello World'''
  The type of a string is str and the empty string is given by "":
In [24]: a = "Hello World"
          type(a)
Out[24]: str
In [25]: b = ""
         type(b)
Out[25]: str
In [26]: type("Hello World")
Out[26]: str
In [27]: type("")
Out[27]: str
  The number of characters in a string (that is its length) can be obtained using the len()-function:
In [28]: a = "Hello Moon"
          len(a)
Out[28]: 10
In [29]: a = 'test'
          len(a)
Out[29]: 4
```

You can combine ("concatenate") two strings using the + operator:

```
In [31]: 'Hello ' + 'World'
Out[31]: 'Hello World'
```

Strings have a number of useful methods, including for example upper () which returns the string in upper case:

A list of available string methods can be found in the Python reference documentation. If a Python prompt is available, one should use the dir and help function to retrieve this information, *i.e.* dir () provides the list of methods, help can be used to learn about each method.

A particularly useful method is split () which converts a string into a list of strings:

The split () method will separate the string where it finds *white space*. White space means any character that is printed as white space, such as one space or several spaces or a tab.

By passing a separator character to the split() method, a string can split into different parts. Suppose, for example, we would like to obtain a list of complete sentences:

The opposite string method to split is join which can be used as follows:

```
In [35]: a = "The dog is hungry. The cat is bored. The snake is awake."
    s = a.split('.')
    s

Out[35]: ['The dog is hungry', ' The cat is bored', ' The snake is awake', '']
In [36]: ".".join(s)
Out[36]: 'The dog is hungry. The cat is bored. The snake is awake.'
In [37]: " STOP".join(s)
Out[37]: 'The dog is hungry STOP The cat is bored STOP The snake is awake STOP'
```

3.3.2 Sequence type 2: List

Further information

• Introduction to Lists, Python tutorial, section 3.1.4

A list is a sequence of objects. The objects can be of any type, for example integers:

```
In [38]: a = [34, 12, 54]
  or strings:
In [39]: a = ['dog', 'cat', 'mouse']
  An empty list is presented by []:
In [40]: a = []
  The type is list:
In [41]: type(a)
Out [41]: list
In [42]: type([])
Out [42]: list
```

As with strings, the number of elements in a list can be obtained using the len() function:

It is also possible to *mix* different types in the same list:

```
In [44]: a = [123, 'duck', -42, 17, 0, 'elephant']
```

In Python a list is an object. It is therefor possible for a list to contain other lists (because a list keeps a sequence of objects):

```
In [45]: a = [1, 4, 56, [5, 3, 1], 300, 400]
```

You can combine ("concatenate") two lists using the + operator:

```
In [46]: [3, 4, 5] + [34, 35, 100]
Out [46]: [3, 4, 5, 34, 35, 100]
```

Or you can add one object to the end of a list using the append () method:

You can delete an object from a list by calling the remove() method and passing the object to delete. For example:

The range() command A special type of list is frequently required (often together with for-loops) and therefor a command exists to generate that list: the range (n) command generates integers starting from 0 and going up to *but not including* n. Here are a few examples:

```
In [49]: list(range(3))
Out[49]: [0, 1, 2]
In [50]: list(range(10))
Out[50]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

This command is often used with for loops. For example, to print the numbers 02,12,22,32,...,102, the following program can be used:

The range command takes an optional parameter for the beginning of the integer sequence (start) and another optional parameter for the step size. This is often written as range([start], stop, [step]) where the arguments in square brackets (i.e. start and step) are optional. Here are some examples:

```
In [52]: list(range(3, 10))  # start=3
Out[52]: [3, 4, 5, 6, 7, 8, 9]
In [53]: list(range(3, 10, 2))  # start=3, step=2
Out[53]: [3, 5, 7, 9]
In [54]: list(range(10, 0, -1))  # start=10, step=-1
Out[54]: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
```

Why are we calling list (range())?

In Python 3, range() generates the numbers on demand. When you use range() in a for loop, this is more efficient, because it doesn't take up memory with a list of numbers. Passing it to list() forces it to generate all of its numbers, so we can see what it does.

To get the same efficient behaviour in Python 2, use xrange() instead of range().

3.3.3 Sequence type 3: Tuples

A *tuple* is a (immutable) sequence of objects. Tuples are very similar in behaviour to lists with the exception that they cannot be modified (i.e. are immutable).

For example, the objects in a sequence can be of any type:

The parentheses are not necessary to define a tuple: just a sequence of objects separated by commas is sufficient to define a tuple:

although it is good practice to include the paranthesis where it helps to show that tuple is defined. Tuples can also be used to make two assignments at the same time:

```
In [58]: x, y = 10, 20
    x

Out[58]: 10
In [59]: y
Out[59]: 20
```

This can be used to *swap* to objects within one line. For example

```
In [63]: type(t)
Out[63]: tuple
```

The notation for a tuple containing one value may seem a bit odd at first:

The extra comma is required to distinguish (42,) from (42) where in the latter case the parenthesis would be read as defining operator precedence: (42) simplifies to 42 which is just a number:

This example shows the immutability of a tuple:

In [67]: a = (12, 13, 'dog')

TypeError

```
a[0]
Out[67]: 12
In [68]: a[0] = 1
```

Traceback (most recent call la

```
<ipython-input-68-71b8ae05f2fb> in <module>()
----> 1 a[0] = 1
```

TypeError: 'tuple' object does not support item assignment

The immutability is the main difference between a tuple and a list (the latter being mutable). We should use tuples when we don't want the content to change.

Note that Python functions that return more than one value, return these in tuples (which makes sense because you don't want these values be changed).

3.3.4 Indexing sequences

Further information

• Introduction to strings and indexing in Python tutorial, section 3.1.2, the relevant section is starting after strings have been introduced.

Individual objects in lists can be accessed by using the index of the object and square brackets ([and]):

Note that Python (like C but unlike Fortran and unlike Matlab) starts counting indices from zero! Python provides a handy shortcut to retrieve the last element in a list: for this one uses the index "-1" where the minus indicates that it is one element *from the back* of the list. Similarly, the index "-2" will return the 2nd last element:

If you prefer, you can think of the index a[-1] to be a shorthand notation for a[len(a) - 1]. Remember that strings (like lists) are also a sequence type and can be indexed in the same way:

3.3.5 Slicing sequences

Further information

• Introduction to strings, indexing and slicing in Python tutorial, section 3.1.2

Slicing of sequences can be used to retrieve more than one element. For example:

```
In [79]: a = "Hello World!"
            a[0:3]
Out[79]: 'Hel'
```

By writing a [0:3] we request the first 3 elements starting from element 0. Similarly:

```
In [80]: a[1:4]
Out[80]: 'ell'
In [81]: a[0:2]
Out[81]: 'He'
In [82]: a[0:6]
Out[82]: 'Hello '
```

We can use negative indices to refer to the end of the sequence:

```
In [83]: a[0:-1]
Out[83]: 'Hello World'
```

It is also possible to leave out the start or the end index and this will return all elements up to the beginning or the end of the sequence. Here are some examples to make this clearer:

Note that a [:] will generate a *copy* of a. The use of indices in slicing is by some people experienced as counter intuitive. If you feel uncomfortable with slicing, have a look at this quotation from the Python tutorial (section 3.1.2):

The best way to remember how slices work is to think of the indices as pointing between characters, with the left edge of the first character numbered 0. Then the right edge of the last character of a string of 5 characters has index 5, for example:

```
+---+---+---+

| H | e | l | l | o |

+---+---+---+

0 1 2 3 4 5 <-- use for SLICING

-5 -4 -3 -2 -1 <-- use for SLICING

from the end
```

The first row of numbers gives the position of the slicing indices 0...5 in the string; the second row gives the corresponding negative indices. The slice from i to j consists of all characters between the edges labelled i and j, respectively.

So the important statement is that for *slicing* we should think of indices pointing between characters.

For *indexing* it is better to think of the indices referring to characters. Here is a little graph summarising these rules:

If you are not sure what the right index is, it is always a good technique to play around with a small example at the Python prompt to test things before or while you write your program.

3.3.6 Dictionaries

Dictionaries are also called "associative arrays" and "hash tables". Dictionaries are *unordered* sets of *key-value pairs*.

An empty dictionary can be created using curly braces:

```
In [88]: d = {}
```

Keyword-value pairs can be added like this:

```
In [89]: d['today'] = '22 deg C'  # 'today' is the keyword
In [90]: d['yesterday'] = '19 deg C'
    d.keys() returns a list of all keys:
In [91]: d.keys()
Out[91]: dict_keys(['yesterday', 'today'])
```

We can retrieve values by using the keyword as the index:

```
In [92]: d['today']
Out[92]: '22 deg C'
```

Other ways of populating a dictionary if the data is known at creation time are:

The function dict () creates an empty dictionary.

Other useful dictionary methods include values(), items() and get(). You can use in to check for the presence of values.

```
In [95]: d.values()
Out[95]: dict_values(['19 deg C', '22 deg C'])
In [96]: d.items()
Out[96]: dict_items([('yesterday', '19 deg C'), ('today', '22 deg C')])
In [97]: d.get('today', 'unknown')
Out[97]: '22 deg C'
In [98]: d.get('tomorrow', 'unknown')
Out[98]: 'unknown'
In [99]: 'today' in d
Out[99]: True
In [100]: 'tomorrow' in d
Out[100]: False
```

The method get (key, default) will provide the value for a given key if that key exists, otherwise it will return the default object.

Here is a more complex example:

```
In [101]: order = {}  # create empty dictionary

#add orders as they come in
    order['Peter'] = 'Pint of bitter'
    order['Paul'] = 'Half pint of Hoegarden'
    order['Mary'] = 'Gin Tonic'

#deliver order at bar
    for person in order.keys():
        print(person, "requests", order[person])

Peter requests Pint of bitter
Paul requests Half pint of Hoegarden
Mary requests Gin Tonic
```

Some more technicalities:

- The keyword can be any (immutable) Python object. This includes:
 - ▶ numbers

 - tuples.
- dictionaries are very fast in retrieving values (when given the key)

An other example to demonstrate an advantage of using dictionaries over pairs of lists:

```
rooms = ["room 1033", "room 1031", "room 1027"]

#possible inconsistency here since we have two lists
if not len( people ) == len( rooms ):
    raise RuntimeError("people and rooms differ in length")

for i in range( len( rooms ) ):
    print(people[i], "works in", rooms[i])
```

```
Hans works in room 1033
Andy C works in room 1031
Ken works in room 1027
```

3.4 Passing arguments to functions

This section contains some more advanced ideas and makes use of concepts that are only later introduced in this text. The section may be more easily accessible at a later stage.

When objects are passed to a function, Python always passes (the value of) the reference to the object to the function. Effectively this is calling a function by reference, although one could refer to it as calling by value (of the reference).

We review argument passing by value and reference before discussing the situation in Python in more detail.

3.4.1 Call by value

One might expect that if we pass an object by value to a function, that modifications of that value inside the function will not affect the object (because we don't pass the object itself, but only its value, which is a copy). Here is an example of this behaviour (in C):

```
#include <stdio.h>
void pass_by_value(int m) {
  printf("in pass_by_value: received m=%d\n",m);
  printf("in pass_by_value: changed to m=%d\n",m);
}
int main(void) {
  int global_m = 1;
  printf("global_m=%d\n", global_m);
  pass_by_value(global_m);
 printf("global_m=%d\n", global_m);
  return 0;
}
  together with the corresponding output:
global_m=1
in pass_by_value: received m=1
in pass by value: changed to m=42
qlobal_m=1
```

The value 1 of the global variable global_m is not modified when the function pass_by_value changes its input argument to 42.

3.4.2 Call by reference

Calling a function by reference, on the other hand, means that the object given to a function is a reference to the object. This means that the function will see the same object as in the calling code

(because they are referencing the same object: we can think of the reference as a pointer to the place in memory where the object is located). Any changes acting on the object inside the function, will then be visible in the object at the calling level (because the function does actually operate on the same object, not a copy of it).

Here is one example showing this using pointers in C:

```
#include <stdio.h>
void pass_by_reference(int *m) {
  printf("in pass_by_reference: received m=%d\n",*m);
  *m = 42;
  printf("in pass_by_reference: changed to m=%d\n", *m);
int main(void) {
  int global_m = 1;
 printf("global_m=%d\n", global_m);
  pass_by_reference(&global_m);
 printf("global_m=%d\n", global_m);
  return 0;
}
  together with the corresponding output:
qlobal m=1
in pass_by_reference: received m=1
in pass_by_reference: changed to m=42
global_m=42
```

C++ provides the ability to pass arguments as references by adding an ampersand in front of the argument name in the function definition:

```
#include <stdio.h>
void pass_by_reference(int &m) {
  printf("in pass_by_reference: received m=%d\n",m);
 m=42;
  printf("in pass_by_reference: changed to m=%d\n",m);
}
int main(void) {
  int global_m = 1;
  printf("global_m=%d\n", global_m);
  pass_by_reference(global_m);
  printf("global_m=%d\n", global_m);
  return 0;
}
  together with the corresponding output:
global_m=1
in pass_by_reference: received m=1
in pass_by_reference: changed to m=42
global_m=42
```

3.4.3 Argument passing in Python

In Python, objects are passed as the value of a reference (think pointer) to the object. Depending on the way the reference is used in the function and depending on the type of object it references, this can result in pass-by-reference behaviour (where any changes to the object received as a function argument, are immediately reflected in the calling level).

Here are three examples to discuss this. We start by passing a list to a function which iterates through all elements in the sequence and doubles the value of each element:

The variable 1 is a reference to the list object. The line 1[i] = 1[i] * 2 first evaluates the right-hand side and reads the element with index i, then multiplies this by two. A reference to this new object is then stored in the list object 1 at position with index i. We have thus modified the list object, that is referenced through 1.

The reference to the list object does never change: the line l[i] = l[i] * 2 changes the elements l[i] of the list 1 but never changes the reference 1 for the list. Thus both the function and calling level are operating on the same object through the references 1 and global_1, respectively.

In contrast, here is an example where do not modify the elements of the list within the function: which produces this output:

What happens here is that during the evaluation of 1 = 1 + 1 a new object is created that holds 1 + 1, and that we then bind the name 1 to it. In the process, we lose the references to the list object 1 that was given to the function (and thus we do not change the list object given to the function). Finally, let's look at which produces this output:

In this example, we also double the value (from 42 to 84) within the function. However, when we bind the object 84 to the python name 1 (that is the line 1 = 1 * 2) we have created a new object (84), and we bind the new object to 1. In the process, we lose the reference to the object 42 within the function. This does not affect the object 42 itself, nor the reference 1_{global} to it.

In summary, Python's behaviour of passing arguments to a function may appear to vary (if we view it from the pass by value versus pass by reference point of view). However, it is always call by value, where the value is a reference to the object in question, and the behaviour can be explained through the same reasoning in every case.

3.4.4 Performance considerations

Call by value function calls require copying of the value before it is passed to the function. From a performance point of view (both execution time and memory requirements), this can be an expensive process if the value is large. (Imagine the value is a numpy.array object which could be several Megabytes or Gigabytes in size.)

One generally prefers call by reference for large data objects as in this case only a pointer to the data objects is passed, independent of the actual size of the object, and thus this is generally faster than call-by-value.

Python's approach of (effectively) calling by reference is thus efficient. However, we need to be careful that our function do not modify the data they have been given where this is undesired.

3.4.5 Inadvertent modification of data

Generally, a function should not modify the data given as input to it.

For example, the following code demonstrates the attempt to determine the maximum value of a list, and – inadvertently – modifies the list in the process:

```
In [107]: def mymax(s): # demonstrating side effect
    if len(s) == 0:
        raise ValueError('mymax() arg is an empty sequence')
```

```
elif len(s) == 1:
    return s[0]

else:
    for i in range(1, len(s)):
        if s[i] < s[i - 1]:
            s[i] = s[i - 1]

    return s[len(s) - 1]

s = [-45, 3, 6, 2, -1]
    print("in main before caling mymax(s): s=%s" % s)
    print("mymax(s)=%s" % mymax(s))
    print("in main after calling mymax(s): s=%s" % s)

in main before caling mymax(s): s=[-45, 3, 6, 2, -1]

mymax(s)=6
in main after calling mymax(s): s=[-45, 3, 6, 6, 6]</pre>
```

The user of the mymax() function would not expect that the input argument is modified when the function executes. We should generally avoid this. There are several ways to find better solutions to the given problem:

- In this particular case, we could use the Python in-built function max () to obtain the maximum value of a sequence.
- If we felt we need to stick to storing temporary values inside the list [this is actually not necessary], we could create a copy of the incoming list s first, and then proceed with the algorithm (see Section 3.4.6 on Copying objects).
- Use another algorithm which uses an extra temporary variable rather than abusing the list for this. For example:
- We could pass a tuple (instead of a list) to the function: a tuple is *immutable* and can thus never be modified (this would result in an exception being raised when the function tries to write to elements in the tuple).

3.4.6 Copying objects

Python provides the id() function which returns an integer number that is unique for each object. (In the current CPython implementation, this is the memory address.) We can use this to identify whether two objects are the same.

To copy a sequence object (including lists), we can slice it, *i.e.* if a is a list, then a [:] will return a copy of a. Here is a demonstration:

Python's standard library provides the copy module, which provides copy functions that can be used to create copies of objects. We could have used import copy; c = copy.deepcopy(a) instead of c = a[:].

3.5 Equality and Identity/Sameness

A related question concerns the equality of objects.

3.5.1 Equality

The operators <, >, ==, >=, <=, and != compare the *values* of two objects. The objects need not have the same type. For example:

So the == operator checks whether the values of two objects are equal.

3.5.2 Identity / Sameness

To see check whether two objects a and b are the same (i.e. a and b are references to the same place in memory), we can use the is operator (continued from example above):

```
In [117]: a is b
Out[117]: False
```

Of course they are different here, as they are not of the same type.

We can also ask the id function which, according to the documentation string in Python 2.7 "Returns the identity of an object. This is guaranteed to be unique among simultaneously existing objects. (Hint: it's the object's memory address.)"

```
In [118]: id(a)
Out[118]: 4400776752
In [119]: id(b)
Out[119]: 4297331648
```

which shows that a and b are stored in different places in memory.

3.5.3 Example: Equality and identity

We close with an example involving lists:

Here, x and y are references to the same piece of memory, they are thus identical and the is operator confirms this. The important point to remember is that line 2 (y=x) creates a new reference y to the same list object that x is a reference for.

Accordingly, we can change elements of x, and y will change simultaneously as both x and y refer to the same object:

```
In [124]: x
```

Out[137]: [100, 1, 2]

In contrast, if we use z=x[:] (instead of z=x) to create a new name z, then the slicing operation x[:] will actually create a copy of the list x, and the new reference z will point to the copy. The *value* of x and z is equal, but x and z are not the same object (they are not identical):

```
In [129]: x
Out[129]: [100, 1, 2]
In [130]: z = x[:]
                              # create copy of x before assigning to z
          z == x
                               # same value
Out[130]: True
In [131]: z is x
                               # are not the same object
Out[131]: False
In [132]: id(z)
                               # confirm by looking at ids
Out[132]: 4400927624
In [133]: id(x)
Out[133]: 4400763208
In [134]: x
Out[134]: [100, 1, 2]
In [135]: z
Out[135]: [100, 1, 2]
  Consequently, we can change x without changing z, for example (continued)
In [136]: x[0] = 42
          Х
Out[136]: [42, 1, 2]
In [137]: z
```

4 Introspection

A Python code can ask and answer questions about itself and the objects it is manipulating.

4.1 dir()

dir() is a built-in function which returns a list of all the names belonging to some namespace.

- If no arguments are passed to dir (i.e. dir ()), it inspects the namespace in which it was called.
- If dir is given an argument (i.e. dir (<object>), then it inspects the namespace of the object which it was passed.

For example:

```
In [1]: apples = ['Cox', 'Braeburn', 'Jazz']
         dir(apples)
Out[1]: ['__add__',
          '__class__',
          '__contains__',
          '__delattr__',
          '__delitem__',
          '__dir__',
          '__doc__',
          '___eq___',
          '__format__',
          '___ge___',
          '__getattribute__',
          '___getitem___',
          '___gt___',
          '__hash__',
          '___iadd___',
          '___imul___',
          '___init___',
          '__iter__',
          '__le__',
          '__len__',
          '__lt__',
          '___mul___',
          '__ne__',
          '___new___',
           __reduce__',
          '___reduce_ex__',
          '___repr___',
          '__reversed__',
          '___rmul___',
          '__setattr__',
          '__setitem__',
          '__sizeof__',
          '__str__',
          '__subclasshook___',
```

```
'append',
         'clear',
         'copy',
         'count',
         'extend',
         'index',
         'insert',
         'pop',
         'remove',
          'reverse',
         'sort']
In [2]: dir()
Out[2]: ['In',
         'Out',
         '_',
         '_1',
         '___',
         '__builtin__',
         '__builtins__',
         '__doc__',
         '_loader__',
         '___name___',
         '__package__',
         '_dh',
         '_i',
         '_i1',
         '_i2',
         '_ih',
         '_ii',
         '_iii',
         '_oh',
         '_sh',
         'apples',
         'exit',
         'get_ipython',
         'quit']
In [3]: name = "Peter"
        dir(name)
Out[3]: ['__add__',
         '___class___',
         '__contains__',
         '__delattr__',
          '__dir__',
          '__doc__',
          '___eq___',
```

```
'__format__',
'___ge___',
'__getattribute__',
'__getitem__',
'__getnewargs__',
'___gt___',
'__hash__',
'__init__',
'__iter__',
'__le__',
'__len__',
'__lt__',
'__mod__',
'__mul___',
'__ne__',
'___new___',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__rmod__',
'__rmul__',
'__setattr__',
'__sizeof__',
'__str__',
___subclasshook__',
'capitalize',
'casefold',
'center',
'count',
'encode',
'endswith',
'expandtabs',
'find',
'format',
'format_map',
'index',
'isalnum',
'isalpha',
'isdecimal',
'isdigit',
'isidentifier',
'islower',
'isnumeric',
'isprintable',
'isspace',
'istitle',
'isupper',
'join',
'ljust',
'lower',
```

```
'lstrip',
'maketrans',
'partition',
'replace',
'rfind',
'rindex',
'rjust',
'rpartition',
'rsplit',
'rstrip',
'split',
'splitlines',
'startswith',
'strip',
'swapcase',
'title',
'translate',
'upper',
'zfill'|
```

4.1.1 Magic names

You will find many names which both start and end with a double underscore (e.g. __name__). These are called magic names. Functions with magic names provide the implementation of particular python functionality.

For example, the application of the str to an object a, i.e. str(a), will – internally – result in the method a.__str__() being called. This method __str__ generally needs to return a string. The idea is that the __str__() method should be defined for all objects (including those that derive from new classes that a programmer may create) so that all objects (independent of their type or class) can be printed using the str() function. The actual conversion of some object x to the string is then done via the object specific method x.__str__().

