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Abstract
Ontology-based data access (OBDA) is a popular
approach for integrating and querying multiple data
sources by means of a shared ontology. The ontol-
ogy is linked to the sources using mappings, which
assign views over the data to ontology predicates.
Motivated by the need for OBDA systems support-
ing database-style aggregate queries, we propose a
bag semantics for OBDA, where duplicate tuples
in the views defined by the mappings are retained,
as is the case in standard databases. We show that
bag semantics makes conjunctive query answering
in OBDA CONP-hard in data complexity. To regain
tractability, we consider a rather general class of
queries and show its rewritability to a generalisa-
tion of the relational calculus to bags.

1 Introduction
Ontology-based data access (OBDA) is an increasingly popu-
lar approach to enable uniform access to multiple data sources
with diverging schemas [Poggi et al., 2008].

In OBDA, an ontology provides a unifying conceptual
model for the data sources together with domain knowl-
edge. The ontology is linked to each source by global-as-
view (GAV) mappings [Lenzerini, 2002], which assign views
over the data to ontology predicates. Users access the data
by means of queries formulated using the vocabulary of the
ontology; query answering amounts to computing the certain
answers to the query over the union of ontology and the ma-
terialisation of the views defined by the mappings. The for-
malism of choice for representing ontologies in OBDA is the