We can demonstrate this by creating a class my_int which inherits from the Python's integer base class, and overrides the __str__ method. (It requires more Python knowledge than provided up to this point in the text to be able to understand this example.)

```
In [4]: class my_int(int):
    """Inherited from int"""
    def __str__(self):
        """Tailored str representation of my int"""
        return "my_int: %s" % (int.__str__(self))

a = my_int(3)
b = int(4)  # equivalent to b = 4
print("a * b = ", a * b)
print("Type a = ", type(a), "str(a) = ", str(a))
print("Type b = ", type(b), "str(b) = ", str(b))

a * b = 12
Type a = <class '__main__.my_int'> str(a) = my_int: 3
Type b = <class 'int'> str(b) = 4
```

Further Reading See →Python documentation, Data Model

4.2 type

The type (<object>) command returns the type of an object:

4.3 isinstance

isinstance (<object>, <typespec>) returns True if the given object is an instance of the given type, or any of its superclasses. Use help(isinstance) for the full syntax.

```
In [10]: isinstance(2,int)
Out[10]: True
In [11]: isinstance(2.,int)
Out[11]: False
In [12]: isinstance(a,int) # a is an instance of my_int
Out[12]: True
In [13]: type(a)
Out[13]: __main__.my_int
```

4.4 help

- The help(<object>) function will report the docstring (magic attritube with name __doc__) of the object that it is given, sometimes complemented with additional information. In the case of functions, help will also show the list of arguments that the function accepts (but it cannot provide the return value).
- help() starts an interactive help environment.
- It is common to use the help command a lot to remind oneself of the syntax and semantic of commands.

```
In [14]: help(isinstance)
Help on built-in function isinstance in module builtins:
isinstance(...)
    isinstance(object, class-or-type-or-tuple) -> bool
    Return whether an object is an instance of a class or of a subclass thereof.
    With a type as second argument, return whether that is the object's type.
    The form using a tuple, is instance (x, (A, B, ...)), is a shortcut for
    isinstance(x, A) or isinstance(x, B) or ... (etc.).
In [15]: import math
         help(math.sin)
Help on built-in function sin in module math:
sin(...)
   sin(x)
    Return the sine of x (measured in radians).
In [16]: help(math)
Help on module math:
NAME
   math
MODULE REFERENCE
    http://docs.python.org/3.4/library/math
    The following documentation is automatically generated from the Python
    source files. It may be incomplete, incorrect or include features that
    are considered implementation detail and may vary between Python
    implementations. When in doubt, consult the module reference at the
```

```
DESCRIPTION
    This module is always available. It provides access to the
    mathematical functions defined by the C standard.
FUNCTIONS
    acos(...)
        acos(x)
        Return the arc cosine (measured in radians) of x.
    acosh(...)
        acosh(x)
        Return the inverse hyperbolic cosine of x.
    asin(...)
        asin(x)
        Return the arc sine (measured in radians) of x.
    asinh(...)
        asinh(x)
        Return the inverse hyperbolic sine of x.
    atan(...)
        atan(x)
        Return the arc tangent (measured in radians) of x.
    atan2(...)
        atan2(y, x)
        Return the arc tangent (measured in radians) of y/x.
        Unlike atan(y/x), the signs of both x and y are considered.
    atanh(...)
        atanh(x)
        Return the inverse hyperbolic tangent of x.
    ceil(...)
        ceil(x)
        Return the ceiling of x as an int.
        This is the smallest integral value >= x.
    copysign(...)
```

location listed above.

```
copysign(x, y)
    Return a float with the magnitude (absolute value) of \boldsymbol{x} but the sign
    of y. On platforms that support signed zeros, copysign (1.0, -0.0)
    returns -1.0.
cos(...)
    cos(x)
    Return the cosine of x (measured in radians).
cosh(...)
    cosh(x)
    Return the hyperbolic cosine of x.
degrees(...)
    degrees(x)
    Convert angle x from radians to degrees.
erf(...)
    erf(x)
    Error function at x.
erfc(...)
    erfc(x)
    Complementary error function at x.
exp(...)
    exp(x)
    Return e raised to the power of x.
expm1(...)
    expm1(x)
    Return exp(x)-1.
    This function avoids the loss of precision involved in the direct evalua
fabs(...)
    fabs(x)
    Return the absolute value of the float x.
factorial(...)
    factorial(x) \rightarrow Integral
```

```
Find x!. Raise a ValueError if x is negative or non-integral.
floor(...)
    floor(x)
    Return the floor of x as an int.
    This is the largest integral value \leq x.
fmod(...)
    fmod(x, y)
    Return fmod(x, y), according to platform C. x % y may differ.
frexp(...)
    frexp(x)
    Return the mantissa and exponent of x, as pair (m, e).
    m is a float and e is an int, such that x = m * 2.**e.
    If x is 0, m and e are both 0. Else 0.5 \leq abs(m) \leq 1.0.
fsum(...)
    fsum(iterable)
    Return an accurate floating point sum of values in the iterable.
    Assumes IEEE-754 floating point arithmetic.
gamma(...)
    gamma(x)
    Gamma function at x.
hypot(...)
    hypot(x, y)
    Return the Euclidean distance, sqrt(x*x + y*y).
isfinite(...)
    isfinite(x) \rightarrow bool
    Return True if x is neither an infinity nor a NaN, and False otherwise.
isinf(...)
    isinf(x) \rightarrow bool
    Return True if x is a positive or negative infinity, and False otherwise
isnan(...)
    isnan(x) \rightarrow bool
    Return True if x is a NaN (not a number), and False otherwise.
```

```
ldexp(...)
    ldexp(x, i)
    Return x * (2**i).
lgamma(...)
    lgamma(x)
    Natural logarithm of absolute value of Gamma function at x.
log(...)
    log(x[, base])
    Return the logarithm of x to the given base.
    If the base not specified, returns the natural logarithm (base e) of x.
log10(...)
    log10(x)
    Return the base 10 \log \operatorname{arithm} of x.
log1p(...)
    log1p(x)
    Return the natural logarithm of 1+x (base e).
    The result is computed in a way which is accurate for x near zero.
log2(...)
    log2(x)
    Return the base 2 logarithm of x.
modf(...)
    modf(x)
    Return the fractional and integer parts of x. Both results carry the si
    of x and are floats.
pow(...)
    pow(x, y)
    Return x**y (x to the power of y).
radians(...)
    radians(x)
    Convert angle x from degrees to radians.
sin(...)
```

```
sin(x)
        Return the sine of x (measured in radians).
    sinh(...)
        sinh(x)
        Return the hyperbolic sine of x.
    sqrt(...)
        sqrt(x)
        Return the square root of x.
    tan(...)
        tan(x)
        Return the tangent of x (measured in radians).
    tanh(...)
        tanh(x)
        Return the hyperbolic tangent of x.
    trunc(...)
        trunc(x:Real) -> Integral
        Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic m
DATA
    e = 2.718281828459045
    pi = 3.141592653589793
FILE
    /Users/fangohr/anaconda/lib/python3.4/lib-dynload/math.so
```

The help function needs to be given the name of an object (which must exist in the current name space). For example pyhelp(math.sqrt) will not work if the math module has not been imported before

```
In [17]: help(math.sqrt)
Help on built-in function sqrt in module math:
sqrt(...)
    sqrt(x)
Return the square root of x.
```

Instead of importing the module, we could also have given the *string* of math.sqrt to the help function, i.e.:

```
In [19]: help('math.sqrt')
Help on built-in function sqrt in math:
math.sqrt = sqrt(...)
    sqrt(x)
Return the square root of x.
```

help is a function which gives information about the object which is passed as its argument. Most things in Python (classes, functions, modules, etc.) are objects, and therefor can be passed to help. There are, however, some things on which you might like to ask for help, which are not existing Python objects. In such cases it is often possible to pass a string containing the name of the thing or concept to help, for example

- help('modules') will generate a list of all modules which can be imported into the current interpreter. Note that help(modules) (note absence of quotes) will result in a NameError (unless you are unlucky enough to have a variable called modules floating around, in which case you will get help on whatever that variable happens to refer to.)
- help('some_module'), where some_module is a module which has not been imported yet (and therefor isn't an object yet), will give you that module's help information.
- help('some_keyword'): For example and, if or print (i.e. help('and'), help('if') and help('print')). These are special words recognized by Python: they are not objects and thus cannot be passed as arguments to help. Passing the name of the keyword as a string to help works, but only if you have Python's HTML documentation installed, and the interpreter has been made aware of its location by setting the environment variable PYTHONDOCS.

4.5 Docstrings

The command help (<object>) accesses the documentation strings of objects.

Any literal string apparing as the first item in the definition of a class, function, method or module, is taken to be its *docstring*.

help includes the docstring in the information it displays about the object.

In addition to the docstring it may display some other information, for example, in the case of functions, it displays the function's signature.

The docstring is stored in the object's __doc__ attribute.

```
In [20]: help(math.sin)
Help on built-in function sin in module math:
sin(...)
    sin(x)

Return the sine of x (measured in radians).

In [21]: print(math.sin.__doc__)
sin(x)

Return the sine of x (measured in radians).
```

For user-defined functions, classes, types, modules, ...), one should always provide a docstring. Documenting a user-provided function:

```
In [26]: print(power2and3.__doc__)
Returns the tuple (x**2, x**3)
```

5 Input and Output

In this section, we describe printing, which includes the use of the print function, the old-style % format specifiers and the new style { } format specifiers.

5.1 Printing to standard output (normally the screen)

The print function is the most commonly used command to print information to the "standard output device" which is normally the screen.

There are two modes to use print.

5.1.1 Simple print

The easiest way to use the print command is to list the variables to be printed, separated by comma. Here are a few examples:

Python adds a space between every object that is being printed. Python prints a new line after every print call. To suppress that, use the end= parameter:

5.1.2 Formatted printing

The more sophisticated way of formatting output uses a syntax very similar to Matlab's fprintf (and therefor also similar to C's printf).

The overall structure is that there is a string containing format specifiers, followed by a percentage sign and a tuple that contains the variables to be printed in place of the format specifiers.

```
In [8]: print("a = %d b = %d" % (10,20))
a = 10 b = 20
```

A string can contain format identifiers (such as %f to format as a float, %d to format as an integer, and %s to format as a string):

The format specifier of type W.Df means that a Float should be printed with a total Width of W characters and D digits behind the Decimal point. (This is identical to Matlab and C, for example.)

To print more than one object, provide multiple format specifiers and list several objects in the tuple:

```
In [13]: print("Pi = %f, 142*pi = %f and pi^2 = %f." % (pi, 142*pi, pi**2))
Pi = 3.141593, 142*pi = 446.106157 and pi^2 = 9.869604.
```

Note that the conversion of a format specifier and a tuple of variables into string does not rely on the print command:

This means that we can convert objects into strings whereever we need, and we can decide to print the strings later – there is no need to couple the formatting closely to the code that does the printing.

Overview of commonly used format specifiers using the astronomical unit as an example:

```
In [15]: AU = 149597870700 # astronomical unit [m]
    "%f" % AU # line 1 in table
```

Out [15]:	'149597870700.	.000000 '
-----------	----------------	------------------

specifier	style	Example output for AU
%f	floating point	149597870700.000000
%e	exponential notation	1.495979e+11
%g	shorter of %e or %f	1.49598e+11
%d	integer	149597870700
%s	str()	149597870700
%r	repr()	149597870700L

5.1.3 "str" and "__str__"

All objects in Python should provide a method __str__ which returns a nice string representation of the object. This method a .__str__ () is called when we apply the str function to object a:

The str function is extremely convenient as it allows us to print more complicated objects, such as

The way Python prints this is that it uses the $__str__$ method of the list object. This will print the opening square bracket [and then call the $__str__$ method of the first object, i.e. the integer 3. This will produce 3. Then the list object's $__str__$ method prints the comma , and moves on to call

the __str__ method of the next element in the list (i.e. 4.2) to print itself. This way any composite object can be represented as a string by asking the objects it holds to convert themselves to strings.

The string method of object x is called implicitly, when we

- use the "%s" format specifier to print x
- pass the object x directly to the print command:

```
In [19]: print(b)
[3, 4.2, ['apple', 'banana'], (0, 1)]
In [20]: print("%s" % b)
[3, 4.2, ['apple', 'banana'], (0, 1)]
```

5.1.4 "repr" and "__repr__"

A second function, repr, should convert a given object into a string presentation so that this string can be used to re-created the object using the eval function. The repr function will generally provide a more detailed string than str. Applying repr to the object x will attempt to call x.__repr__().

```
In [21]: from math import pi as a1
         str(a1)
Out [21]: '3.141592653589793'
In [22]: repr(a1)
Out [22]: '3.141592653589793'
In [23]: number_as_string = repr(a1)
         a2 = eval(number_as_string) # evaluate string
         a2
Out [23]: 3.141592653589793
In [24]: a2-a1
                                     # -> repr is exact representation
Out[24]: 0.0
In [25]: a1-eval(repr(a1))
Out[25]: 0.0
In [26]: a1-eval(str(a1))
                                    # -> str has lost a few digits
Out[26]: 0.0
```

We can convert an object to its str() or repr presentation using the format specifiers %s and %r, respectively.

5.1.5 New-style string formatting

A new system of built-in formatting allows more flexibility for complex cases, at the cost of being a bit longer.

Basic ideas in examples:

```
In [29]: "{} needs {} pints".format('Peter', 4) # insert values in order
Out[29]: 'Peter needs 4 pints'
In [30]: "{0} needs {1} pints".format('Peter', 4) # index which element
Out[30]: 'Peter needs 4 pints'
In [31]: "{1} needs {0} pints".format('Peter', 4)
Out[31]: '4 needs Peter pints'
In [32]: "{name} needs {number} pints".format( # reference element to
            name='Peter', number=4)
                                                 # print by name
Out[32]: 'Peter needs 4 pints'
In [33]: "Pi is approximately {:f}.".format(math.pi) # can use old-style for
Out[33]: 'Pi is approximately 3.141593.'
In [34]: "Pi is approximately {:.2f}.".format(math.pi) # and precision
Out[34]: 'Pi is approximately 3.14.'
In [35]: "Pi is approximately {:6.2f}.".format(math.pi) # and width
Out[35]: 'Pi is approximately 3.14.'
```

This is a powerful and elegant way of string formatting, which is gradually being used more.

Further information

- Examples http://docs.python.org/library/string.html#format-examples
- Python Enhancement Proposal 3101
- Python library String Formatting Operations
- Old string formatting
- Introduction to Fancier Output Formatting, Python tutorial, section 7.1

5.1.6 Changes from Python 2 to Python 3: print

One (maybe the most obvious) change going from Python 2 to Python 3 is that the print command loses its special status. In Python 2, we could print "Hello World" using:

```
print "Hello world" # valid in Python 2.x
```

Effectively, we call the function print with the argument Hello World. All other functions in Python are called such that the argument is enclosed in parentheses, i.e.

```
In [36]: print("Hello World") # valid in Python 3.x
```

This is the new convention *required* in Python 3 (and *allowed* for recent version of Python 2.x.) Everything we have learned about formatting strings using the percentage operator still works the same way:

```
In [37]: import math
         a = math.pi
         "my pi = %f" % a
                                  # string formatting
Out [37]: 'my pi = 3.141593'
In [38]: print("my pi = f" % a) # valid print in 2.7 and 3.x
my pi = 3.141593
In [39]: "Short pi = %.2f, longer pi = %.12f." % (a, a)
Out [39]: 'Short pi = 3.14, longer pi = 3.141592653590.'
In [40]: print("Short pi = %.2f, longer pi = %.12f." % (a, a))
Short pi = 3.14, longer pi = 3.141592653590.
In [41]: print("Short pi = %.2f, longer pi = %.12f." % (a, a))
Short pi = 3.14, longer pi = 3.141592653590.
In [42]: # 1. Write a file
        out_file = open("test.txt", "w")
                                                  #'w' stands for Writing
        out_file.write("Writing text to file. This is the first line.\n''+\
                        "And the second line.")
                                                   #close the file
        out_file.close()
         # 2. Read a file
         in file = open("test.txt", "r")
                                                  #'r' stands for Reading
         text = in file.read()
                                                   #read complete file into
                                                   #string variable text
                                                   #close the file
         in_file.close()
         # 3. Display data
        print(text)
```

```
Writing text to file. This is the first line. And the second line.
```

5.2 Reading and writing files

Here is a program that

- 1. writes some text to a file with name test.txt,
- 2. and then reads the text again and
- 3. prints it to the screen.

The data stored in the file test.txt is:

```
Writing text to file. This is the first line. And the second line.
```

In more detail, you have opened a file with the open command, and assigned this open file object to the variable out_file. We have then written data to the file using the out_file.write method. Note that in the example above, we have given a string to the write method. We can, of course, use all the formatting that we have discussed before—see Section 5.1.2 and Section 5.1.5. For example, to write this file with name table table.txt we can use this Python program It is good practice to close() files when we have finished reading and writing. If a Python program is left in a controlled way (i.e. not through a power cut or an unlikely bug deep in the Python language or the operating system) then it will close all open files as soon as the file objects are destroyed. However, closing them actively as soon as possible is better style.

5.2.1 File reading examples

We use a file named myfile.txt containing the following 3 lines of text for the examples below:

fileobject.read() The fileobject.read() method reads the whole file, and returns it as one string (including new line characters).

fileobject.readlines() The fileobject.readlines() method returns a list of strings, where each element of the list corresponds to one line in the string:

This is often used to iterate over the lines, and to do something with each line. For example:

Note that this will read the complete file into a list of strings when the readlines () method is called. This is no problem if we know that the file is small and will fit into the machine's memory. If so, we can also close the file before we process the data, i.e.:

Iterating over lines (file object) There is a neater possibility to read a file line by line which (i) will only read one line at a time (and is thus suitable for large files as well) and (ii) results in more compact code:

Here, the file handler f acts as in iterator and will return the next line in every subsequent iteration of the for-loop until the end of the file is reached (and then the for-loop is terminated).

6 Control Flow

6.1 Basics

For a given file with a python program, the python interpreter will start at the top and then process the file. We demonstrate this with a simple program, for example:

The basic rule is that commands in a file (or function or any sequence of commands) is processed from top to bottom. If several commands are given in the same line (separated by ;), then these are processed from left to right (although it is discouraged to have multiple statements per line to maintain good readability of the code.)

In this example, the interpreter starts at the top (line 1). It finds the def keyword and remembers for the future that the function f is defined here. (It will not yet execute the function body, i.e. line 3 – this only happens when we call the function.) The interpreter can see from the indentation where the body of the function stops: the indentation in line 5 is different from that of the first line in the function body (line2), and thus the function body has ended, and execution should carry on with that line. (Empty lines do not matter for this analysis.)

In line 5 the interpreter will print the output Main program starts here. Then line 6 is executed. This contains the expression f(4) which will call the function f(x) which is defined in line 1 where x will take the value 4. [Actually x is a reference to the object 4.] The function f(x) is then executed and computes and returns f(x) in line 3. This value 16 is used in line 6 to replace f(4) and then the string representation f(x) of the object 16 is printed as part of the print command in line 6.

The interpreter then moves on to line 7 before the program ends.

We will now learn about different possibilities to direct this control flow further.

6.1.1 Conditionals

The python values True and False are special inbuilt objects:

```
Out[3]: bool
In [4]: b = False
       print(b)
False
In [5]: type(b)
Out[5]: bool
  We can operate with these two logical values using boolean logic, for example the logical and
operation (and):
In [6]: True and True
                                  #logical and operation
Out[6]: True
In [7]: True and False
Out[7]: False
In [8]: False and True
Out[8]: False
In [9]: True and True
Out[9]: True
In [10]: c = a and b
         print(c)
False
  There is also logical or (or) and the negation (not):
In [11]: True or False
Out[11]: True
In [12]: not True
Out[12]: False
In [13]: not False
Out[13]: True
In [14]: True and not False
Out[14]: True
```

In computer code, we often need to evaluate some expression that is either true or false (sometimes called a "predicate"). For example:

```
In [15]: x = 30
                       # assign 30 to x
        x > 15 # is x greater than 15
Out[15]: True
In [16]: x > 42
Out[16]: False
In [17]: x == 30 # is x the same as 30?
Out[17]: True
In [18]: x == 42
Out[18]: False
In [19]: not x == 42 # is x not the same as 42?
Out[19]: True
In [20]: x != 42
                      # is x not the same as 42?
Out[20]: True
In [21]: x > 30 # is x greater than 30?
Out[21]: False
In [22]: x \ge 30 # is x greater than or equal to 30?
Out[22]: True
```

6.2 If-then-else

Further information

• Introduction to If-then in Python tutorial, section 4.1

The if statement allows conditional execution of code, for example:

The if-statement can also have an else branch which is executed if the condition is wrong:

Finally, there is the elif (read as "else if") keyword that allows checking for several (exclusive) possibilities:

```
In [25]: a = 17
    if a == 0:
        print("a is zero")
    elif a < 0:
        print("a is negative")
    else:
        print("a is positive")
a is positive</pre>
```

6.3 For loop

Further information

• Introduction to for-loops in Python tutorial, section 4.2

The for-loop allows to iterate over a sequence (this could be a string or a list, for example). Here is an example:

Together with the range () command (Section 3.3.2), one can iterate over increasing integers:

6.4 While loop

The while keyword allows to repeat an operation while a condition is true. Suppose we'd like to know for how many years we have to keep 100 pounds on a savings account to reach 200 pounds simply due to annual payment of interest at a rate of 5%. Here is a program to compute that this will take 15 years:

```
In [28]: mymoney = 100  # in GBP
    rate = 1.05  # 5% interest
    years = 0
    while mymoney < 200: # repeat until 20 pounds reached
        mymoney = mymoney * rate
        years = years + 1
        print('We need', years, 'years to reach', mymoney, 'pounds.')</pre>
We need 15 years to reach 207.89281794113688 pounds.
```

6.5 Relational operators (comparisons) in if and while statements

The general form of if statements and while loops is the same: following the keyword if or while, there is a *condition* followed by a colon. In the next line, a new (and thus indented!) block of commands starts that is executed if the condition is True).

For example, the condition could be equality of two variables a1 and a2 which is expressed as a1==a2:

Another example is to test whether a1 and a2 are not the same. For this, we have two possibilities. Option number 1 uses the *inequality operator* !=:

Option two uses the keyword not in front of the condition:

Comparisons for "greater" (>), "smaller" (<) and "greater equal" (>=) and "smaller equal" (<=) are straightforward.

Finally, we can use the logical operators "and" and "or" to combine conditions:

```
Either a is greater than 10, or b is smaller than -5, or both.
```

Use the Python prompt to experiment with these comparisons and logical expressions. For example:

6.6 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it. Errors detected during execution are called *exceptions* and are not necessarily fatal: exceptions can be *caught* and dealt with within the program. Most exceptions are not handled by programs, however, and result in error messages as shown here

```
<ipython-input-37-6b1dfe582d2e> in <module>()
    ----> 1 4 + spam * 3
        NameError: name 'spam' is not defined
In [38]: '2' + 2
        TypeError
                                                    Traceback (most recent call la
        <ipython-input-38-4c6dd5170204> in <module>()
    ----> 1 '2' + 2
        TypeError: Can't convert 'int' object to str implicitly
  Schematic exception catching with all options
In [39]: try:
            # code body
         except ArithmeticError:
            # what to do if arithmetic error
         except IndexError, the_exception:
            # the_exception refers to the exeption in this block
         except:
            # what to do for ANY other exception
         else: # optional
            # what to do if no exception raised
         try:
            # code body
         finally:
            # what to do ALWAYS
          File "<ipython-input-39-5833dfdab285>", line 3
        except ArithmeticError:
    IndentationError: expected an indented block
```

Starting with Python 2.5, you can use the with statement to simplify the writing of code for some predefined functions, in particular the open function to open files: see http://docs.python.org/tutorial/errors.html#predefined-clean-up-actions.

Example: We try to open a file that does not exist, and Python will raise an exception of type IOError which stands for Input Output Error:

FileNotFoundError: [Errno 2] No such file or directory: 'filenamethatdoe

If we were writing an application with a userinterface where the user has to type or select a filename, we would not want to application to stop if the file does not exist. Instead, we need to catch this exception and act accordingly (for example by informing the user that a file with this filename does not exist and ask whether they want to try another file name). Here is the skeleton for catching this exception:

There is a lot more to be said about exceptions and their use in larger programs. Start reading Python Tutorial Chapter 8: Errors and Exceptions if you are interested.

6.6.1 Raising Exceptions

Raising exception is also referred to as 'throwing an exception'.

Possibilities of raising an Exception

- raise OverflowError
- raise OverflowError, Bath is full (Old style, now discouraged)
- raise OverflowError(Bath is full)
- e = OverflowError(Bath is full); raise e

Exception hierarchy The standard exceptions are organized in an inheritance hierarchy e.g. OverflowError is a subclass of ArithmeticError (not BathroomError); this can be seen when looking at help('exceptions') for example.

You can derive your own exceptions from any of the standard ones. It is good style to have each module define its own base exception.

6.6.2 Creating our own exceptions

- You can and should derive your own exceptions from the built-in Exception.
- To see what built-in exceptions exist, look in the module exceptions (try help('exceptions')), or go to http://docs.python.org/library/exceptions. html#bltin-exceptions.

6.6.3 LBYL vs EAFP

Oops

- LBYL (Look Before You Leap) vs
- EAFP (Easer to ask forgiveness than permission)

The Python documentation says about EAFP:

Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized by the presence of many try and except statements. The technique contrasts with the LBYL style common to many other languages such as C.

```
Source: http://docs.python.org/glossary.html#term-eafp
The Python documentation says about LBYL:
```

Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between "the looking" and "the leaping". For example, the code, if key in mapping: return mapping[key] can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks or by using the EAFP approach.

```
Source: http://docs.python.org/glossary.html#term-lbyl EAFP is the Pythonic way.
```

7 Functions and modules

7.1 Introduction

Functions allow us to group a number of statements into a logical block. We communicate with a function through a clearly defined interface, providing certain parameters to the function, and receiving some information back. Apart from this interface, we generally do not how exactly a function does the work to obtain the value it returns

For example the function math.sqrt: we do not know how exactly it computes the square root, but we know about the interface: if we pass x into the function, it will return (an approximation of) sqrtx.

This abstraction is a useful thing: it is a common technique in engineering to break down a system into smaller (black-box) components that all work together through well defined interfaces, but which do not need to know about the internal realisations of each other's functionality. In fact, not having to care about these implementation details can help to have a clearer view of the system composed of many of these components.

Functions provide the basic building blocks of functionality in larger programs (and computer simulations), and help to control the inherent complexity of the process.

We can group functions together into a Python module (see Section 7.5), and in this way create our own libraries of functionality.

7.2 Using functions

The word "function" has different meanings in mathematics and programming. In programming it refers to a named sequence of operations that perform a computation. For example, the function sqrt() which is defined in the math module computes the square root of a given value:

The value we pass to the function sqrt is 4 in this example. This value is called the *argument* of the function. A function may have more than one argument.

The function returns the value 2.0 (the result of its computation) to the "calling context". This value is called the *return value* of the function.

It is common to say that a function *takes* an argument and *returns* a result or return value.

Common confusion about printing and returning values It is a common beginner's mistake to confuse the *printing* of values with *returning* values. In the following example it is hard to see whether the function math.sin returns a value or whether it prints the value:

We import the math module, and call the math.sin function with an argument of 2. The math.sin(2) call will actually *return* the value 0.909... not print it. However, because we have not assigned the return value to a variable, the Python prompt will print the returned object.

The following alternative sequence works only if the value is returned:

The return value of the function call math.sin(2) is assigned to the variable x, and x is printed in the next line.

Generally, functions should execute "silently" (i.e. not print anything) and report the result of their computation through the return value.

Part of the confusion about printed versus return values at the Python prompt comes from the Python prompt printing (a representation) of returned objects *if* the returned objects are not assigned. Generally, seeing the returned objects is exactly what we want (as we normally care about the returned object), just when learning Python this may cause mild confusion about functions returning values or printing values.

Further information

• Think Python has a gentle introduction to functions (on which the previous paragraph is based) in chapter 3 (Functions) and chapter 6 (Fruitful functions).

7.3 Defining functions

The generic format of a function definitions:

```
def my_function(arg1, arg2, ..., argn):
    """Optional docstring."""

# Implementation of the function

return result # optional

#this is not part of the function
some_command
```

Allen Downey's terminology (in his book Think Python) of fruitful and fruitless functions distinguishes between functions that return a value, and those that do not return a value. The distinction refers to whether a function provides a return value (=fruitful) or whether the function does not explicitly return a value (=fruitless). If a functions does not make use of the return statement, we tend to say that the function returns nothing (whereas in reality in will always return the None object when it terminates – even if the return statement is missing).

For example, the function greeting will print "Hello World" when called (and is fruitless as it does not return a value).

it prints "Hello World" to stdout, as we would expect. If we assign the return value of the function to a variable x, we can inspect it subsequently:

```
In [6]: x = greeting()
Hello World!
In [7]: print(x)
None
```

and find that the greeting function has indeed returned the None object.

Another example for a function that does not return any value (that means there is no return keyword in the function) would be:

Generally, functions that return values are more useful as these can be used to assemble code (maybe as another function) by combining them cleverly. Let's look at some examples of functions that do return a value.

Suppose we need to define a function that computes the square of a given variable. The function source could be:

```
In [9]: def square(x):
     return x * x
```

The keyword def tells Python that we are *defining* a function at that point. The function takes one argument (x). The function returns x*x which is of course x^2 . Here is the listing of a file that shows how the function can be defined and used: (note that the numbers on the left are line numbers and are not part of the program)

It is worth mentioning that lines 1 and 2 define the square function whereas lines 4 to 6 are the main program.

We can define functions that take more than one argument:

```
In [11]: import math

def hypot(x, y):
    return math.sqrt(x * x + y * y)
```

It is also possible to return more than one argument. Here is an example of a function that converts a given string into all characters uppercase and all characters lowercase and returns the two versions. We have included the main program to show how this function can be called:

We can define multiple Python functions in one file. Here is an example with two functions:

Further reading

• Python Tutorial: Section 4.6 Defining Functions

7.4 Default values and optional parameters

Python allows to define *default* values for function parameters. Here is an example: This program will print the following output when executed: So how does it work? The function print_mult_table takes two arguments: n and upto. The first argument n is a "normal" variable. The second argument upto has a default value of 10. In other words: should the user of this function only provide one argument, then this provides the value for n and upto will default to 10. If two arguments are provided, the first one will be for n and the second for upto (as shown in the code example above).

7.5 Modules

Modules

- Group together functionality
- Provide namespaces
- Python's standard library contains a vast collection of modules "Batteries Included"
- Try help('modules')
- Means of extending Python

7.5.1 Importing modules

```
In [14]: import math
```

This will introduce the name math into the namespace in which the import command was issued. The names within the math module will not appear in the enclosing namespace: they must be accessed through the name math. For example: math.sin.

```
In [15]: import math, cmath
```

More than one module can be imported in the same statement, although the Python Style Guide recommends not to do this. Instead, we should write

```
In [16]: import math
    import cmath
    import math as mathematics
```

The name by which the module is known locally can be different from its "official" name. Typical uses of this are

- To avoid name clashes with existing names
- To change the name to something more manageable. For example import SimpleHTTPServer as shs. This is discouraged for production code (as longer meaningful names make programs far more understandable than short cryptic ones), but for interactively testing out ideas, being able to use a short synonym can make your life much easier. Given that (imported) modules are first class objects, you can, of course, simply do shs = SimpleHTTPServer in order to obtain the more easily typable handle on the module.

```
In [17]: from math import sin
```

This will import the sin function from the math module, but it will not introduce the name math into the current namespace. It will only introduce the name sin into the current namespace. It is possible to pull in more than one name from the module in one go:

```
In [18]: from math import sin, cos
Finally, let's look at this notation:
```

```
In [19]: from math import *
```

Once again, this does not introduce the name math into the current namespace. It does however introduce *all public names* of the math module into the current namespace. Broadly speaking, it is a bad idea to do this:

- Lots of new names will be dumped into the current namespace.
- Are you sure they will not clobber any names already present?
- It will be very difficult to trace where these names came from
- Having said that, some modules (including ones in the standard library, recommend that they be imported in this way). Use with caution!
- This is fine for interactive quick and dirty testing or small calculations.

7.5.2 Creating modules

A module is in principle nothing else than a python file. Here is an example of a module file which is saved in module1.py:

```
def someusefulfunction():
    pass
print("My name is", __name___)
```

We can execute this (module) file as a normal python program (for example python module1.py):

```
In [20]: cd code/
/Users/fangohr/hg/teaching-python/book/text/code
In [21]: !python module1.py
My name is __main__
```

We note that the Python magic variable __name__ takes the value __main__ if the program file module1.py is executed.

On the other hand, we can *import* module1.py in another file (which could have the name prog.py), for example like this:

```
In [22]: import module1 #in file prog.py
My name is module1
```

When Python comes across the import module1 statement in prog.py, it looks for the file module1.py in the current working directory (and if it can't find it there in all the directories in sys.path) and opens the file module1.py. While parsing the file module1.py from top to bottom, it will add any function definitions in this file into the module1 name space in the calling context (that is the main program in prog.py). It this example, there is only the function someuseful function. Once the import process is completed, we can make use of module1.someuseful function in

prog.py. If Python comes across statements other than function (and class) definitions while importing module1.py, it carries those out immediately. In this case, it will thus come across the statement print (My name is, __name___).

Note the difference to the output if we *import* module1.py rather than executing it on its own: __name__ inside a module takes the value of the module name if the file is imported.

7.5.3 Use of __name__

In summary,

- __name__ is __main__ if the module file is run on its own
- __name__ is the name of the module (i.e. the module filename without the .py suffix) if the module file is imported.

We can therefor use the following if statement in module1.py to write code that is *only run* when the module is executed on its own: This is useful to keep test programs or demonstrations of the abilities of a module in this "conditional" main program. It is common practice for any module files to have such a conditional main program which demonstrates its capabilities.

7.5.4 Example 1

The next example shows a main program for the another file vectools.py that is used to demonstrate the capabilities of the functions defined in that file:

```
from __future__ import division
import math
import numpy as N
def norm(x):
    """returns the magnitude of a vector x"""
    return math.sqrt(sum(x ** 2))
def unitvector(x):
    """returns a unit vector x/|x|. x needs to be a numpy array."""
   xnorm = norm(x)
    if xnorm == 0:
        raise ValueError("Can't normalise vector with length 0")
    return x / norm(x)
if __name__ == "__main__":
    #a little demo of how the functions in this module can be used:
    x1 = N.array([0, 1, 2])
    print("The norm of " + str(x1) + " is " + str(norm(x1)) + ".")
    print("The unitvector in direction of " + str(x1) + " is " \
        + str(unitvector(x1)) + ".")
```

If this file is executed using python vectools.py, then __name__==_main__ is true, and the output reads

If this file is imported (i.e. used as a module) into another python file, then __name__==_main__ is false, and that statement block will not be executed (and no output produced).

This is quite a common way to conditionally execute code in files providing library-like functions. The code that is executed if the file is run on its own, often consists of a series of tests (to check that the file's functions carry out the right operations – *regression tests* or *unit tests*), or some examples of how the library functions in the file can be used.

7.5.5 Example 2

Even if a Python program is not intended to be used as a module file, it is good practice to always use a conditional main program:

- often, it turns out later that functions in the file can be reused (and saves work then)
- this is convenient for regression testing.

Suppose an exercise is given to write a function that returns the first 5 prime numbers, and in addition to print them. (There is of course a trivial solution to this as we know the prime numbers, and we should imagine that the required calculation is more complex). One might be tempted to write

It is better style to use a conditional main function, i.e.:

A purist might argue that the following is even cleaner:

but either of the last two options is good.

The example in Section 9.1 demonstrates this technique. Including functions with names starting with test_ is compatible with the very useful py.test regression testing framework (see http://pytest.org/).

Further Reading

• Python Tutorial Section 6

8 Functional tools

Python provides a few in-built commands such as map, filter, reduce as well lambda (to create anonymous functions) and list comprehension. These are typical commands from functional languages of which LISP is probably best known.

Functional programming can be extremely powerful and one of the strengths of Python is that it allows to program using (i) imperative/procedural programming style, (ii) object oriented style and (iii) functional style. It is the programmers choice which tools to select from which style and how to mix them to best address a given problem.

In this chapter, we provide some examples for usage of the commands listed above.

8.1 Anonymous functions

All functions we have seen in Python so far have been defined through the def keyword, for example:

This funtion has the name f. Once the function is defined (i.e. the Python interpreter has come across the def line), we can call the function using its name, for example

```
In [2]: y = f(6)
```

Sometimes, we need to define a function that is only used once, or we want to create a function but don't need a name for it (as for creating closures). In this case, this is called *anonymous* function as it does not have a name. In Python, the lambda keyword can create an anonymous function.

We create a (named) function first, check it's type and behaviour:

Now we do the same with an anonymous function:

```
In [6]: lambda x: x ** 2
Out[6]: <function __main__.<lambda>>
In [7]: type(lambda x: x ** 2)
Out[7]: function
In [8]: (lambda x: x ** 2)(10)
Out[8]: 100
```

This works exactly in the same way but – as the anonymous function does not have a name – we need to define the function (through the lambda expression) – every time we need it.

Anonymous functions can take more than one argument:

```
In [9]: (lambda x, y: x + y) (10, 20)
Out[9]: 30
In [10]: (lambda x, y, z: (x + y) * z ) (10, 20, 2)
Out[10]: 60
```

We will see some examples using lambda which will clarify typical use cases.

8.2 Map

The map function lst2 = map(f, s) applies a function f to all elements in a sequence s. The result of map can be turned into a list with the same length as s:

```
In [12]: list(map(str.capitalize, ['banana', 'apple', 'orange']))
Out[12]: ['Banana', 'Apple', 'Orange']
```

Often, this is combined with the anonymous function lambda:

```
In [13]: list(map(lambda x: x ** 2, range(10) ))
Out[13]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
In [14]: list(map(lambda s: s.capitalize(), ['banana', 'apple', 'orange']))
Out[14]: ['Banana', 'Apple', 'Orange']
```

8.3 Filter

The filter function 1st2 = filter(f, lst) applies the function f to all elements in a sequence s. The function f should return True or False. This makes a list which will contain only those elements si of the sequence s for which f(si) has returned True.

8.4 List comprehension

List comprehensions provide a concise way to create and modify lists without resorting to use of map(), filter() and/or lambda. The resulting list definition tends often to be clearer than lists built using those constructs. Each list comprehension consists of an expression followed by a for clause, then zero or more for or if clauses. The result will be a list resulting from evaluating the expression in the context of the for and if clauses which follow it. If the expression would evaluate to a tuple, it must be parenthesized.

Some examples will make this clearer:

```
In [18]: freshfruit = [' banana', ' loganberry ', 'passion fruit ']
        [weapon.strip() for weapon in freshfruit]

Out[18]: ['banana', 'loganberry', 'passion fruit']

In [19]: vec = [2, 4, 6]
        [3 * x for x in vec]

Out[19]: [6, 12, 18]

In [20]: [3 * x for x in vec if x > 3]

Out[20]: [12, 18]

In [21]: [3 * x for x in vec if x < 2]

Out[21]: []

In [22]: [[x, x ** 2] for x in vec]

Out[22]: [[2, 4], [4, 16], [6, 36]]</pre>
```

We can also use list comprehension to modify the list of integers returned by the range command so that our subsequent elements in the list increase by non-integer fractions:

```
In [23]: [x*0.5 for x in range(10)]
Out[23]: [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]
```

Let's now revisit the examples from the section on filter

and the examples from the map section

```
In [26]: [x ** 2 for x in range(10) ]
Out[26]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
In [27]: [fruit.capitalize() for fruit in ['banana', 'apple', 'orange'] ]
Out[27]: ['Banana', 'Apple', 'Orange']
```

all of which can be expressed through list comprehensions. More details

1,1010 0,000,110

• Python Tutorial 5.1.4 List comprehensions

8.5 Reduce

The reduce function takes a binary function f(x,y), a sequence s, and a start value a0. It then applies the function f to the start value a0 and the first element in the sequence: a1 = f(a,s[0]). The second element (s[1]) of the sequence is then processed as follows: the function f is called with arguments a1 and s[1], i.e. a2 = f(a1,s[1]). In this fashion, the whole sequence is processed. Reduce returns a single number.

This can be used, for example, to compute a sum of numbers in a sequence if the function f(x, y) returns x+y:

We can modify the function add to provide some more detail about the process:

It may be instructive to use an asymmetric function f, such as $add_len(n, s)$ where s is a sequence and the function returns n+len(s) (suggestion from Thomas Fischbacher):

```
Out[32]: 12
```

Out [37]: 15

As before, we'll use a more verbose version of the binary function to see what is happening:

Another way to understand what the reduce function does is to look at the following function (kindly provided by Thomas Fischbacher) which behaves like reduce but explains what it does:

Here is an example using the explain_reduce function:

```
In [34]: cd code/
/Users/fangohr/hg/teaching-python/book/text/code
In [35]: from explain_reduce import explain_reduce
         def f(a,b):
             return a+b
         reduce(f, [1,2,3,4,5], 0)
Out[35]: 15
In [36]: explain_reduce(f, [1,2,3,4,5], 0)
Step 0: value-so-far=0 next-list-element=1
Step 1: value-so-far=1 next-list-element=2
Step 2: value-so-far=3 next-list-element=3
Step 3: value-so-far=6 next-list-element=4
Step 4: value-so-far=10 next-list-element=5
Done. Final result=15
Out[36]: 15
  Reduce is often combined with lambda:
In [37]: reduce (lambda x, y: x+y, [1,2,3,4,5], 0)
```

There is also the operator module which provides standard Python operators as functions. For example, the function operator. __add__(a,b) is executed when Python evaluates code such as a+b. These are generally faster than lambda expressions. We could write the example above as

Use help ('operator') to see the complete list of operator functions.

8.6 Why not just use for-loops?

Let's compare the example introduced at the beginning of the chapter written (i) using a for-loop and (ii) list comprehension. Again, we want to compute the numbers $02, 12, 22, 32, \ldots$ up to (n-1)2 for a given n.

Implementation (i) using a for-loop with n=10:

Implementation (ii) using list comprehension:

```
In [40]: y = [x ** 2 for x in range(10)]
  or using map:
In [41]: y = map(lambda x: x ** 2, range(10))
```

The versions using list comprehension and map fit into one line of code whereas the for-loop needs 3. This example shows that functional code result in very *concise* expressions. Typically, the number of mistakes a programmer makes is per line of code written, so the fewer lines of code we have, the fewer bugs we need to find.

Often programmers find that initially the list-processing tools introduced in this chapter seem less intuitive than using for-loops to process every element in a list individually, but that – over time – they come to value a more functional programming style.

8.7 Speed

The functional tools described in this chapter can also be faster than using explicit (for or while) loops over list elements.

The program list_comprehension_speed.py below computes $sum_i = 0^{N-1}i^2$ for a large value of N using 4 different methods and records execution time:

- Method 1: for-loop (with pre-allocated list, storing of *i*2 in list, then using in-built sum function)
- Method 2: for-loop without list (updating sum as the for-loop progresses)
- Method 3: using list comprehension
- Method 4: using numpy. (Numpy is covered in Section 14)

The program produces the following output:

```
In [42]: !python list_comprehension_speed.py

N = 10000000
for-loop1 3.92704701423645
for-loop2 3.2223408222198486
listcomp 2.6926040649414062
numpy 0.11613011360168457
Slowest method is 33.8 times slower than the fastest method.
```

The actual execution performance depends on the computer. The relative performance may depend on versions of Python and its support libraries (such as numpy) we use.

With the current version (python 3.4, numpy 1.10, on a x84 machine running OS X), we see that methods 1 and 2 (for-loop without list and with pre-allocated list) are slowest, somewhat closely followed by the slightly faster list comprehension. The fastest method is number 4 (using numpy).

For reference, here is the source code of the programme:

```
In [43]: !cat list_comprehension_speed.py
"""Compare calculation of \sum_i x_i^2 with
i going from zero to N-1.
We use (i) for loops and list, (ii) for-loop, (iii) list comprehension
and (iv) numpy.
We use floating numbers to avoid using Python's long int (which would
be likely to make the timings less representative).
import time
import numpy
N = 10000000
def timeit(f, args):
    """Given a function f and a tuple args containing
    the arguments for f, this function calls f(*args),
    and measures and returns the execution time in
    seconds.
    Return value is tuple: entry 0 is the time,
    entry 1 is the return value of f."""
    starttime = time.time()
                    # use tuple args as input arguments
    y = f(*args)
    endtime = time.time()
    return endtime - starttime, y
```

```
def forloop1(N):
    s = 0
    for i in range(N):
        s += float(i) * float(i)
    return s
def forloop2(N):
    y = [0] * N
    for i in range(N):
        y[i] = float(i) ** 2
    return sum(y)
def listcomp(N):
    return sum([float(x) * x for x in range(N)])
def numpy_(N):
    return numpy.sum(numpy.arange(0, N, dtype='d') ** 2)
#main program starts
timings = []
print("N = ", N)
forloop1_time, f1_res = timeit(forloop1, (N,))
timings.append(forloop1_time)
print("for-loop1", forloop1_time)
forloop2_time, f2_res = timeit(forloop2, (N,))
timings.append(forloop2_time)
print("for-loop2", forloop2_time)
listcomp_time, lc_res = timeit(listcomp, (N,))
timings.append(listcomp_time)
print("listcomp", listcomp_time)
numpy_time, n_res = timeit(numpy_, (N,))
timings.append(numpy_time)
print("numpy", numpy_time)
#ensure that different methods provide identical results
assert f1_res == f2_res
assert f1_res == lc_res
# Allow a bit of difference for the numpy calculation
numpy.testing.assert_approx_equal(f1_res, n_res)
print("Slowest method is {:.1f} times slower than the fastest method.".format(
    max(timings)/min(timings)))
```

In []:

9 Common tasks

Here we provide a selection of small example programs addressing some common tasks and just providing some more Python code that can be read if seeking inspiration how to address a given problem.

9.1 Many ways to compute a series

As an example, we compute the sum of odd numbers in different ways.

```
In [1]: def compute_sum1(n):
            """computes and returns the sum of 2,4,6, ..., m
            where m is the largest even number smaller than n.
            For example, with n = 7, we compute 0+2+4+6 = 12.
            This implementation uses a variable 'mysum' that is
            increased in every iteration of the for-loop."""
            mysum = 0
            for i in range(0, n, 2):
                mysum = mysum + i
            return mysum
        def compute_sum2(n):
            """computes and returns ...
            This implementation uses a while-loop:
            n n n
            counter = 0
            mysum = 0
            while counter < n:</pre>
                mysum = mysum + counter
                counter = counter + 2
            return mysum
        def compute_sum3(n, startfrom=0):
            """computes and returns ...
            This is a recursive implementation:"""
            if n <= startfrom:</pre>
                return 0
            else:
                return startfrom + compute_sum3(n, startfrom + 2)
```

```
def compute_sum4a(n):
    """A functional approach ... this seems to be
    the shortest and most concise code.
    return sum(range(0, n, 2))
from functools import reduce
def compute_sum4b(n):
    """A functional approach ... not making use of 'sum' which
    happens to exist and is of course convenient here.
    return reduce(lambda a, b: a + b, range(0, n, 2))
def compute_sum4c(n):
    """A functional approach ... a bit faster than compute_sum4b
    as we avoid using lambda.
    import operator
    return reduce(operator.__add__, range(0, n, 2))
def compute_sum4d(n):
    """Using list comprehension."""
    return sum([k for k in range(0, n, 2)])
def compute_sum4e(n):
    """Using another variation of list comprehension."""
    return sum([k for k in range(0, n) if k % 2 == 0])
def compute_sum5(n):
    """Using numerical python (numpy). This is very fast
    (but would only pay off if n >> 10)."""
    import numpy
    return numpy.sum(2 * numpy.arange(0, (n + 1) // 2))
def test_consistency():
    """Check that all compute_sum?? functions in this file produce
    the same answer for all n \ge 2 and < N.
    11 11 11
    def check_one_n(n):
        """Compare the output of compute_sum1 with all other functions
        for a given n>=2. Raise AssertionError if outputs disagree."""
        funcs = [compute_sum1, compute_sum2, compute_sum3,
                 compute_sum4a, compute_sum4b, compute_sum4c,
                 compute_sum4d, compute_sum4e, compute_sum5]
        ans1 = compute sum1(n)
```

```
for f in funcs[1:]:
                    assert ans1 == f(n), "%s(n)=%d not the same as %s(n)=%d " \
                                          % (funcs[0], funcs[0](n), f, f(n))
            #main testing loop in test_consistency function
            for n in range(2, 1000):
                check_one_n(n)
        if name == " main ":
            m = 7
            correct_result = 12
            thisresult = compute_sum1(m)
            print("this result is {}, expected to be {}".format(
                thisresult, correct_result))
            # compare with correct result
            assert thisresult == correct_result
            # also check all other methods
            assert compute_sum2(m) == correct_result
            assert compute_sum3(m) == correct_result
            assert compute_sum4a(m) == correct_result
            assert compute_sum4b(m) == correct_result
            assert compute_sum4c(m) == correct_result
            assert compute_sum4d(m) == correct_result
            assert compute_sum4e(m) == correct_result
            assert compute_sum5(m) == correct_result
            # a more systematic check for many values
            test_consistency()
this result is 12, expected to be 12
```

All the different implementations shown above compute the same result. There are a number of things to be learned from this:

- There are a large (probably an infinite) number of solutions for one given problem. (This means that writing programs is a task that requires creativity!)
- These may achieve the same 'result' (in this case computation of a number).
- Different solutions may have different characteristics. They might:
 - ▷ be faster or slower

 - ▷ are easier or more difficult to understand (when reading the source code)
 - ▷ can be considered more or less elegant.

9.2 Sorting

Suppose we need to sort a list of 2-tuples of user-ids and names, i.e.

which we want to sort in increasing order of user-ids. If there are two or more identical user-ids, they should be ordered by the order of the names associated with these user-ids. This behaviour is just the default behaviour of sort (which goes back to how to sequences are compared).

Sequences are compared by initially comparing the first elements only. If they differ, then a decision is reached on the basis of those elements only. If the elements are equal, only then are the next elements in the sequence compared ... and so on, until a difference is found, or we run out of elements. For example:

```
In [4]: (2,0) > (1,0)
Out[4]: True
In [5]: (2,1) > (1,3)
Out[5]: True
In [6]: (2,1) > (2,1)
Out[6]: False
In [7]: (2,2) > (2,1)
Out[7]: True
It is also possible to do:
```

In [8]: stuff = sorted(stuff)

Where the list is not particularly large, it is generally advisable to use the sorted function (which returns a sorted copy of the list) over the sort method of a list (which changes the list into sorted order of elements, and returns None).

However, what if the data we have is stored such that in each tuple in the list, the name comes first, followed by the id, i.e.:

We want to sort with the id as the primary key. The first approach to do this is to change the order of mylist2 to that of mylist, and use sort as shown above.

The second, neater approach relies on being able to decypher the cryptic help for the sorted function. list.sort() has the same options, but its help is less helpful.

```
In [10]: help(sorted)
Help on built-in function sorted in module builtins:
sorted(...)
    sorted(iterable, key=None, reverse=False) --> new sorted list
```

You should notice that sorted and list.sort have two keyword parameters. The first of these is called key. You can use this to supply a *key function*, which will be used to transform the items for sort to compare.

Let's illustrate this in the context of our exercise, by assuming that we have stored a list of pairs like this

```
pair = name, id
```

(i.e. as in mylist2) and that we want to sort according to id and ignore name. We can achieve this by writing a function that retrieves only the second element of the pair it receives:

This also works with an anonymous function:

```
In [13]: mylist2.sort(key=lambda p: p[1])
```

9.2.1 Efficiency

The key function will be called exactly once for every element in the list. This is much more efficient than calling a function on every *comparison* (which was how you customised sorting in older versions of Python). But if you have a large list to sort, the overhead of calling a Python function (which is relatively large compared to the C function overhead) might be noticeable.

If efficiency is really important (and you have proven that a significant proportion of time is spent in these functions) then you have the option of re-coding them in C (or another low-level language).

10 From Matlab to Python

10.1 Important commands

10.1.1 The for-loop

Matlab:

```
for i = 1:10
     disp(i)
end
```

Matlab requires the end key-word at the end of the block belonging to the for-loop. Python:

Python requires a colon (":") at the of the for-line. (This is important and often forgotten when you have programmed in Matlab before.) Python requires the commands to be executed within the for-loop to be indented.

10.1.2 The if-then statement

Matlab:

```
if a==0
    disp('a is zero')
elseif a<0
    disp('a is negative')
elseif a==42
    disp('a is 42')
else
    disp('a is positive')
end</pre>
```

Matlab requires the end key-word at the very end of the block belonging to the for-loop. Python:

Python requires a colon (":") after every condition (i.e. at the of the lines starting with if, elif, else. Python requires the commands to be executed within each part of the if-then-else statement to be indented.

10.1.3 Indexing

Matlab's indexing of matrices and vectors starts a 1 (similar to Fortran), whereas Python's indexing starts at 0 (similar to C).

10.1.4 Matrices

In Matlab, every object is a matrix. In Python, there is a specialised extension library called <code>numpy</code> (see Sec. [cha:numer-pyth-numpy]) which provides the <code>array</code> object which in turns provides the corresponding functionality. Similar to Matlab, the <code>numpy</code> object is actually based on binary libraries and execution there very fast.

There is a dedicated introduction to numpy for Matlab users available at https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html.

11 Python shells

11.1 IDLE

IDLE comes with every Python distribution and is a useful tool for everyday programming. Its editor provides syntax highlighting.

There are two reasons why you might want to use another Python shell, for example:

• While working with the Python prompt, you like auto-completion of variable names, filenames and commands. In that case *IPython* is your tool of choice (see below). IPython does not provide an editor, but you can carry on using the IDLE editor to edit files, or any other editor you like.

IPython provides a number of nice features for the more experienced Python programmer, including convenient profiling of code (see http://ipython.scipy.org).

Recently, some auto-completion has been added to Idle as well (press tab after having typed the first few letters of object names and keywords).

11.2 Python (command line)

This is the most basic face of the Python shell. It is very similar to the Python prompt in IDLE but there are no menus to click on and no facilities to edit files.

11.3 Interactive Python (IPython)

11.3.1 IPython console

IPython is an improved version of the Python command line. It is a valuable tool and worth exploring it's capabilities (see http://ipython.org/ipython-doc/stable/interactive/gtconsole.html)

You will find the following features very useful:

• auto completion Suppose you want to type a = range (10). Instead of typing all the letters, just type a = ra and the press the "Tab" key. Ipython will now show all the possible commands (and variable names) that start with ra. If you type a third letter, here n and press "Tab" again, Ipython will auto complete and append ge automatically. This works also for variable names and modules.

- To obtain help on a command, we can use Python's help command. For example: help(range). Ipython provides a shortcut. To achieve the same, it is sufficient to just type the command followed by a question mark: range?
- You can relatively easily navigate directories on your computer. For example,
 - ▷ !dir lists the content of the current directory (same as ls)
 - ▷ pwd shows the current working directory
 - ▷ cd allows to change directories
- In general, using an exclamation mark before the command will pass the command to the shell (not to the Python interpreter).
- You can execute Python programs from ipython using %run. Suppose you have a file 'hello.py' in the current directory. You can then execute it by typing: %run hello

Note that this differs from executing a python program in IDLE: IDLE restarts the Python interpreter session and thus deletes all existing objects before the execution starts. This is not the case with the run command in ipython (and neither when executing chunks of Python code from Emacs using the Emacs Python mode). In particular this can be very useful if one needs to setup a few objects which are needed to test the code one is working on. Using ipython's run or Emacs instead of IDLE allows to keep these objects in the interpreter session and to only update the function/classes/... etc that are being developed.

- allows multi-line editing of command history
- provides on-the-fly syntax highlighting
- displays doc-strings on-the-fly
- can inline matplotlib figures (activate mode with if started with %matplotlib inline)
- %load loads file from disk or form URL for editing
- %timeit measures execution time for a given statement
- ... and a lot more.
- Read more at http://ipython.org/ipython-doc/dev/interactive/qtconsole. html

If you have access to this shell, you may want to consider it as your default Python prompt.

11.3.2 Jupyter Notebook

The Jupyter Notebook (formerly IPython Notebook) allows you to execute, store, load, re-execute a sequence of Python commands, and to include explanatory text, images and other media in between.

This is a recent and exciting development that has the potential to develop into a tool of great significance, for example for

- documenting calculations and data processing
- support learning and teaching of

- ▷ Python itself
- > statistical methods

▷ ...

- documentation new code
- automatic regression testing by re-running ipython notebook and comparing stored output with computed output

Further reading

- Jupyter Notebook (http://jupyter-notebook.readthedocs.io/en/latest/).
- IPython (http://ipython.org).

11.4 Spyder

Spyder is the Scientific PYthon Development EnviRonment: a powerful interactive development environment for the Python language with advanced editing, interactive testing, debugging and introspection features and a numerical computing environment thanks to the support of IPython (enhanced interactive Python interpreter) and popular Python libraries such as NumPy (linear algebra), SciPy (signal and image processing) or matplotlib (interactive 2D/3D plotting). See http://pythonhosted.org/spyder/ for more.

Some important features of Spyder:

- Within Spyder, the IPython console is the default Python interpreter, and
- code in the editor can be fully or partially be executed in this buffer.
- The editor supports automatic checking for Python erros using pyflakes, and
- the editor warns (if desired) if the code formatting deviates from the PEP8 style guide.
- The Ipython Debugger can be activated, and
- a profiler is provided.
- An object explorer shows documentation for functions, methods etc on the fly and a
- variable explorer displays names, size and values for numerical variables.

Spyder is currently (as of 2014) on the way to develop into a powerful and robust multi-platform integrated environment for Python development, with particular emphasis on Python for scientific computing and engineering.

11.5 Editors

All major editors that are used for programming, provide Python modes (such as Emacs, Vim, Sublime Text), some Integrated Development Environments (IDEs) come with their own editor (Spyder, Eclipse). Which of these is best, is partly a matter of choice.

For beginners, Spyder seems a sensible choice as it provides an IDE, allows execution of chunks of code in an interpreter session and is easy to pick up.

12 Symbolic computation

12.1 SymPy

In this section, we introduce some basic functionality of the SymPy (SYMbolic Python) library. In contrast to numerical computation (involving numbers), in symbolic calculation we are processing and transforming generic variables.

The SymPy home page is http://sympy.org/, and provides the full (and up-to-date) documentation for this library.

Symbolic calculation is very slow compared to floating point operation (see for example Section 13.1.5), and thus generally not for direct simulation. However, it is a powerful tool to support the preparation of code and symbolic work. Occasionally, we use symbolic operations in simulations to work out the most efficient numerical code, before that is executed.

12.1.1 Output

Before we start using sympy, we'll call init_printing. This tells sympy to display expressions in a nicer format.

12.1.2 Symbols

Before we can carry out any symbolic operations, we need to create symbolic variables using SymPy's Symbol function:

```
In [2]: from sympy import Symbol
    x = Symbol('x')
    type(x)

Out[2]: sympy.core.symbol.Symbol

In [3]: y = Symbol('y')
    2 * x - x

Out[3]:

    x

In [4]: x + y + x + 10*y

Out[4]:

    2x + 11y

Out[5]:
    x + 10
```

We can abbreviate the creation of multiple symbolic variables using the symbols function. For example, to create the symbolic variables x, y and z, we can use

Once we have completed our term manipulation, we sometimes like to insert numbers for variables. This can be done using the subs method.

```
In [7]: from sympy import symbols
        x, y = symbols('x, y')
        x + 2 * y
Out [7]:
                                     x + 2y
In [8]: x + 2*y.subs(x, 10)
Out[8]:
                                     x + 2y
In [9]: (x + 2*y).subs(x, 10)
Out [9]:
                                     2y + 10
In [10]: (x + 2*y).subs(x, 10).subs(y, 3)
Out[10]:
                                       16
In [11]: (x + 2*y).subs(\{x:10, y:3\})
Out [11]:
                                       16
```

We can also substitute a symbolic variable for another one such as in this example where y is replaced with x before we substitute x with the number 2.

```
Out[13]: y^2 + 3y In [14]: myterm.subs(x, y).subs(y, 2) Out[14]: 10
```

From this point onward, some of the code fragments and examples we present will assume that the required symbols have already been defined. If you try an example and SymPy gives a message like NameError: name 'x' is not defined it is probably because you need to define the symbol using one of the methods above.

12.1.3 isympy

The isympy executable is a wrapper around ipython which creates the symbolic (real) variables x, y and z, the symbolic integer variables k, m and n and the symbolic function variables f, g and g, and imports all objects from the SymPy toplevel.

This is convenient to figure out new features or experimenting interactively

```
$> isympy
Python 2.6.5 console for SymPy 0.6.7

These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z = symbols('xyz')
>>> k, m, n = symbols('kmn', integer=True)
>>> f, g, h = map(Function, 'fgh')

Documentation can be found at http://sympy.org/
In [1]:
```

12.1.4 Numeric types

SymPy has the numeric types Rational and RealNumber. The Rational class represents a rational number as a pair of two integers: the numerator and the denominator, so Rational (1, 2) represents 1/2, Rational (5, 2) represents 5/2 and so on.

```
Out [17]: \frac{45}{67} In [18]: a * b Out [18]: \\ \frac{9}{134} In [19]: a - b Out [19]: \\ -\frac{383}{670} In [20]: a + b Out [20]: \\ \frac{517}{670}
```

Note that the Rational class works with rational expressions *exactly*. This is in contrast to Python's standard float data type which uses floating point representation to *approximate* (rational) numbers.

We can convert the sympy.Rational type into a Python floating point variable using float or the evalf method of the Rational object. The evalf method can take an argument that specifies how many digits should be computed for the floating point approximation (not all of those may be used by Python's floating point type of course).

12.1.5 Differentiation and Integration

SymPy is capable of carrying out differentiation and integration of many functions:

```
In [25]: from sympy import Symbol, exp, sin, sqrt, diff
         x = Symbol('x')
         y = Symbol('y')
         diff(sin(x), x)
Out [25]:
                                    \cos(x)
In [26]: diff(\sin(x), y)
Out [26]:
                                      0
In [27]: diff(10 + 3*x + 4*y + 10*x**2 + x**9, x)
Out [27]:
                                 9x^8 + 20x + 3
In [28]: diff(10 + 3*x + 4*y + 10*x**2 + x**9, y)
Out [28]:
                                      4
In [29]: diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1)
Out [29]:
                                      32
In [30]: diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1.5)
Out[30]:
                                  263.66015625
In [31]: diff(exp(x), x)
Out [31]:
                                      e^x
In [32]: diff(exp(-x ** 2 / 2), x)
```

```
Out[32]:
```

$$-re^{-\frac{x^2}{2}}$$

The SymPy diff() function takes a minimum of two arguments: the function to be differentiated and the variable with respect to which the differentiation is performed. Higher derivatives may be calculated by specifying additional variables, or by adding an optional integer argument:

```
In [33]: diff(3*x**4, x)
Out[33]:

12x^3
In [34]: diff(3*x**4, x, x, x)
Out[34]:

72x
In [35]: diff(3*x**4, x, 3)
Out[35]:

72x
In [36]: diff(3*x**4*y**7, x, 2, y, 2)
Out[36]:

1512x^2y^5
In [37]: diff(diff(3*x**4*y**7, x, x), y, y)
Out[37]:
```

At times, SymPy may return a result in an unfamiliar form. If, for example, you wish to use SymPy to check that you differentiated something correctly, a technique that might be of use is to subtract the SymPy result from your result, and check that the answer is zero.

Taking the simple example of a multiquadric radial basis function, $\phi(r) = \sqrt{r^2 + \sigma^2}$ with $r = \sqrt{x^2 + y^2}$ and σ a constant, we can verify that the first derivative in x is $\partial \phi/\partial x = x/\sqrt{r^2 + \sigma^2}$.

In this example, we first ask SymPy to print the derivative. See that it is printed in a different form to our trial derivative, but the subtraction verifies that they are identical:

```
x/sqrt(x**2 + y**2 + \sigma**2)

In [39]: print(mydfdx - diff(phi(x, y, sigma), x))
```

Here it is trivial to tell that the expressions are identical without SymPy's help, but in more complicated examples there may be many more terms and it would become increasingly difficult, time consuming and error-prone to attempt to rearrange our trial derivative and SymPy's answer into the same form. It is in such cases that this subtraction technique is of most use.

Integration uses a similar syntax. For the indefinite case, specify the function and the variable with respect to which the integration is performed:

```
In [40]: from sympy import integrate integrate (x**2, x)

Out [40]: \frac{x^3}{3}

In [41]: integrate (x**2, y)

Out [41]: x^2y

In [42]: integrate (\sin(x), y)

Out [42]: y\sin(x)

In [43]: integrate (\sin(x), x)

Out [43]: -\cos(x)

In [44]: integrate (-x*\exp(-x**2/2), x)

Out [44]: -\frac{x^2}{2}
```

We can calculate definite integrals by providing integrate() with a tuple containing the variable of interest, the lower and the upper bounds. If several variables are specified, multiple integration is performed. When SymPy returns a result in the Rational class, it is possible to evaluate it to a floating-point representation at any desired precision (see Section 12.1.4).

```
In [45]: integrate (x*2, (x, 0, 1))
```

```
Out[45]:
                                         1
In [46]: integrate (x**2, x)
Out [46]:
                                        \frac{x^3}{3}
In [47]: integrate (x**2, x, x)
Out [47]:
                                         x^4
                                         \overline{12}
In [48]: integrate (x**2, x, x, y)
Out[48]:
                                         12
In [49]: integrate (x**2, (x, 0, 2))
Out [49]:
                                         8
                                         \frac{1}{3}
In [50]: integrate (x**2, (x, 0, 2), (x, 0, 2), (y, 0, 1))
Out [50]:
                                        16
In [51]: float(integrate(x**2, (x, 0, 2)))
Out [51]:
                                 2.6666666666666665
In [52]: type(integrate(x**2, (x, 0, 2)))
Out[52]: sympy.core.numbers.Rational
In [53]: result_rational=integrate(x**2, (x, 0, 2))
         result_rational.evalf()
Out [53]:
                                  2.66666666666667
In [54]: result_rational.evalf(50)
Out [54]:
```

12.1.6 Ordinary differential equations

SymPy has inbuilt support for solving several kinds of ordinary differential equation via its dsolve command. We need to set up the ODE and pass it as the first argument, eq. The second argument is the function f(x) to solve for. An optional third argument, hint, influences the method that dsolve uses: some methods are better-suited to certain classes of ODEs, or will express the solution more simply, than others.

To set up the ODE solver, we need a way to refer to the unknown function for which we are solving, as well as its derivatives. The Function and Derivative classes facilitate this:

```
In [55]: from sympy import Symbol, dsolve, Function, Derivative, Eq y = Function("y") x = Symbol('x') y_{-} = Derivative(y(x), x) dsolve(y_{-} + 5*y(x), y(x)) Out [55]: y(x) = C_1 e^{-5x}
```

Note how dsolve has introduced a constant of integration, C1. It will introduce as many constants as are required, and they will all be named Cn, where n is an integer. Note also that the first argument to dsolve is taken to be equal to zero unless we use the Eq() function to specify otherwise:

```
In [56]: dsolve(y_ + 5*y(x), y(x)) y(x) = C_1 e^{-5x} y(x) = C_1 e^{-5x} In [57]: dsolve(Eq(y_ + 5*y(x), 0), y(x)) y(x) = C_1 e^{-5x} y(x) = C_1 e^{-5x} In [58]: dsolve(Eq(y_ + 5*y(x), 12), y(x)) y(x) = \frac{C_1}{5} e^{-5x} + \frac{12}{5}
```

The results from dsolve are an instance of the Equality class. This has consequences when we wish to numerically evaluate the function and use the result elsewhere (e.g. if we wanted to plot y(x) against x), because even after using subs () and evalf(), we still have an Equality, not any sort of scalar. The way to evaluate the function to a number is via the rhs attribute of the Equality.

Note that, here, we use z to store the Equality returned by dsolve, even though it is an expression for a function called y(x), to emphasise the distinction between the Equality itself and the data that it contains.

```
In [59]: z = dsolve(y_ + 5*y(x), y(x))
```

```
Out[59]:
                                      y(x) = C_1 e^{-5x}
In [60]: type(z)
Out[60]: sympy.core.relational.Equality
In [61]: z.rhs
Out[61]:
                                          C_1e^{-5x}
In [62]: C1=Symbol('C1')
          y3 = z.subs(\{C1:2, x:3\})
          уЗ
Out [62]:
                                        y(3) = \frac{2}{e^{15}}
In [63]: y3.evalf(10)
Out[63]:
                                  y(3) = 6.11804641 \cdot 10^{-7}
In [64]: y3.rhs
Out[64]:
                                            \frac{2}{e^{15}}
In [65]: y3.rhs.evalf(10)
Out[65]:
                                     6.11804641 \cdot 10^{-7}
In [66]: z.rhs.subs(\{C1:2, x:4\}).evalf(10)
Out[66]:
                                     4.122307245 \cdot 10^{-9}
In [67]: z.rhs.subs({C1:2, x:5}).evalf(10)
Out [67]:
                                    2.777588773\cdot 10^{-11}
In [68]: type(z.rhs.subs(\{C1:2, x:5\}).evalf(10))
```

```
Out [68]: sympy.core.numbers.Float
```

At times, dsolve may return too general a solution. One example is when there is a possibility that some coefficients may be complex. If we know that, for example, they are always real and positive, we can provide dsolve this information to avoid the solution becoming unnecessarily complicated:

```
In [69]: from sympy import *
    a, x = symbols('a,x')
    f = Function('f')
    dsolve(Derivative(f(x), x, 2) + a**4*f(x), f(x))

Out[69]:
f(x) = C_1 e^{-ia^2x} + C_2 e^{ia^2x}
In [70]: a=Symbol('a', real=True, positive=True)
    dsolve(Derivative(f(x), x, 2)+a**4*f(x), f(x))

Out[70]:
f(x) = C_1 \sin(a^2x) + C_2 \cos(a^2x)
```

12.1.7 Series expansions and plotting

It is possible to expand many SymPy expressions as Taylor series. The series method makes this straightforward. At minimum, we must specify the expression and the variable in which to expand it. Optionally, we can also specify the point around which to expand, the maximum term number, and the direction of the expansion (try help (Basic.series) for more information).

```
In [71]: from sympy import * x = \text{Symbol}('x') \\ \sin(x). \text{series}(x, 0)

Out [71]:  x - \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^6) 

In [72]: x - \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^6) 

Out [72]:  x - \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^6) 

In [73]: \cos(x). \text{series}(x, 0.5, 10) 

Out [73]:
```

 $1.11729533119247 - 0.438791280945186 (x - 0.5)^{2} + 0.0799042564340338 (x - 0.5)^{3} + 0.0365659400787655 (x - 0.5)^{2} + 0.0799042564340338 (x - 0.5)^{3} + 0.0365659400787655 (x - 0.5)^{2} + 0.0799042564340338 (x - 0.5)^{3} + 0.0365659400787655 (x - 0.5)^{2} + 0.0799042564340338 (x - 0.5)^{3} + 0.0365659400787655 (x - 0.5)^{2} + 0.0799042564340338 (x - 0.5)^{3} + 0.0365659400787655 (x - 0.5)^{2} + 0.0799042564340338 (x - 0.5)^{3} + 0.0365659400787655 (x - 0.5)^{2} + 0.0799042564340338 (x - 0.5)^{2} + 0.079904256434038 (x - 0.5)^{2} + 0.0799042564340 (x - 0.5)^{2} + 0.0799042564340 (x - 0.5)^{2} + 0.0799042564340 (x - 0.5)^{2} + 0.07990425640 (x - 0.5)^{2} + 0.07990425640 (x - 0.5)^{2} + 0.07990425640 (x - 0.5)^{2} + 0.0799040 (x - 0.5)^{2} + 0.07990 (x - 0.5)^{2} + 0.0$

In some cases, especially for numerical evaluation and plotting the results, it is necessary to remove the trailing O(n) term:

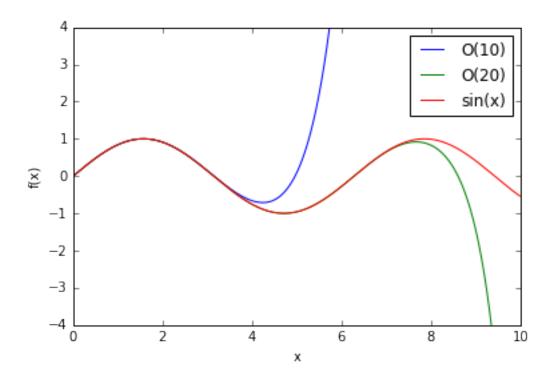
```
Out [74]: -0.479425538604203x - 1.32116826114474 \cdot 10^{-6} (x - 0.5)^9 + 2.17654405230747 \cdot 10^{-5} (x - 0.5)^8 + 9.512411480242
```

In [74]: cos(x).series(x, 0.5, 10).removeO()

SymPy provides two inbuilt plotting functions, Plot() from the sympy.plotting module, and plot from sympy.mpmath.visualization. At the time of writing, these functions lack the ability to add a key to the plot, which means they are unsuitable for most of our needs. Should you wish to use them nevertheless, their help() text is useful.

For most of our purposes, Matplotlib should be the plotting tool of choice. The details are in chapter [cha:visualisingdata]. Here we furnish just one example of how to plot the results of a SymPy computation.

```
In [75]: %matplotlib inline
In [76]: from sympy import sin, series, Symbol
         import pylab
         x = Symbol('x')
         s10 = sin(x).series(x, 0, 10).remove0()
         s20 = sin(x).series(x, 0, 20).removeO()
         s = sin(x)
         xx = []
         v10 = []
         y20 = []
         y = []
         for i in range(1000):
           xx.append(i / 100.0)
           y10.append(float(s10.subs({x:i/100.0})))
           y20.append(float(s20.subs({x:i/100.0})))
           y.append(float(s.subs({x:i/100.0})))
         pylab.figure()
Out [76]: <matplotlib.figure.Figure at 0x7fd934bf6898>
<matplotlib.figure.Figure at 0x7fd934bf6898>
In [77]: pylab.plot(xx, y10, label='0(10)')
         pylab.plot(xx, y20, label='O(20)')
         pylab.plot(xx, y, label='sin(x)')
         pylab.axis([0, 10, -4, 4])
         pylab.xlabel('x')
         pylab.ylabel('f(x)')
         pylab.legend()
Out [77]: <matplotlib.legend.Legend at 0x7fd934ed2f98>
```



12.1.8 Linear equations and matrix inversion

SymPy has a Matrix class and associated functions that allow the symbolic solution of systems of linear equations (and, of course, we can obtain numerical answers with subs () and evalf()). We shall consider the example of the following simple pair of linear equations:

$$3x + 7y = 12z$$
$$4x - 2y = 5z$$

We may write this system in the form $A\vec{x} = \vec{b}$ (multiply A by \vec{x} if you want to verify that we recover the original equations), where

$$A = \left(\begin{array}{cc} 3 & 7 \\ 4 & -2 \end{array} \right), \qquad \vec{x} = \left(\begin{array}{c} x \\ y \end{array} \right), \qquad \vec{b} = \left(\begin{array}{c} 12z \\ 5z \end{array} \right).$$

Here we included a symbol, z, on the right-hand side to demonstrate that symbols will be propagated into the solution. In many cases we would have z = 1, but there may still be benefit to using SymPy over a numerical solver even when the solution contains no symbols because of its ability to return exact fractions rather than approximate floats.

One strategy to solve for \vec{x} is to invert the matrix A and pre-multiply, *i.e.* $A^{-1}A\vec{x} = \vec{x} = A^{-1}\vec{b}$. SymPy's Matrix class has an inv() method that allows us to find the inverse, and \star performs matrix multiplication for us, when appropriate:

```
In [78]: from sympy import symbols, Matrix
    x, y, z = symbols('x,y,z')
    A = Matrix(([3, 7], [4, -2]))
    A
```

```
Out [78]:
In [79]: A.inv()
Out [79]:
                                                         \begin{bmatrix} \frac{1}{17} & \frac{7}{34} \\ \frac{2}{17} & -\frac{3}{34} \end{bmatrix}
In [80]: b = Matrix((12*z, 5*z))
Out[80]:
In [81]: x = A.inv() *b
Out[81]:
                                                             \frac{59z}{34}
\frac{33z}{24}
In [82]: x.subs(\{z:3.3\}).evalf(4)
Out[82]:
                                                            \begin{bmatrix} 5.726 \\ 3.203 \end{bmatrix}
In [83]: type(x)
Out [83]: sympy.matrices.dense.MutableDenseMatrix
```

An alternative method of solving the same problem is to construct the system as a matrix in augmented form; that is the form obtained by appending the columns of (in our example) A and \vec{b} together. The augmented matrix is[1]:

$$(A|\vec{b}) = \begin{pmatrix} 3 & 7 & | & 12z \\ 4 & -2 & | & 5z \end{pmatrix},$$

and as before we construct this as a SymPy Matrix object, but in this case we pass it to the solve_linear_system() function:

```
In [84]: from sympy import Matrix, symbols, solve_linear_system
    x, y, z = symbols('x,y,z')
    system = Matrix(([3, 7, 12*z],[4, -2, 5*z]))
    system
```

A third option is the solve() method, whose arguments include the individual symbolic equations, rather than any matrices. Like dsolve() (see Section 12.1.6), solve() expects either expressions which it will assume equal to zero, or Equality objects, which we can conveniently create with Eq():

```
In [88]: from sympy import symbols, solve, Eq x, y, z = symbols('x,y,z') solve((Eq(3*x+7*y,12*z), Eq(4*x-2*y,5*z)), x, y)

Out[88]:  \left\{ x: \frac{59z}{34}, \quad y: \frac{33z}{34} \right\} 
In [89]: solve((3*x+7*y-12*z, 4*x-2*y-5*z), x, y)

Out[89]:
```

For more information, see help(solve) and help(solve_linear_system).

12.1.9 Non linear equations

Let's solve a simple equation such as $x = x^2$. There are two obvious solutions: x = 0 and x = 1. How can we ask Sympy to compute these for us?

```
In [90]: import sympy x, y, z = sympy.symbols('x, y, z') # create some symbols eq = x - x ** 2 # define the equation
```

```
In [91]: sympy.solve(eq, x) # solve eq = 0

Out[91]: [0, 1]
```

The solve() function expects an expression that as meant to be solve so that it evaluates to zero. For our example, we rewrite

x = x2 as x - x2 = 0 and then pass this to the solve function. Let's repeat the same for the equation: x = x3 and solve

```
In [92]: eq = x - x ** 3 # define the equation sympy.solve(eq, x)

Out[92]:
[-1, 0, 1]
```

12.1.10 Output: LaTeX interface and pretty-printing

As is the case with many computer algebra systems, SymPy has the ability to format its output as LaTeX code, for easy inclusion into documents.

At the start of this chapter, we called:

```
sympy.init_printing()
```

Sympy detected that it was in Jupyter, and enabled Latex output. The Jupyter Notebook supports (some) Latex, so this gives us the nicely formatted output above.

We can also see the plain text output from Sympy, and the raw Latex code it creates:

```
In [93]: print(series(1/(x+y), y, 0, 3))
y**2/x**3 - y/x**2 + 1/x + O(y**3)
In [94]: print(latex(series(1/(x+y), y, 0, 3)))
\frac{y^{2}}{x^{3}} - \frac{y}{x^{2}} + \frac{1}{x} + \mathcal{0}\left(y^{3}\right)
In [95]: print(latex(series(1/(x+y), y, 0, 3), mode='inline'))
$\frac{y^{2}}{x^{3}} - \frac{y}{x^{2}} + 1 / x + \mathcal{0}\left(y^{3}\right)$
```

Be aware that in its default mode, latex() outputs code that requires the amsmath package to be loaded via a \backslashusepackage {amsmath} command in the document preamble.

SymPy also supports a "pretty print" (pprint()) output routine, which produces better-formatted text output than the default printing routine, as illustrated below. Note features such as the subscripts for array elements whose names are of the form T_n, the italicised constant *e*, vertically-centred dots for multiplication, and the nicely-formed matrix borders and fractions.

Finally, SymPy offers preview(), which displays rendered output on screen (check help(preview) for details).

12.1.11 Automatic generation of C code

A strong point of many symbolic libraries is that they can convert the symbolic expressions to C-code (or other code) that can subsequently be compiled for high execution speed. Here is an example that demonstrates this:

```
In [98]: from sympy import *
        from sympy.utilities.codegen import codegen
        x = Symbol('x')
        sin(x).series(x, 0, 6)
Out [98]:
                           x - \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}\left(x^6\right)
In [99]: print(codegen(("taylor_sine", sin(x).series(x, 0, 6)), language='C')[0][1]
/*********************************
                        Code generated with sympy 1.0
               See http://www.sympy.org/ for more information.
                        This file is part of 'project'
 *******************************
#include "taylor_sine.h"
#include <math.h>
double taylor_sine(double x) {
  double taylor_sine_result;
  taylor_sine_result = x - 1.0L/6.0L*pow(x, 3) + (1.0L/120.0L)*pow(x, 5) + O(x*)
  return taylor_sine_result;
}
```

12.2 Related tools

It is worth noting that the SAGE initiative http://www.sagemath.org/ is trying to "create a viable free open source alternative to Magma, Maple, Mathematica and Matlab." and includes the SymPy library among many others. Its symbolic capabilities are more powerful than SymPy's, and SAGE, but the SymPy features will already cover many of the needs arising in science and engineering. SAGE includes the computer algebra system Maxima, which is also available standalone from http://maxima.sourceforge.net/.

13 Numerical Computation

13.1 Numbers and numbers

We have already seen (Section 3.2) that Python knows different types of numbers:

- floating point numbers such as 3.14
- integers such as 42
- complex numbers such as 3.14 + 1j

13.1.1 Limitations of number types

Limitations of ints Mathematics provides the infinite set of natural numbers $\mathbb{N} = \{1, 2, 3, ...\}$. Because the computer has *finite* size, it is impossible to represent all of these numbers in the computer. Instead, only a small subset of numbers is represented.

The int-type can (usually[3]) represent numbers between -2147483648 and +2147483647 and corresponds to 4 bytes (that's 4*8 bit, and 232 = 4294967296 which is the range from -2147483648 and +2147483647).

You can imagine that the hardware uses a table like this to encode integers using bits (suppose for simplicity we use only 8 bits for this):

natural number	bit-representation
0	00000000
1	00000001
2	00000010
3	00000011
4	00000100
5	00000101
:	:
254	11111110
255	11111111

Using 8 bit we can represent 256 natural numbers (for example from 0 to 255) because we have 28 = 256 different ways of combining eight 0s and 1s.

We could also use a slightly different table to describe 256 integer numbers ranging, for example, from -127 to +128.

This is *in principle* how integers are represented in the computer. Depending on the number of bytes used, only integer numbers between a minimum and a maximum value can be represented. On today's hardware, it is common to use 4 or 8 bytes to represent one integer, which leads exactly to the minimum and maximum values of -2147483648 and +2147483647 as shown above for 4 bytes, and +9223372036854775807 as the maximum integer for 8 bytes (that's \approx 9.2 · 1018).

Limitations of floats The floating point numbers in a computer are not the same as the mathematical floating point numbers. (This is exactly the same as the (mathematical) integer numbers not being the same as the integer numbers in a computer: only a *subset* of the infinite set of integer numbers can be represented by the int data type as shown in Section 13.1). So how are floating point numbers represented in the computer?

- Any real number x can be written as $x = a \cdot 10b$ where a is the mantissa and b the exponent.
- Examples:

x	a	b
$123.45 = 1.23456 \cdot 102$	1.23456	2
$1000000 = 1.0 \cdot 106$	1.00000	6
$0.0000024 = 2.4 \cdot 10-6$	2.40000	-6

- Therefore, we can use 2 integers to encode one floating point number! $x = a \cdot 10b$
- Following (roughly) the IEEE-754 standard, one uses 8 bytes for one float *x*: these 64 bits are split as
 - \triangleright 10 bit for the exponent *b* and
 - \triangleright 54 bit for the mantissa *a*.

This results in

- largest possible float \approx 10308 (quality measure for *b*)
- smallest possible (positive) float $\approx 10-308$ (quality measure for b)
- distance between 1.0 and next larger number $\approx 10-16$ (quality measure for a)

Note that this is *in principle* how floating point numbers are stored (it is actually a bit more complicated).

Limitations of complex numbers The complex number type has essentially the same limitations as the float data type (see Section 13.1.1) because a complex number consists of two floats: one represents the real part, the other one the imaginary part.

... are these number types of practical value? In practice, we do not usually find numbers in our daily life that exceed 10300 (this is a number with 300 zeros!), and therefore the floating point numbers cover the range of numbers we usually need.

However, be warned that in scientific computation small and large numbers are used which may (often in intermediate results) exceed the range of floating point numbers.

- Imagine for example, that we have to take the fourth power of the constant $\hbar = 1.0545716 \cdot 10 34 kgm2/s$:
- $\hbar 4 = 1.2368136958909421 \cdot 10 136*k**g4m8/s*4$ which is "halfway" to our representable smallest positive float of the order of 10 308.

If there is any danger that we might exceed the range of the floating point numbers, we have to *rescale* our equations so that (ideally) all numbers are of order unity. Rescaling our equations so that all relevant numbers are approximately 1 is also useful in debugging our code: if numbers much greater or smaller than 1 appear, this may be an indication of an error.

13.1.2 Using floating point numbers (carelessly)

We know already that we need to take care that our floating point values do not exceed the range of floating point numbers that can be represented in the computer.

There is another complication due to the way floating point numbers have to be represented internally: not all floating point numbers can be represented exactly in the computer. The number 1.0 can be represented exactly but the numbers 0.1, 0.2 and 0.3 cannot:

```
In [11]: '%.20f' % 1.0
Out[11]: '1.00000000000000000000000'
In [12]: '%.20f' % 0.1
Out[12]: '0.10000000000000000555'
In [13]: '%.20f' % 0.2
Out[13]: '0.20000000000000001110'
In [14]: '%.20f' % 0.3
Out[14]: '0.2999999999999999999999999
```

Instead, the floating point number "nearest" to the real number is chosen.

This can cause problems. Suppose we need a loop where x takes values $0.1, 0.2, 0.3, \ldots, 0.9, 1.0$. We might be tempted to write something like this:

```
x = 0.0
while not x == 1.0:
    x = x + 0.1
    print ( " x =%19.17f" % ( x ))
```

However, this loop will never terminate. Here are the first 11 lines of output of the program:

Because the variable \times never takes exactly the value 1.0, the while loop will continue forever. Thus: *Never compare two floating point numbers for equality.*

13.1.3 Using floating point numbers carefully 1

There are a number of alternative ways to solve this problem. For example, we can compare the distance between two floating point numbers:

13.1.4 Using floating point numbers carefully 2

Alternatively, we can (for this example) iterate over a sequence of integers and compute the floating point number from the integer:

```
In [16]: for i in range (1 , 11):
           x = i * 0.1
           print(" x =%19.17f" % ( x ))
x = 0.100000000000000001
x = 0.200000000000000001
x = 0.300000000000000004
x = 0.40000000000000000
x = 0.50000000000000000
x = 0.600000000000000000
x = 0.70000000000000000
x = 0.80000000000000004
In [17]: x=0.10000000000000001
       x=0.200000000000000001
       x=0.3000000000000000004
       x=0.600000000000000000
       x=0.700000000000000007
       x=0.8000000000000000004
       x =
```

If we compare this with the output from the program in Section 13.1.2, we can see that the floating point numbers differ. This means that – in a numerical calculation – it is not true that 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 1.0.

13.1.5 Symbolic calculation

Using the sympy package we have arbitrary precision. Using sympy.Rational, we can define the fraction 1/10 exactly symbolically. Adding this 10 times will lead exactly to the value 1, as demonstrated by this script

```
In [18]: from sympy import Rational
         dx = Rational (1, 10)
         x = 0
         while x != 1.0:
             x = x + dx
             print("Current x=%4s = %3.1f " % (x , x . evalf ()))
             print(" Reached x=%s " % x)
Current x=1/10 = 0.1
Reached x=1/10
Current x=1/5=0.2
Reached x=1/5
Current x=3/10 = 0.3
Reached x=3/10
Current x=2/5=0.4
Reached x=2/5
Current x= 1/2 = 0.5
Reached x=1/2
Current x=3/5=0.6
Reached x=3/5
Current x=7/10 = 0.7
Reached x=7/10
Current x = 4/5 = 0.8
Reached x=4/5
Current x=9/10 = 0.9
Reached x=9/10
Current x= 1 = 1.0
 Reached x=1
```

However, this symbolic calculation is much slower as it is done through software rather than the CPU-based floating point operations. The next program approximates the relative performances:

```
In [19]: from sympy import Rational
    dx_symbolic = Rational (1 ,10)
    dx = 0.1

def loop_sympy (n):
    x = 0
    for i in range(n):
        x = x + dx_symbolic
```

```
return x
         def loop_float(n):
             x = 0
             for i in range(n):
                x = x + dx
             return x
         def time_this (f, n):
             import time
             starttime = time.time()
             result = f(n)
             stoptime = time.time()
             print(" deviation is %16.15g" % ( n * dx_symbolic - result ))
             return stoptime - starttime
         n = 100000
         print("loop using float dx:")
         time_float = time_this(loop_float, n)
         print("float loop n=%d takes %6.5f seconds" % (n, time_float))
         print("loop using sympy symbolic dx:")
         time_sympy = time_this (loop_sympy, n)
         print("sympy loop n =% d takes %6.5f seconds" % (n , time_sympy ))
         print("Symbolic loop is a factor %.1f slower." % ( time_sympy / time_fl
loop using float dx:
deviation is -1.88483681995422e-08
float loop n=100000 takes 0.00778 seconds
loop using sympy symbolic dx:
 deviation is
sympy loop n = 100000 takes 1.61389 seconds
Symbolic loop is a factor 207.4 slower.
```

This is of course an artificial example: we have added the symbolic code to demonstrate that these round off errors originate from the approximative representation of floating point numbers in the hardware (and thus programming languages). We can, in principle, avoid these complications by computing using symbolic expressions, but this is in practice too slow.[4]

13.1.6 **Summary**

In summary, we have learned that

- floating point numbers and integers used in numeric computation are generally quite different from "mathematical numbers" (symbolic calculations are exact and use the "mathematical numbers"):
 - be there is a maximum number and a minimum number that can be represented (for both integers and floating point numbers)
 - ▶ within this range, not every floating point number can be represented in the computer.

- We deal with this limitation by:
 - ▷ never comparing two floating point numbers for equality (instead we compute the absolute value of the difference)
 - ▶ use of algorithms that are *stable* (this means that small deviations from correct numbers can be corrected by the algorithm. We have not yet shown any such examples this document.)
- Note that there is a lot more to be said about numerical and algorithmic tricks and methods to make numeric computation as accurate as possible but this is outside the scope of this section.

13.1.7 Exercise: infinite or finite loop

1. What does the following piece of code compute? Will the loop ever finish? Why?

```
eps = 1.0
while 1.0 + eps > 1.0:
    eps = eps / 2.0
print(eps)
```

14 Numerical Python (numpy): arrays

14.1 Numpy introduction

The NumPy package (read as NUMerical PYthon) provides access to

- a new data structure called arrays which allow
- efficient vector and matrix operations. It also provides
- a number of linear algebra operations (such as solving of systems of linear equations, computation of Eigenvectors and Eigenvalues).

14.1.1 History

Some background information: There are two other implementations that provide nearly the same functionality as NumPy. These are called "Numeric" and "numarray":

- Numeric was the first provision of a set of numerical methods (similar to Matlab) for Python. It evolved from a PhD project.
- Numarray is a re-implementation of Numeric with certain improvements (but for our purposes both Numeric and Numarray behave virtually identical).
- Early in 2006 it was decided to merge the best aspects of Numeric and Numerray into the Scientific Python (scipy) package and to provide (a hopefully "final") array data type under the module name "NumPy".

We will use in the following materials the "NumPy" package as provided by (new) SciPy. If for some reason this doesn't work for you, chances are that your SciPy is too old. In that case, you will find that either "Numeric" or "numarray" is installed and should provide nearly the same capabilities.[5]

14.1.2 Arrays

We introduce a new data type (provided by NumPy) which is called "array". An array appears to be very similar to a list but an array can keep only elements of the same type (whereas a list can mix different kinds of objects). This means arrays are more efficient to store (because we don't need to store the type for every element). It also makes arrays the data structure of choice for numerical calculations where we often deal with vectors and matricies.

Vectors and matrices (and matrices with more than two indices) are all called "arrays" in NumPy.

Vectors (1d-arrays) The data structure we will need most often is a vector. Here are a few examples of how we can generate one:

• Conversion of a list (or tuple) into an array using numpy.array:

• Creation of a vector using "ArrayRANGE":

Creation of vector with zeros

Once the array is established, we can set and retrieve individual values. For example:

```
In [4]: x = N.zeros(4)
    x[0] = 3.4
    x[2] = 4
    print(x)
    print(x[0])
    print(x[0:-1])
[ 3.4    0.    4.    0. ]
3.4
[ 3.4    0.    4. ]
```

Note that once we have a vector we can perform calculations on every element in the vector with a single statement:

Matrices (2d-arrays) Here are two ways to create a 2d-array:

• By converting a list of lists (or tuples) into an array:

• Using the zeros method to create a matrix with 5 rows and 4 columns

The "shape" of a matrix can be queried like this (here we have 2 rows and 3 columns):

Individual elements can be accessed and set using this syntax:

```
In [9]: x=N.array([[1, 2, 3], [4, 5, 6]])
        x[0, 0]
Out[9]: 1
In [10]: x[0, 1]
```

```
Out[10]: 2
In [11]: x[0, 2]
Out[11]: 3
In [12]: x[1, 0]
Out[12]: 4
In [13]: x[:, 0]
Out[13]: array([1, 4])
In [14]: x[0,:]
Out[14]: array([1, 2, 3])
```

14.1.3 Convert from array to list or tuple

To create an array back to a list or tuple, we can use the standard python functions list(s) and tuple(s) which take a sequence s as the input argument and return a list and tuple, respectively:

14.1.4 Standard Linear Algebra operations

Maxtrix multiplication Two arrays can be multiplied in the usual linear-algebra way using numpy.matrixmultiply. Here is an example:

```
In [18]: import numpy as N
    import numpy.random
A = numpy.random.rand(5, 5)  # generates a random 5 by 5 matrix
x = numpy.random.rand(5)  # generates a 5-element vector
b=N.dot(A, x)  # multiply matrix A with vector x
```

Solving systems of linear equations To solve a system of equations $A\mathbf{x} = \mathbf{b}$ that is given in matrix form (*i.e* A is a matrix and \mathbf{x} and \mathbf{b} are vectors where A and \mathbf{b} are known and we want to find the unknown vector \mathbf{x}), we can use the linear algebra package (linalg) of numpy:

```
In [19]: import numpy.linalg as LA x = LA.solve(A, b)
```

Computing Eigenvectors and Eigenvalues Here is a small example that computes the [trivial] Eigenvectors and Eigenvalues (eig) of the unity matrix (eye)):

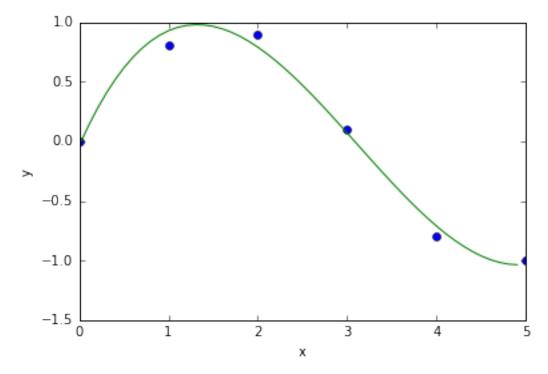
```
In [20]: import numpy
         import numpy.linalg as LA
         A = \text{numpy.eye}(3)  #'eye'->I->1 (ones on the diagonal)
         print(A)
[[ 1. 0. 0.]
[ 0.
       1. 0.1
 [ 0. 0.
           1.]]
In [21]: evalues, evectors = LA.eig(A)
        print(evalues)
[ 1. 1. 1.]
In [22]: print(evectors)
     0. 0.]
[[1.
 [ 0.
       1. 0.]
 [ 0.
       0.
           1.]]
```

Note that each of these commands provides its own documentation. For example, help(LA.eig) will tell you all about the eigenvector and eigenvalue function (once you have imported numpy.linalg as LA).

Curve fitting of polynomials Let's assume we have x-y data to which we like to fit a curve (to minimise the least square deviation of the fit from the data).

Numpy provides the routine polyfit(x,y,n) (which is similar to Matlab's polyfit function which takes a list x of x-values for data points, a list y of y-values of the same data points and a desired order of the polynomial that will be determined to fit the data in the least-square sense as well as possible.

```
# create plot
         xs = [0.1 * i for i in range (50)]
                                      # evaluate p(x) for all x in list xs
         ys = [p (x) for x in xs]
         import pylab
         pylab.plot(xdata, ydata, 'o', label='data')
         pylab.plot(xs, ys, label='fitted curve')
         pylab.ylabel('y')
         pylab.xlabel('x')
Out[23]: <matplotlib.text.Text at 0x10e616908>
```



This shows the fitted curve (solid line) together with the precise computed data points.

14.1.5 More numpy examples...

...can be found here: http://www.scipy.org/Numpy_Example_List

14.1.6 Numpy for Matlab users

There is a dedicated webpage that explains Numpy from the perspective of a (experienced) Matlab user at https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html.

Visualising Data 15

The purpose of scientific computation is insight not numbers: To understand the meaning of the (many) numbers we compute, we often need postprocessing, statistical analysis and graphical visualisation of our data. The following sections describe

- Matplotlib/Pylab which allows us to generate high quality graphs of the type y = f(x) (and a bit more)
- Visual Python which is a very handy tool to quickly generate animations of time dependent processes taking place in 3d space.

15.1 Matplotlib (Pylab) – plotting y=f(x), (and a bit more)

The Python library *Matplotlib* is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments. Matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc, with just a few lines of code.

For more detailed information, check these links

- A very nice introduction in the object oriented Matplotlib interface, and summary of all important ways of changing style, figure size, linewidth, etc. This is a useful reference: http://nbviewer.ipython.org/urls/raw.github.com/jrjohansson/scientific-python-lectures/master/Lecture-4-Matplotlib.ipynb
- Matplotlib tutorial
- Matplotlib home page
- List of simple screenshot examples http://matplotlib.sourceforge.net/users/screenshots.html
- Extended thumbnail gallery of examples http://matplotlib.sourceforge.net/gallery.html

15.1.1 Matplotlib and Pylab

Matplotlib as *an object oriented plotting library*. Pylab is an interface to the same set of functions that imitates the (state-driven) Matlab plotting interface.

Pylab is slightly more convenient to use for easy plots, and Matplotlib gives far more detailed control over how plots are created. If you use Matplotlib routinely to produce figures, you are well advised to learn about the object oriented matplotlib interface (instead of the pylab interface).

This chapter focusses on the Pylab interface.

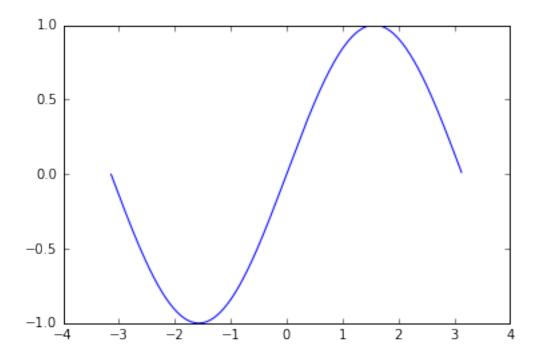
An excellent introduction and overview of the Matplotlib plotting interface is available in http://nbviewer.ipython.org/urls/raw.github.com/jrjohansson/scientific-python-lectures/master/Lecture-4-Matplotlib.ipynb.

15.1.2 First example

The recommended way of using Matplotlib in a simple example is shown here (let's call this example 1a):

```
y = np.sin(x)  # compute y - data
plt.plot(x, y)  # create plot
```

Out[2]: [<matplotlib.lines.Line2D at 0x10e751d68>]



15.1.3 How to import matplotlib, pylab, pyplot, numpy and all that

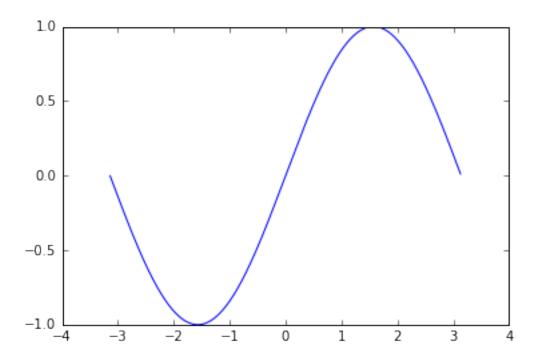
The submodule matplotlib.pyplot provides an object oriented interface to the plotting library. Many of the examples in the matplotlib documentation follow the import convention to import matplotlib.pyplot as plt and numpy as np. It is of course entirely the user's decision whether to import the numpy library under the name np (as often done in matplotlib examples) or N as done in this text (and in the early days when the predecessor of numpy was called "Numeric") or any other name you like. Similarly, it is a matter of taste whether the plotting submodule (matplotlib.pyplot) is imported as plt as is done in the matplotlib documentation or plot (which could be argued is slightly clearer) etc.

As always a balance has to be struck between personal preferences and consistency with common practice in choosing these name. Consistency with common use is of course more important if the code is likely to be used by others or published.

Plotting nearly always needs arrays of numerical data and it is for this reason that the numpy module is used a lot: it provides fast and memory efficient array handling for Python (see Section 14).

We could thus also have written the example 1a above as in example 1b (which is identical in functionality to the example above and will create the same plot):

```
y = N.sin(x)
pylab.plot(x, y)
Out[3]: [<matplotlib.lines.Line2D at 0x10ec7b5c0>]
```



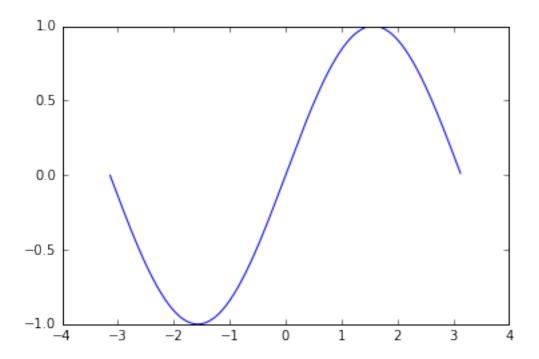
Because the numpy.arange and numpy.sin objects have already been imported into the (convenience) pylab namespace, we could also write it as example 1c:

```
In [4]: #example 1c
    import pylab as p

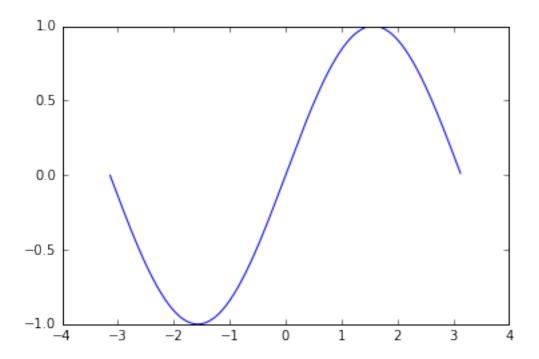
    x = p.arange(-3.14, 3.14, 0.01)
    y = p.sin(x)

    p.plot(x, y)

Out[4]: [<matplotlib.lines.Line2D at 0x10ed7e4a8>]
```



If we really want to cut down on characters to type, we could also important the whole functionality from the pylab convenience module, and rewrite the code as example 1d:



This can be extremely convenient, but comes with a big health warning:

- While using from pylab import * is acceptable at the command prompt to interactively create plots and analyse data, this should never be used in any plotting scripts.
- The pylab toplevel provides over 800 different objects which are all imported into the global name space when running from pylab import *. This is not good practice, and could conflict with other objects that exist already or are created later.
- As a rule of thumb: do never use from somewhere import * in programs we save. This may be okay at the command prompt.

In the following examples, we usually use the pylab interface to the plotting routines but this is purely a matter of taste and habit and by no means the only way (note that the Matplotlib authors recommend the import style as in example 1a, see also this Matplot FAQ entry: Matplotlib, pylab, and pyplot: how are they related?)

15.1.4 IPython's inline mode

Within the Jupyter Notebook or Qtconsole (see the Section 11) we can use the <code>%matplotlib</code> inline magic command to make further plots appear within our console or notebook. To force pop up windows instead, use <code>%matplotlib</code> qt.

There is also the %pylab magic, which will not only switch to inline plotting but also automatically execute from pylab import *.

15.1.5 Saving the figure to a file

Once you have created the figure (using the plot command) and added any labels, legends etc, you have two options to save the plot.

- 1. You can display the figure (using show) and *interactively* save it by clicking on the disk icon.
- 2. You can (without displaying the figure) save it directly from your Python code. The command to use is savefig. The format is determined by the extension of the file name you provide. Here is an example (pylabsavefig.py) which saves the plot shown in Figure [fig:pylab1

```
In [6]: import pylab
    import numpy as N

x = N.arange(-3.14, 3.14, 0.01)
y = N.sin(x)

pylab.plot(x, y, label='sin(x)')
pylab.savefig('myplot.png') # saves png file
pylab.savefig('myplot.eps') # saves eps file
pylab.savefig('myplot.pdf') # saves pdf file
pylab.close()
```

A note on file formats: Choose the png file format if you plan to include your graph in a word document or on a webpage. Choose the eps or pdf file format if you plan to include the figure in a Latex document – depending on whether you want to compile it using latex (needs eps) or pdflatex (can use pdf [better] or png). If the version of MS Word (or other text processing software you use) can handle pdf files, it is better to use pdf than png.

Both pdf and eps are vector file formats which means that one can zoom into the image without loosing quality (lines will still be sharp). File formats such as png (and jpg, gif, tif, bmp) save the image in form of a bitmap (i.e. a matrix of colour values) and will appear blurry or pixelated when zooming in (or when printed in high resolution).

15.1.6 Interactive mode

Matplotlib can be run in two modes:

- non-interactive (this is the default)
- interactive.

In non-interactive mode, no plots will be displayed until the <code>show()</code> command has been issued. In this mode, the <code>show()</code> command should be the last statement of your program.

In interactive mode, plots will be immediately displayed after the plot command has been issued. One can switch the interactive mode on using pylab.ion() and off using pylab.ioff(). IPython's %matplotlib magic also enables interactive mode.

15.1.7 Fine tuning your plot

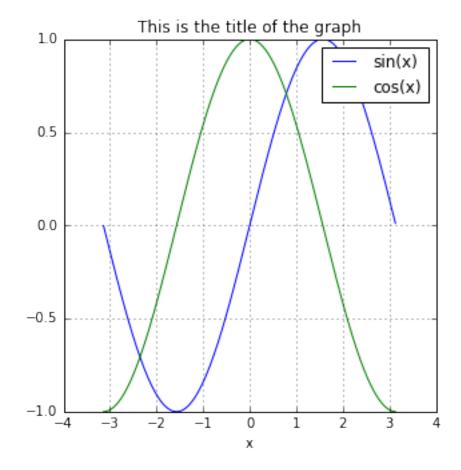
Matplotlib allows us to fine tune our plots in great detail. Here is an example:

```
In [7]: import pylab
    import numpy as N

x = N.arange(-3.14, 3.14, 0.01)
    y1 = N.sin(x)
    y2 = N.cos(x)
```

```
pylab.figure(figsize = (5 , 5))
pylab.plot(x, y1, label='sin(x)')
pylab.plot(x, y2, label='cos(x)')
pylab.legend()
pylab.grid()
pylab.xlabel('x')
pylab.title('This is the title of the graph')
```

Out[7]: <matplotlib.text.Text at 0x10f445400>



showing some other useful commands:

- figure (figsize=(5,5)) sets the figure size to 5inch by 5inch
- plot (x, y1, label=' sin(x)') The "label" keyword defines the name of this line. The line label will be shown in the legend if the legend() command is used later.
- Note that calling the plot command repeatedly, allows you to overlay a number of curves.
- axis([-2,2,-1,1]) This fixes the displayed area to go from xmin=-2 to xmax=2 in x-direction, and from ymin=-1 to ymax=1 in y-direction
- legend() This command will display a legend with the labels as defined in the plot command. Try help(pylab.legend) to learn more about the placement of the legend.

- grid() This command will display a grid on the backdrop.
- xlabel('...') and ylabel('...') allow labelling the axes.

Note further than you can chose different line styles, line thicknesses, symbols and colours for the data to be plotted. (The syntax is very similar to MATLAB.) For example:

- plot (x, y, 'og') will plot circles (o) in green (g)
- plot (x, y, '-r') will plot a line (-) in red (r)
- plot (x, y, '-b', linewidth=2) will plot a blue line (b) with two two pixel thickness linewidth=2 which is twice as wide as the default.

The full list of options can be found when typing help(pylab.plot) at the Python prompt. Because this documentation is so useful, we repeat parts of it here:

```
plot(*args, **kwargs)
  Plot lines and/or markers to the
  :class:`~matplotlib.axes.Axes`. *args* is a variable length
  argument, allowing for multiple *x*, *y* pairs with an
  optional format string. For example, each of the following is
  legal::

    plot(x, y)  # plot x and y using default line style and color
    plot(x, y, 'bo')  # plot x and y using blue circle markers
    plot(y)  # plot y using x as index array 0..N-1
    plot(y, 'r+')  # ditto, but with red plusses

If *x* and/or *y* is 2-dimensional, then the corresponding columns
  will be plotted.

An arbitrary number of *x*, *y*, *fmt* groups can be
  specified, as in::
    a.plot(x1, y1, 'g^', x2, y2, 'g-')

Return value is a list of lines that were added.
```

The following format string characters are accepted to control the line style or marker:

```
==========
              _____
character
             description
______
1 _ 1
              solid line style
1 __ 1
             dashed line style
            dash-dot line style
'-.'
1:1
              dotted line style
1.1
              point marker
','
              pixel marker
'0'
              circle marker
```

' _V '	triangle_down marker
1 ^ 1	triangle_up marker
'<'	triangle_left marker
'>'	triangle_right marker
111	tri_down marker
121	tri_up marker
131	tri_left marker
141	_
	tri_right marker
's'	square marker
'p'	pentagon marker
' * '	star marker
'h'	hexagon1 marker
'H'	hexagon2 marker
'+'	plus marker
' _X '	x marker
'D'	diamond marker
'd'	thin_diamond marker
' '	vline marker
1_1	hline marker
=========	

The following color abbreviations are supported:

=======	======
character	color
=======	======
'b'	blue
' g'	green
'r'	red
'c'	cyan
'm'	magenta
'y'	yellow
'k'	black
'w'	white
========	=======

In addition, you can specify colors in many weird and wonderful ways, including full names (``'green'``), hex strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or grayscale intensities as a string (``'0.8'``). Of these, the string specifications can be used in place of a ``fmt`` group, but the tuple forms can be used only as ``kwargs``.

Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles.

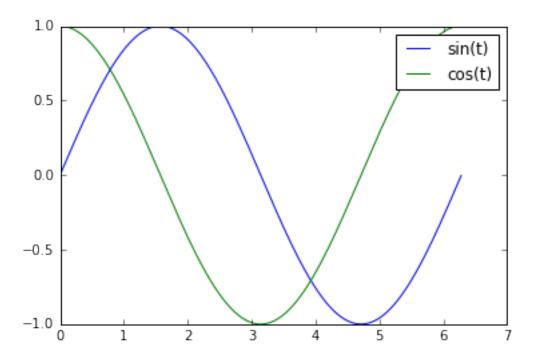
The *kwargs* can be used to set line properties (any property that has a ``set_*`` method). You can use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an example::

The use of different line styles and thicknesses is particularly useful when colour cannot be used to distinguish lines (for example when graph will be used in document that is to be printed in black and white only).

15.1.8 Plotting more than one curve

There are three different methods to display more than one curve.

Two (or more) curves in one graph By calling the plot command repeatedly, more than one curve can be drawn in the same graph. Example:



Two (or more graphs) in one figure window The pylab.subplot command allows to arrange several graphs within one figure window. The general syntax is

```
subplot(numRows, numCols, plotNum)
```

For example, to arrange 4 graphs in a 2-by-2 matrix, and to select the first graph for the next plot command, one can use:

```
subplot(2, 2, 1)
```

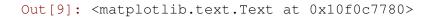
Here is a complete example plotting the sine and cosine curves in two graphs that are aligned underneath each other within the same window:

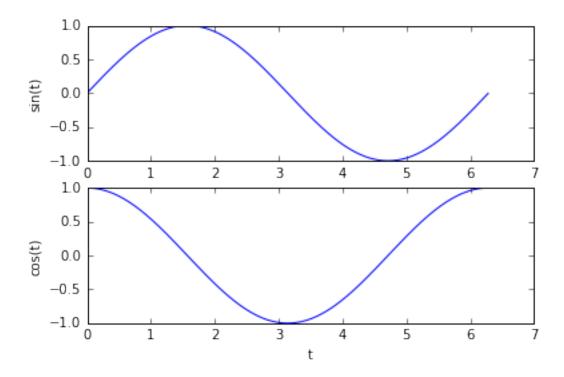
```
In [9]: import numpy as N
    t = N.arange (0 , 2 * N . pi , 0.01)

import pylab

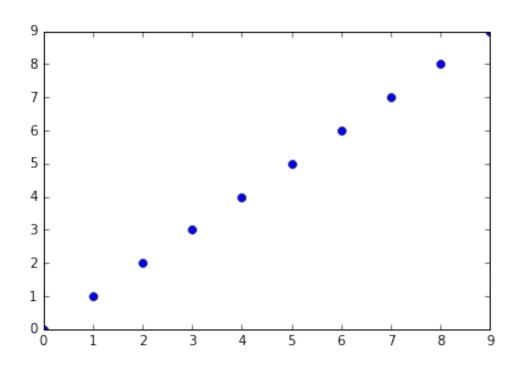
pylab.subplot(2, 1, 1)
    pylab.plot(t, N.sin(t))
    pylab.xlabel('t')
    pylab.ylabel('sin(t)')

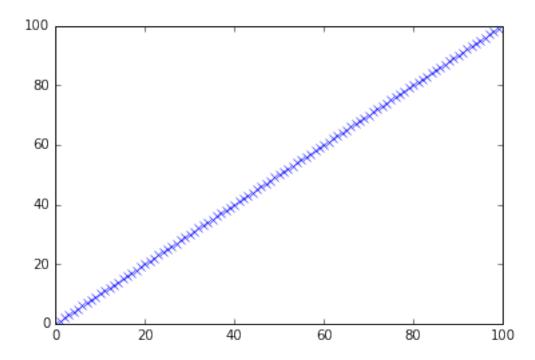
pylab.subplot(2, 1, 2)
    pylab.plot(t, N.cos(t))
    pylab.xlabel('t')
    pylab.ylabel('cos(t)')
```





Two (or more) figure windows



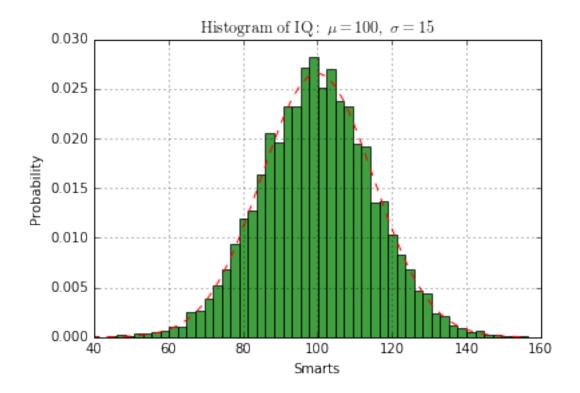


Note that you can use <code>pylab.close()</code> to close one, some or all figure windows (use <code>help(pylab.close)</code> to learn more).

15.1.9 Histograms

The program below demonstrates how to create histograms from stastical data in Matplotlib. The resulting plot is show in figure

```
In [11]: #modified version of
         #http://matplotlib.sourceforge.net/plot_directive/mpl_examples/...
                                           /pylab_examples/histogram_demo.py
         import numpy as np
         import matplotlib.mlab as mlab
         import matplotlib.pyplot as plt
         # create data
         mu, sigma = 100, 15
         x = mu + sigma * np.random.randn(10000)
         # histogram of the data
         n, bins, patches = plt.hist(x, 50, normed=1,
                                     facecolor='green', alpha=0.75)
         #some finetuning of plot
         plt.xlabel('Smarts')
         plt.ylabel('Probability')
         #Can use Latex strings for labels and titles:
         plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
         plt.axis([40, 160, 0, 0.03])
         plt.grid(True)
         # add a 'best fit' line
         y = mlab.normpdf(bins, mu, sigma)
         l = plt.plot(bins, y, 'r--', linewidth=1)
         #save to file
         plt.savefig('pylabhistogram.pdf')
```



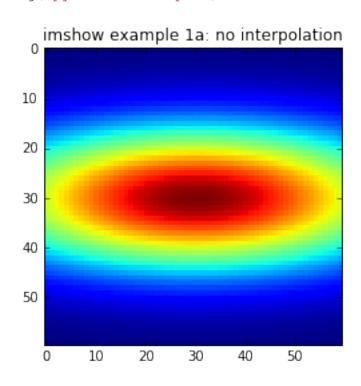
Do not try to understand every single command in this file: some are rather specialised and have not been covered in this text. The intention is to provide a few examples to show what can - in principle - be done with Matplotlib. If you need a plot like this, the expectation is that you will need to experiment and possibly learn a bit more about Matplotlib.

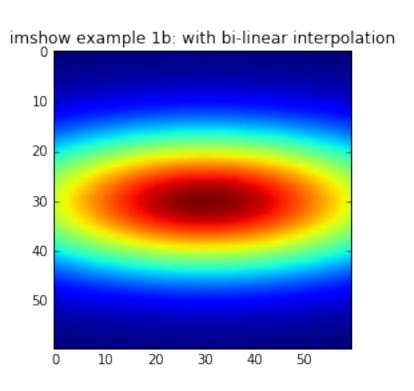
15.1.10 Visualising matrix data

The program below demonstrates how to create a bitmap-plot of the entries of a matrix.

```
In [12]: import numpy as np
         import matplotlib.mlab as mlab
                                            # Matlab compatibility commands
         import matplotlib.pyplot as plt
         #create matrix Z that contains some interesting data
         delta = 0.1
         x = y = np.arange(-3.0, 3.0, delta)
         X, Y = np.meshgrid(x, y)
         Z = mlab.bivariate_normal(X, Y, 3.0, 1.0, 0.0, 0.0)
         #display the 'raw' matrix data of Z in one figure
         plt.figure(1)
         plt.imshow(Z, interpolation='nearest')
         plt.title("imshow example 1a: no interpolation")
         plt.savefig("pylabimshowla.pdf")
         #display the data interpolated in other figure
         plt.figure(2)
```

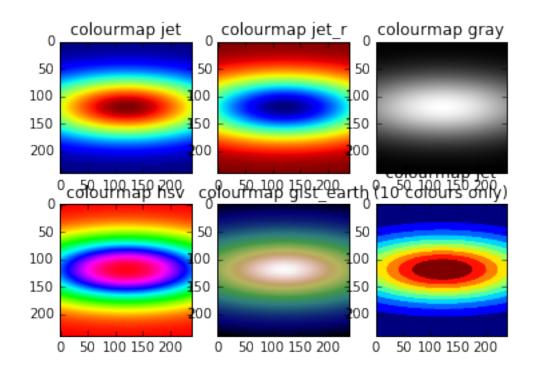
im = plt.imshow(Z, interpolation='bilinear')
plt.title("imshow example 1b: with bi-linear interpolation")
plt.savefig("pylabimshow1b.pdf")





To use different colourmaps, we make use of the matplotlib.cm module (where cm stands for Colour Map). The code below demonstrates how we can select colourmaps from the set of already provided maps, and how we can modify them (here by reducing the number of colours in the map). The last example mimics the behaviour of the more sophisticated contour command that also comes with matplotlib.

```
In [13]: import numpy as np
         import matplotlib.mlab as mlab
                                          # Matlab compatibility commands
         import matplotlib.pyplot as plt
         import matplotlib.cm as cm
                                          # Colour map submodule
         #create matrix Z that contains some data interesting data
         delta = 0.025
         x = y = np.arange(-3.0, 3.0, delta)
         X, Y = np.meshgrid(x, y)
         Z = mlab.bivariate_normal(X, Y, 3.0, 1.0, 0.0, 0.0)
         Nx, Ny = 2, 3
         plt.subplot(Nx, Ny, 1)
                                # next plot will be shown in
                                 # first subplot in Nx x Ny
                                 # matrix of subplots
         plt.imshow(Z, cmap=cm.jet) # default colourmap 'jet'
         plt.title("colourmap jet")
         plt.subplot(Nx, Ny, 2) # next plot for second subplot
         plt.imshow(Z, cmap=cm.jet_r) # reverse colours in jet
         plt.title("colourmap jet_r")
        plt.subplot(Nx, Ny, 3)
         plt.imshow(Z, cmap=cm.gray)
         plt.title("colourmap gray")
         plt.subplot(Nx, Ny, 4)
         plt.imshow(Z, cmap=cm.hsv)
         plt.title("colourmap hsv")
         plt.subplot(Nx, Ny, 5)
         plt.imshow(Z, cmap=cm.gist_earth)
         plt.title("colourmap gist_earth")
         plt.subplot(Nx, Ny, 6)
         #make isolines by reducing number of colours to 10
         mycmap = cm.get_cmap('jet', 10)
                                           # 10 discrete colors
         plt.imshow(Z, cmap=mycmap)
         plt.title("colourmap jet\n(10 colours only)")
         plt.savefig("pylabimshowcm.pdf")
```



15.1.11 Plots of z = f(x, y) and other features of Matplotlib

Matplotlib has a large number of features and can create all the standard (1d and 2d) plots such as histograms, pie charts, scatter plots, 2d-intensity plots (i.e. z = f(x, y)) and contour lines) and much more. Figure [fig:pylabcontour_demo] shows such an example (the contour_demo.py program is a standard example of the pylab package). This link provides source code to produce this kind of plot: contour_demo.py

Other examples are

- http://matplotlib.org/users/screenshots.html
- http://matplotlib.org/gallery.html
- Recently, creation of 3d-plots has been added to pylab: http://matplotlib.org/examples/mplot3d/index.html#mplot3d-examples

15.2 Visual Python

Visual Python is a Python module that makes it fairly easy to create and animate three-dimensional scenes.

Further information:

- The Visual Python home page
- The Visual Python documentation (explaining all objects with all their parameters)

Short videos introducing Visual Python:

- Shawn Weatherford, Jeff Polak (students of Ruth Chabay): http://www.youtube.com/vpythonvideos
- Eric Thompson: http://showmedo.com/videotutorials/series?name=pythonThompsonVPythonSeries

15.2.1 Basics, rotating and zooming

Here is an example showing how to create a red and a blue sphere at two different positions together with a flat box (vpythondemol.py):

```
import visual
sphere1 = visual.sphere(pos=[0, 0, 0], color=visual.color.blue)
sphere2 = visual.sphere(pos=[5, 0, 0], color=visual.color.red, radius=2)
base = visual.box(pos=(0, -2, 0), length=8, height=0.1, width=10)
```

Once you have created such a visual python scene, you can

- rotate the scene by pressing the right mouse button and moving the mouse
- zoom in and out by pressing the middle mouse button (this could be the wheel) and moving the mouse up and down. (On some (Windows?) installations, one has to press the left and the right mouse button simultaneously and then move the move the mouse up and down to zoom.)

15.2.2 Setting the frame rate for animations

A particular strength of Visual Python is its ability to display time-dependent data:

• A very useful command is the rate() command which ensures that a loop is only executed at a certain frame rate. Here is an example printing exactly two "Hello World"s per second (vpythondemo2.py):

```
import visual

for i in range(10):
    visual.rate(2)
    print("Hello World (0.5 seconds per line)")
```

• All Visual Python objects (such as the spheres and the box in the example above) have a .pos attribute which contains the position (of the centre of the object [sphere,box] or one end of the object [cylinder,helix]). Here is an example showing a sphere moving up and down (vpythondemo3.py):

```
import visual, math

ball = visual.sphere()
box = visual.box( pos=[0,-1,0], width=4, length=4, height=0.5 )

#tell visual not to automatically scale the image
visual.scene.autoscale = False

for i in range(1000):
    t = i*0.1
    y = math.sin(t)

    #update the ball's position
    ball.pos = [0, y, 0]

#ensure we have only 24 frames per second
visual.rate(24)
```

15.2.3 Tracking trajectories

You can track the trajectory of an object using a "curve". The basic idea is to append positions to that curve object as demonstrated in this example (vpythondemo4.py):

```
import visual, math

ball = visual.sphere()
box = visual.box( pos=[0,-1,0], width=4, length=4, height=0.5 )
trace=visual.curve( radius=0.2, color=visual.color.green)

for i in range(1000):
    t = i*0.1
    y = math.sin(t)

    #update the ball's position
    ball.pos = [t, y, 0]

    trace.append( ball.pos )

#ensure we have only 24 frames per second
    visual.rate(24)
```

As with most visual Python objects, you can specify the colour of the curve (also per appended element!) and the radius.

15.2.4 Connecting objects (Cylinders, springs, ...)

Cylinders and helices can be used to "connect" two objects. In addition to the pos attribute (which stores the position of one end of the object), there is also an axis attribute which stores the vector pointing from pos to the other end of the object. Here is an example showing this for a cylinder: (vpythondemo5py):

15.2.5 3d vision

If you have access to "anaglyphic" (*i.e.* colored) glasses (best red-cyan but red-green or red-blue works as well), then you can switch visual python into this stereo mode by adding these two lines to

the beginning of your program:

```
visual.scene.stereo='redcyan'
visual.scene.stereodepth=1
```

Note the effect of the stereodepth parameter:

- stereodepth=0: 3d scene "inside" the screen (default)
- stereodepth=1: 3d scene at screen surface (this often looks best)
- stereodepth=2: 3d scene sticking out of the screen

15.3 Visualising higher dimensional data

Often, we need to understand data defined at 3d positions in space. The data itself is often a scalar field (such as temperature) or a 3d vector (such as velocity or magnetic field), or occasionally a tensor. For example for a 3d-vector field f defined in 3d-space ($\vec{f}(\vec{x})$) where $\vec{x} \in \mathbb{R}^3$ and $\vec{f}(\vec{x}) \in \mathbb{R}^3$) we could draw a 3d-arrow at every (grid) point in space. It is common for these data sets to be time dependent.

The probably most commonly used library in Science and Engineering to visualise such data sets is probably VTK, the Visualisation ToolKit (http://vtk.org). This is a substantial C++ library with interfaces to high level languages, including Python.

One can either call these routines directly from Python code, or write the data to disk in a format that the VTK library can read (so called vtk data files), and then use stand-alone programme such as Mayavi, ParaView and VisIt to read these data files and manipulate them (ofter with a GUI). All three of these are using the VTK library internally, and can read vtk data files.

These package is very well suited to visualise static and timedependent 2d and 3d-fields (scalar, vector and tensor fields). Two examples are shown below.

They can be used as a stand-alone executables with a GUI to visualise VTK files. It can also be scripted from a Python program, or used interactively from a Python session.

15.3.1 Mayavi, Paraview, Visit

- Mayavi Home page http://code.enthought.com/projects/mayavi/
- Paraview Home page http://paraview.org
- VisIt Home page https://wci.llnl.gov/simulation/computer-codes/visit/

Two examples from MayaVi visualisations.

15.3.2 Writing vtk files from Python (pyvtk)

A small but powerful Python library is pyvtk available at https://code.google.com/p/pyvtk/. This allows to create vtk files from Python data structures very easily.

Given a finite element mesh or a finite difference data set in Python, one can use pyvtk to write such data into files, and then use one of the visualisation applications listed above to load the vtk files and to display and investigate them.

```
In [ ]:
```

16 Numerical Methods using Python (scipy)

16.1 Overview

The core Python language (including the standard libraries) provide enough functionality to carry out computational research tasks. However, there are dedicated (third-party) Python libraries that provide extended functionality which

- provide numerical tools for frequently occurring tasks
- · which are convenient to use
- and are more efficient in terms of CPU time and memory requirements than using the code Python functionality alone.

We list three such modules in particular:

- The numpy module provides a data type specialised for "number crunching" of vectors and matrices (this is the array type provided by "numpy" as introduced in Section 14), and linear algebra tools.
- The matplotlib package (also knows as pylab) provides plotting and visualisation capabilities (see Section 15) and the
- scipy package (SCIentific PYthon) which provides a multitude of numerical algorithms and which is introduced in this chapter.

Many of the numerical algorithms available through scipy and numpy are provided by established compiled libraries which are often written in Fortran or C. They will thus execute much faster than pure Python code (which is interpreted). As a rule of thumb, we expect compiled code to be two orders of magnitude faster than pure Python code.

You can use the help function for each numerical method to find out more about the source of the implementation.

16.2 SciPy

Scipy is built on numpy. All functionality from numpy seems to be available in scipy as well. For example, instead of

```
In [1]: import numpy
    x = numpy.arange(0, 10, 0.1)
    y = numpy.sin(x)
```

we can therefor also use

First we need to import scipy:

```
In [3]: import scipy
```

The scipy package provides information about its own structure when we use the help command:

```
help(scipy)
```

stats

The output is very long, so we're showing just a part of it here:

--- Statistical Functions [*]

sparse --- Sparse matrix [*]

```
lib
          --- Python wrappers to external libraries [*]
          --- Linear algebra routines [*]
linalg
signal
          --- Signal Processing Tools [*]
misc
          --- Various utilities that don't have another home.
interpolate --- Interpolation Tools [*]
optimize --- Optimization Tools [*]
cluster
          --- Vector Quantization / Kmeans [*]
fftpack
          --- Discrete Fourier Transform algorithms [*]
          --- Data input and output [*]
integrate   --- Integration routines [*]
lib.lapack --- Wrappers to LAPACK library [*]
         --- Special Functions [*]
special
lib.blas --- Wrappers to BLAS library [*]
  [*] - using a package requires explicit import (see pkgload)
  If we are looking for an algorithm to integrate a function, we might explore the integrate
package:
import scipy.integrate
scipy.integrate?
  produces:
______
Integration and ODEs (:mod:`scipy.integrate`)
______
.. currentmodule:: scipy.integrate
Integrating functions, given function object
______
.. autosummary::
  :toctree: generated/
  quad
               -- General purpose integration
              -- General purpose double integration
  dblquad
  tplquad
              -- General purpose triple integration
  nquad
               -- General purpose n-dimensional integration
  fixed_quad -- Integrate func(x) using Gaussian quadrature of order n
  quadrature
              -- Integrate with given tolerance using Gaussian quadrature
              -- Integrate func using Romberg integration
  romberg
  quad_explain -- Print information for use of quad
  newton_cotes -- Weights and error coefficient for Newton-Cotes integration
```

IntegrationWarning -- Warning on issues during integration

```
Integrating functions, given fixed samples
```

.. autosummary::

```
:toctree: generated/
                -- Use trapezoidal rule to compute integral.
  trapz
                -- Use trapezoidal rule to cumulatively compute integral.
   cumtrapz
                -- Use Simpson's rule to compute integral from samples.
   simps
                -- Use Romberg Integration to compute integral from
   romb
                -- (2**k + 1) evenly-spaced samples.
.. seealso::
   :mod:`scipy.special` for orthogonal polynomials (special) for Gaussian
   quadrature roots and weights for other weighting factors and regions.
Integrators of ODE systems
_____
.. autosummary::
   :toctree: generated/
  odeint.
                -- General integration of ordinary differential equations.
   ode
                -- Integrate ODE using VODE and ZVODE routines.
```

The following sections show examples which demonstrate how to employ the algorithms provided by scipy.

-- Convert a complex-valued ODE to real-valued and integrate.

16.3 Numerical integration

complex_ode

Scientific Python provides a number of integration routines. A general purpose tool to solve integrals *I* of the kind

$$I = \int_{a}^{b} f(x) \mathrm{d}x$$

is provided by the quad() function of the scipy.integrate module.

It takes as input arguments the function f(x) to be integrated (the "integrand"), and the lower and upper limits a and b. It returns two values (in a tuple): the first one is the computed results and the second one is an estimation of the numerical error of that result.

Here is an example: which produces this output:

```
In [4]: from math import cos, exp, pi
    from scipy.integrate import quad
# function we want to integrate
def f(x):
```

Note that quad() takes optional parameters epsabs and epsrel to increase or decrease the accuracy of its computation. (Use help(quad) to learn more.) The default values are epsabs=1.5e-8 and epsrel=1.5e-8. For the next exercise, the default values are sufficient.

16.3.1 Exercise: integrate a function

- 1. Using scipy's quad function, write a program that solves the following integral numerically: $I = \int_0^1 \cos(2\pi x) dx$.
- 2. Find the analytical integral and compare it with the numerical solution.
- 3. Why is it important to have an estimate of the accuracy (or the error) of the numerical integral?

16.3.2 Exercise: plot before you integrate

It is good practice to plot the integrand function to check whether it is "well behaved" before you attempt to integrate. Singularities (i.e. x values where the f(x) tends towards minus or plus infinity) or other irregular behaviour (such as $f(x) = \sin(\frac{1}{x})$ close to x = 0 are difficult to handle numerically.

- 1. Write a function with name plotquad which takes the same arguments as the quad command (i.e. f, a and b) and which
- (i) creates a plot of the integrand f(x) and
- (ii) computes the integral numerically using the quad function. The return values should be as for the quad function.

16.4 Solving ordinary differential equations

To solve an ordinary differential equation of the type

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y,t)$$

with a given $y(t_0) = y_0$, we can use scipy's odeint function. Here is a (self explaining) example program (useodeint.py) to find

$$y(t)$$
 for $t \in [0, 2]$

given this differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = -2yt \quad \text{with} \quad y(0) = 1.$$

```
In [5]: %matplotlib inline
        from scipy.integrate import odeint
        import numpy as N
        def f(y, t):
            """this is the rhs of the ODE to integrate, i.e. dy/dt=f(y,t)"""
            return -2 * y * t
        y0 = 1
                            # initial value
        a = 0
                            # integration limits for t
        b = 2
        t = N.arange(a, b, 0.01)
                                    # values of t for
                                    # which we require
                                    # the solution y(t)
        y = odeint(f, y0, t)
                               # actual computation of y(t)
        import pylab
                               # plotting of results
        pylab.plot(t, y)
        pylab.xlabel('t'); pylab.ylabel('y(t)')
Out[5]: <matplotlib.text.Text at 0x10cad9320>
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0 L
0.0
```

The odeint command takes a number of optional parameters to change the default error tolerance of the integration (and to trigger the production of extra debugging output). Use the help command to explore these:

1.0

t

1.5

2.0

0.5

```
help(scipy.integrate.odeint)
```

will show:

```
Help on function odeint in module scipy.integrate.odepack:
odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=
    Integrate a system of ordinary differential equations.
    Solve a system of ordinary differential equations using lsoda from the
    FORTRAN library odepack.
    Solves the initial value problem for stiff or non-stiff systems
    of first order ode-s::
        dy/dt = func(y, t0, ...)
    where y can be a vector.
    *Note*: The first two arguments of ``func(y, t0, ...)`` are in the
    opposite order of the arguments in the system definition function used
    by the `scipy.integrate.ode` class.
    Parameters
    _____
    func : callable(y, t0, ...)
        Computes the derivative of y at t0.
   y0 : array
        Initial condition on y (can be a vector).
    t : array
        A sequence of time points for which to solve for y. The initial
        value point should be the first element of this sequence.
    args : tuple, optional
        Extra arguments to pass to function.
    Dfun : callable(y, t0, ...)
        Gradient (Jacobian) of `func`.
    col_deriv : bool, optional
        True if `Dfun` defines derivatives down columns (faster),
        otherwise `Dfun` should define derivatives across rows.
    full_output : bool, optional
        True if to return a dictionary of optional outputs as the second output
    printmessg : bool, optional
        Whether to print the convergence message
    Returns
    y : array, shape (len(t), len(y0))
        Array containing the value of y for each desired time in t,
        with the initial value `y0` in the first row.
    infodict : dict, only returned if full_output == True
        Dictionary containing additional output information
```

```
key
       meaning
        vector of step sizes successfully used for each time step.
        vector with the value of t reached for each time step.
'tcur'
        (will always be at least as large as the input times).
        vector of tolerance scale factors, greater than 1.0,
'tolsf'
        computed when a request for too much accuracy was detected.
'tsw'
        value of t at the time of the last method switch
        (given for each time step)
'nst'
        cumulative number of time steps
'nfe'
        cumulative number of function evaluations for each time step
        cumulative number of jacobian evaluations for each time step
'nje'
'nqu'
        a vector of method orders for each successful step.
        index of the component of largest magnitude in the
        weighted local error vector (e / ewt) on an error return, -1
        otherwise.
'lenrw'
        the length of the double work array required.
'leniw' the length of integer work array required.
'mused' a vector of method indicators for each successful time step:
       1: adams (nonstiff), 2: bdf (stiff)
_____
```

Other Parameters

ml, mu : int, optional

If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, 'Dfun' should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix 'jac' from 'Dfun' should have shape ''(ml + mu + 1, len(y0))' when ''ml >=0' or ''mu >=0''. The data in 'jac' must be stored such that ''jac[i - j + mu, j]' holds the derivative of the 'i'th equation with respect to the 'j'th state variable. If 'col_deriv' is True, the transpose of this 'jac' must be returned.

rtol, atol : float, optional

The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``.

rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8.

tcrit : ndarray, optional

Vector of critical points (e.g. singularities) where integration care should be taken.

h0 : float, (0: solver-determined), optional

```
The step size to be attempted on the first step.
hmax : float, (0: solver-determined), optional
    The maximum absolute step size allowed.
hmin: float, (0: solver-determined), optional
    The minimum absolute step size allowed.
ixpr : bool, optional
    Whether to generate extra printing at method switches.
mxstep : int, (0: solver-determined), optional
   Maximum number of (internally defined) steps allowed for each
    integration point in t.
mxhnil: int, (0: solver-determined), optional
    Maximum number of messages printed.
mxordn : int, (0: solver-determined), optional
   Maximum order to be allowed for the non-stiff (Adams) method.
mxords : int, (0: solver-determined), optional
    Maximum order to be allowed for the stiff (BDF) method.
See Also
ode : a more object-oriented integrator based on VODE.
quad : for finding the area under a curve.
Examples
The second order differential equation for the angle `theta` of a
pendulum acted on by gravity with friction can be written::
    theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0
where `b` and `c` are positive constants, and a prime (') denotes a
derivative. To solve this equation with `odeint`, we must first convert
it to a system of first order equations. By defining the angular
velocity ``omega(t) = theta'(t)``, we obtain the system::
    theta'(t) = omega(t)
    omega'(t) = -b*omega(t) - c*sin(theta(t))
Let `y` be the vector [`theta`, `omega`]. We implement this system
in python as:
>>> def pend(y, t, b, c):
       theta, omega = y
       dydt = [omega, -b*omega - c*np.sin(theta)]
       return dydt
. . .
We assume the constants are \dot{b} = 0.25 and \dot{c} = 5.0:
>>> b = 0.25
>>> c = 5.0
```

```
For initial conditions, we assume the pendulum is nearly vertical
with `theta(0)` = \dot{p}i` - 0.1, and it initially at rest, so
omega(0) = 0. Then the vector of initial conditions is
>>> y0 = [np.pi - 0.1, 0.0]
We generate a solution 101 evenly spaced samples in the interval
0 <= `t` <= 10. So our array of times is:</pre>
>>> t = np.linspace(0, 10, 101)
Call `odeint` to generate the solution. To pass the parameters
`b` and `c` to `pend`, we give them to `odeint` using the `args`
argument.
>>> from scipy.integrate import odeint
>>> sol = odeint(pend, y0, t, args=(b, c))
The solution is an array with shape (101, 2). The first column
is `theta(t)`, and the second is `omega(t)`. The following code
plots both components.
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, sol[:, 0], 'b', label='theta(t)')
>>> plt.plot(t, sol[:, 1], 'g', label='omega(t)')
>>> plt.legend(loc='best')
>>> plt.xlabel('t')
```

16.4.1 Exercise: using odeint

>>> plt.grid()
>>> plt.show()

- 1. Open a new file with name testodeint.py file in a text editor.
- 2. Write a program that computes the solution y(t) of this ODE using the odeint algorithm:

$$\frac{dy}{dt} = -\exp(-t)(10\sin(10t) + \cos(10t))$$

from t = 0 to t = 10. The initial value is y(0) = 1.

3. You should display the solution graphically at points t=0, t=0.01, t=0.02, ..., t=9.99, t=10.

Hint: a part of the solution y(t) is shown in the figure below.

16.5 Root finding

If you try to find a *x* such that

$$f(x) = 0$$

then this is called *root finding*. Note that problems like g(x) = h(x) fall in this category as you can rewrite them as f(x) = g(x) - h(x) = 0.

A number of root finding tools are available in scipy's optimize module.

16.5.1 Root finding using the bisection method

First we introduce the bisect algorithm which is (i) robust and (ii) slow but conceptually very simple.

Suppose we need to compute the roots of f(x)=x3-2x2. This function has a (double) root at x=0 (this is trivial to see) and another root which is located between x=1.5 (where f(1.5)=-1.125) and x=3 (where f(3)=9). It is pretty straightforward to see that this other root is located at x=2. Here is a program that determines this root numerically:

```
In [6]: from scipy.optimize import bisect

def f(x):
    """returns f(x)=x^3-2x^2. Has roots at
    x=0 (double root) and x=2"""
    return x ** 3 - 2 * x ** 2

# main program starts here
    x = bisect(f, 1.5, 3, xtol=1e-6)

print("The root x is approximately x=%14.12g, \n"
    "the error is less than 1e-6." % (x))
    print("The exact error is %g." % (2 - x))

The root x is approximately x= 2.00000023842,
the error is less than 1e-6.
The exact error is -2.38419e-07.
```

The bisect() method takes three compulsory arguments: (i) the function f(x), (ii) a lower limit a (for which we have chosen 1.5 in our example) and (ii) an upper limit b (for which we have chosen 3). The optional parameter xtol determines the maximum error of the method.

One of the requirements of the bisection method is that the interval [a, b] has to be chosen such that the function is either positive at a and negative at b, or that the function is negative at a and postive at b. In other words: a and b have to enclose a root.

16.5.2 Exercise: root finding using the bisect method

- 1. Write a program with name sqrttwo.py to determine an approximation of $\sqrt{2}$ by finding a root x of the function $f(x) = 2 x^2$ using the bisection algorithm. Choose a tolerance for the approximation of the root of 10-8.
- 2. Document your choice of the initial bracket [*a*, *b*] for the root: which values have you chosen for *a* and for *b* and why?
- 3. Study the results:
 - Which value for the root *x* does the bisection algorithm return?

• Compute the value of sqrt2 using math.sqrt(2) and compare this with the approximation of the root. How big is the absolute error of x? How does this compare with xtol?

```
In [ ]:
```

16.5.3 Root finding using the fsolve funcion

A (often) better (in the sense of "more efficient") algorithm than the bisection algorithm is implemented in the general purpose fsolve() function for root finding of (multidimensional) functions. This algorithm needs only one starting point close to the suspected location of the root (but is not garanteed to converge).

Here is an example:

```
In [7]: from scipy.optimize import fsolve

def f(x):
    return x ** 3 - 2 * x ** 2

x = fsolve(f, 3)  # one root is at x=2.0

print("The root x is approximately x=%21.19g" % x)
print("The exact error is %g." % (2 - x))

The root x is approximately x= 2.000000000000006661
The exact error is -6.66134e-15.
```

The return value[6] of fsolve is a numpy array of length n for a root finding problem with n variables. In the example above, we have n = 1.

16.6 Interpolation

Given a set of N points (x_i, y_i) with i = 1, 2, ..., N, we sometimes need a function $\hat{f}(x)$ which returns $y_i = f(x_i)$ where $x == x_i$, and which in addition provides some interpolation of the data (x_i, y_i) for all x.

The function y0 = scipy.interpolate.interpld(x,y,kind='nearest') does this interpolation based on splines of varying order. Note that the function interpld returns a function y0 which will then interpolate the x-y data for any given x when called as y0(x).

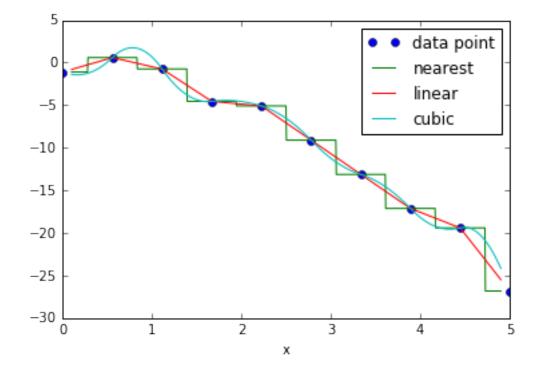
The code below demonstrates this, and shows the different interpolation kinds.

```
In [8]: import numpy as np
    import scipy.interpolate
    import pylab

def create_data(n):
    """Given an integer n, returns n data points
    x and values y as a numpy.array."""
    xmax = 5.
    x = np.linspace(0, xmax, n)
    y = - x**2
```

```
#make x-data somewhat irregular
    y += 1.5 * np.random.normal(size=len(x))
    return x, y
#main program
n = 10
x, y = create_data(n)
#use finer and regular mesh for plot
xfine = np.linspace(0.1, 4.9, n * 100)
#interpolate with piecewise constant function (p=0)
y0 = scipy.interpolate.interp1d(x, y, kind='nearest')
#interpolate with piecewise linear func (p=1)
y1 = scipy.interpolate.interp1d(x, y, kind='linear')
#interpolate with piecewise constant func (p=2)
y2 = scipy.interpolate.interp1d(x, y, kind='quadratic')
pylab.plot(x, y, 'o', label='data point')
pylab.plot(xfine, y0(xfine), label='nearest')
pylab.plot(xfine, y1(xfine), label='linear')
pylab.plot(xfine, y2(xfine), label='cubic')
pylab.legend()
pylab.xlabel('x')
```

Out[8]: <matplotlib.text.Text at 0x110221358>



16.7 Curve fitting

We have already seen in Section 14 that we can fit polynomial functions through a data set using the numpy.polyfit function. Here, we introduce a more generic curve fitting algorithm.

Scipy provides a somewhat generic function (based on the Levenburg-Marquardt algorithm)through scipy.optimize.curve_fit to fit a given (Python) function to a given data set. The assumption is that we have been given a set of data with points $x_1, x_2, \ldots x_N$ and with corresponding function values y_i and a dependence of y_i on x_i such that $y_i = f(x_i, \vec{p})$. We want to determine the parameter vector $\vec{p} = (p_1, p_2, \ldots, p_k)$ so that r, the sum of the residuals, is as small as possible:

$$r = \sum_{i=1}^{N} (y_i - f(x_i, \vec{p}))^2$$

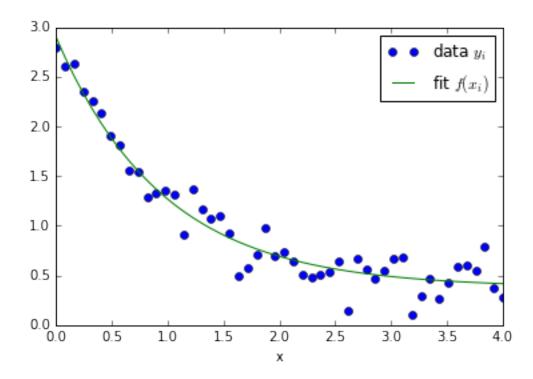
Curve fitting is of particular use if the data is noisy: for a given x_i and $y_i = f(x_i, \vec{p})$ we have a (unknown) error term ϵ_i so that $y_i = f(x_i, \vec{p}) + \epsilon_i$.

We use the following example to clarify this:

```
f(x, \vec{p}) = a \exp(-bx) + c, i.e. \vec{p} = a, b, c
```

```
In [9]: import numpy as np
        from scipy.optimize import curve_fit
        def f(x, a, b, c):
            """Fit function y=f(x,p) with parameters p=(a,b,c). """
            return a * np.exp(- b * x) + c
        #create fake data
        x = np.linspace(0, 4, 50)
        y = f(x, a=2.5, b=1.3, c=0.5)
        #add noise
        yi = y + 0.2 * np.random.normal(size=len(x))
        #call curve fit function
        popt, pcov = curve_fit(f, x, yi)
        a, b, c = popt
        print("Optimal parameters are a=%g, b=%g, and c=%g" % (a, b, c))
        #plotting
        import pylab
        yfitted = f(x, *popt) # equivalent to f(x, popt[0], popt[1], popt[2])
        pylab.plot(x, yi, 'o', label='data $y_i$')
        pylab.plot(x, yfitted, '-', label='fit $f(x_i)$')
        pylab.xlabel('x')
        pylab.legend()
Optimal parameters are a=2.524, b=1.04295, and c=0.378715
```

Out [9]: <matplotlib.legend.Legend at 0x11056dac8>



Note that in the source code above we define the fitting function y = f(x) through Python code. We can thus fit (nearly) arbitrary functions using the curve_fit method.

The curve_fit function returns a tuple popt, pcov. The first entry popt contains a tuple of the OPTimal Parameters (in the sense that these minimise equation ([eq:1]). The second entry contains the covariance matrix for all parameters. The diagonals provide the variance of the parameter estimations.

For the curve fitting process to work, the Levenburg-Marquardt algorithm needs to start the fitting process with initial guesses for the final parameters. If these are not specified (as in the example above), the value "1.0" is used for the initial guess.

If the algorithm fails to fit a function to data (even though the function describes the data reasonably), we need to give the algorithm better estimates for the initial parameters. For the example shown above, we could give the estimates to the <code>curve_fit</code> function by changing the line

```
popt, pcov = curve_fit(f, x, yi)

to

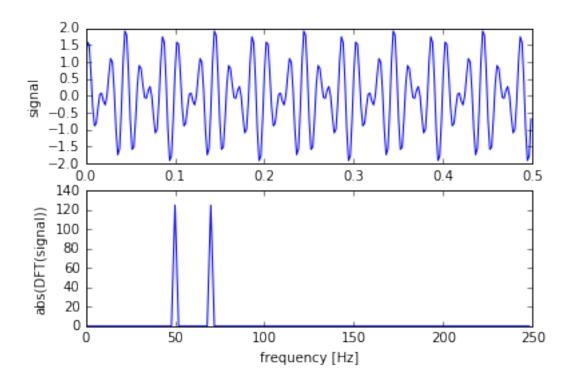
popt, pcov = curve_fit(f, x, yi, p0=(2,1,0.6))
```

if our initial guesses would be a = 2, b = 1 and c = 0.6. Once we take the algorithm "roughly in the right area" in parameter space, the fitting usually works well.

16.8 Fourier transforms

In the next example, we create a signal as a superposition of a 50 Hz and 70 Hz sine wave (with a slight phase shift between them). We then Fourier transform the signal and plot the absolute value of the (complex) discrete Fourier transform coefficients against frequency, and expect to see peaks at 50Hz and 70Hz.

```
In [10]: import scipy
         import matplotlib.pyplot as plt
         pi = scipy.pi
         signal_length = 0.5 #[seconds]
         sample_rate=500
                           #sampling rate [Hz]
         dt = 1./sample_rate #time between two samples [s]
         df = 1/signal_length #frequency between points in
                               #in frequency domain [Hz]
         t=scipy.arange(0,signal_length,dt) #the time vector
                               #length of time vector
         n_t=len(t)
         #create signal
         y=scipy.sin(2*pi*50*t)+scipy.sin(2*pi*70*t+pi/4)
         #compute fourier transform
         f=scipy.fft(y)
         #work out meaningful frequencies in fourier transform
         freqs=df*scipy.arange(0,(n_t-1)/2.,dtype='d') #d=double precision float
         n_freq=len(freqs)
         #plot input data y against time
        plt.subplot (2,1,1)
        plt.plot(t,y,label='input data')
         plt.xlabel('time [s]')
        plt.ylabel('signal')
         #plot frequency spectrum
        plt.subplot(2,1,2)
        plt.plot(freqs,abs(f[0:n_freq]),
                  label='abs(fourier transform)')
         plt.xlabel('frequency [Hz]')
         plt.ylabel('abs(DFT(signal))')
Out[10]: <matplotlib.text.Text at 0x1108284e0>
```



The lower plot shows the discrete Fourier transform computed from the data shown in the upper plot.

16.9 Optimisation

Often we need to find the maximum or minimum of a particular function f(x) where f is a scalar function but x could be a vector. Typical applications are the minimisation of entities such as cost, risk and error, or the maximisation of productivity, efficiency and profit. Optimisation routines typically provide a method to minimise a given function: if we need to maximise f(x) we create a new function g(x) that reverses the sign of f, i.e. g(x) = -f(x) and we minimise g(x).

Below, we provide an example showing (i) the definition of the test function and (ii) the call of the scipy.optimize.fmin function which takes as argument a function f to minimise and an initial value x0 from which to start the search for the minimum, and which returns the value of x for which f(x) is (locally) minimised. Typically, the search for the minimum is a local search, i.e. the algorithm follows the local gradient. We repeat the search for the minimum for two values (x0 = 1.0 and x0 = 2.0, respectively) to demonstrate that depending on the starting value we may find different minimar of the function f.

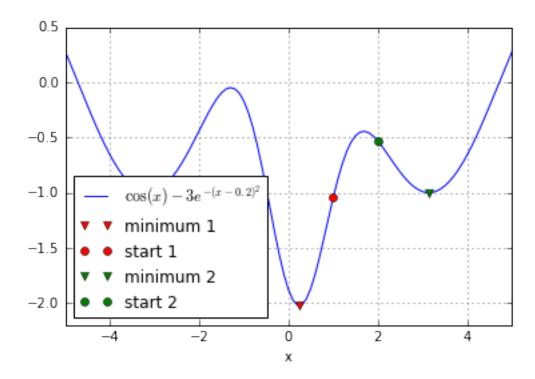
The majority of the commands (after the two calls to fmin) in the file fmin1.py creates the plot of the function, the start points for the searches and the minima obtained:

```
In [11]: from scipy import arange, cos, exp
    from scipy.optimize import fmin
    import pylab

def f(x):
    return cos(x) - 3 * exp(-(x - 0.2) ** 2)

# find minima of f(x),
```

```
# starting from 1.0 and 2.0 respectively
         minimum1 = fmin(f, 1.0)
         print("Start search at x=1., minimum is", minimum1)
         minimum2 = fmin(f, 2.0)
         print("Start search at x=2., minimum is", minimum2)
         # plot function
         x = arange(-10, 10, 0.1)
         y = f(x)
         pylab.plot(x, y, label='$\cos(x)-3e^{-(x-0.2)^2}$')
         pylab.xlabel('x')
         pylab.grid()
         pylab.axis([-5, 5, -2.2, 0.5])
         # add minimum1 to plot
         pylab.plot(minimum1, f(minimum1), 'vr',
                    label='minimum 1')
         # add start1 to plot
         pylab.plot(1.0, f(1.0), 'or', label='start 1')
         # add minimum2 to plot
         pylab.plot(minimum2, f(minimum2), 'vg', \
                    label='minimum 2')
         # add start2 to plot
         pylab.plot(2.0, f(2.0), 'og', label='start 2')
         pylab.legend(loc='lower left')
Optimization terminated successfully.
         Current function value: -2.023866
         Iterations: 16
         Function evaluations: 32
Start search at x=1., minimum is [ 0.23964844]
Optimization terminated successfully.
         Current function value: -1.000529
         Iterations: 16
         Function evaluations: 32
Start search at x=2., minimum is [ 3.13847656]
Out[11]: <matplotlib.legend.Legend at 0x11092c588>
```



Calling the fmin function will produce some diagnostic output, which you can also see above.

Return value of fmin Note that the return value from the fmin function is a numpy array which – for the example above – contains only one number as we have only one parameter (here x) to vary. In general, fmin can be used to find the minimum in a higher-dimensional parameter space if there are several parameters. In that case, the numpy array would contain those parameters that minimise the objective function. The objective function f(x) has to return a scalar even if there are more parameters, i.e. even if x is a vector as in f(x).

16.10 Other numerical methods

Scientific Python and Numpy provide access to a large number of other numerical algorithms including function interpolation, Fourier transforms, optimisation, special functions (such as Bessel functions), signal processing and filters, random number generation, and more. Start to explore scipy's and numpy's capabilities using the help function and the documentation provided on the web.

16.11 scipy.io: Scipy-input output

Scipy provides routines to read and write Matlab mat files. Here is an example where we create a Matlab compatible file storing a (1x11) matrix, and then read this data into a numpy array from Python using the scipy Input-Output library:

First we create a mat file in Octave (Octave is [mostly] compatible with Matlab):

```
octave:1> a=-1:0.5:4
a =
Columns 1 through 6:
```

Then we load this array within python:

The function loadmat returns a dictionary: the key for each item in the dictionary is a string which is the name of that array when it was saved in Matlab. The key is the actual array.

A Matlab matrix file can hold several arrays. Each of those is presented by one key-value pair in the dictionary.

Let's save two arrays from Python to demonstrate that:

```
In [15]: import scipy.io
    import numpy as np

# create two numpy arrays
a = np.linspace(0, 50, 11)
b = np.ones((4, 4))

# save as mat-file
# create dictionary for savemat
tmp_d = {'a': a,
    'b': b}
scipy.io.savemat('data.mat', tmp_d)
```

This program creates the file data.mat, which we can subsequently read using Matlab or here Octave:

```
HAL47:code fangohr$ octave

GNU Octave, version 3.2.4

Copyright (C) 2009 John W. Eaton and others.

<snip>

octave:1> whos

Variables in the current scope:

Attr Name Size Bytes Class
```

```
=====
                  ====
                                           ===== =====
                                              92 cell
      ans
                  1x11
Total is 11 elements using 92 bytes
octave:2> load data.mat
octave:3> whos
Variables in the current scope:
 Attr Name
                  Size
                                           Bytes Class
                 ====
  =====
                                           =====
                                              88 double
                11x1
                                             92 cell
                 1x11
      ans
                  4 \times 4
                                             128 double
Total is 38 elements using 308 bytes
octave:4> a
a =
   0
    5
   10
   15
   20
   25
   30
   35
   40
   45
   50
octave:5> b
b =
   1
      1
          1 1
          1
   1
      1
              1
```

Note that there are other functions to read from and write to in formats as used by IDL, Netcdf and other formats in scipy.io.

More \rightarrow see Scipy tutorial.

1 1

17 Where to go from here?

Learning a programming language is the first step towards becoming a computationalists who advances science and engineering through computational modelling and simulation.

We list some additional skills that can be very beneficial for day-to-day computational science work, but is of course not exhaustive.

17.1 Advanced programming

This text has put emphasis on providing a robust foundation in terms of programming, covering control flow, data structures and elements from function and procedural programming. We have not touch Object Orientation in great detail, nor have we discussed some of Python's more advanced features such as iterators, and decorators, for example.

17.2 Compiled programming language

When performance starts to be the highest priority, we may need to use compiled code, and likely embed this in a Python code to carry out the computational that are the performance bottle neck.

Fortran, C and C++ are sensible choices here; maybe Julia in the near future.

We also need to learn how to integrate the compiled code with Python using tools such as Cython, Boost, Ctypes and Swig.

17.3 Testing

Good coding is supported by a range of unit and system tests that can be run routinely to check that the code works correctly. Tools such as doctest, nose and pytest are invaluable, and we should learn at least how to use pytest (or nose).

17.4 Simulation models

A number of standard simulation tools such as Monte Carlo, Molecular Dynamics, lattice based models, agents, finite difference and finite element models are commonly used to solve particular simulation challenges – it is useful to have at least a broad overview of these.

17.5 Software engineering for research codes

Research codes bring particular challenges: the requirements may change during the run time of the project, we need great flexibility yet reproducibility. A number of techniques are available to support effectively.

17.6 Data and visualisation

Dealing with large amounts of data, processing and visualising it can be a challenge. Fundamental knowledge of database design, 3d visualisation and modern data processing tools such as the Pandas Python package help with this.

17.7 Version control

Using a version control tool, such as git or mercurial, should be a standard approach and improves code writing effectiveness significantly, helps with working in teams, and - maybe most importantly - supports reproducibility of computational results.

17.8 Parallel execution

Parallel execution of code is a way to make it run orders of magnitude faster. This could be using MPI for inter-node communication or OpenMP for intra-node parallelisation or a hybrid mode bringing both together.

The recent rise of GPU computing provides yet another avenue of parallelisation, and so do the many-core chips such as the Intel Phi.

17.8.1 Acknowledgements

Thanks go to

- Marc Molinari for carefully proof reading this manuscript around 2007.
- Neil O'Brien for contributing to the SymPy section.
- Jacek Generowicz for introducing me to Python in the last millennium, and for kindly sharing countless ideas from his Python course.
- EPSRC for partial support of this work (GR/T09156/01 and EP/G03690X/1).
- Students and other readers who have provided feedback and pointed out typos and errors etc.
- [1] the vertical line is to show the division between the original components only; mathematically, the augmented matrix behaves like any other 2×3 matrix, and we code it in SymPy as we would any other.
- [2] from the help (preview) documentation: "Currently this depends on pexpect, which is not available for windows."
 - [3] The exact value for the upper limit is availabe in sys.maxint.
- [4] We add for completeness, that a C-program (or C++ of Fortran) that executes the same loop will be about 100 times faster than the python float loop, and thus about 100*200 = 20000 faster than the symbolic loop.
- [5] In this text, we usually import numpy under the name N like this: import numpy as N. If you don't have numpy on your machine, you can substitute this line by import Numeric as N or import numarray as N.
- [6] Historical note: this has changed from scipy version 0.7 to 0.8. Before 0.8, the return value was a float if a one-dimensional problem was to solve.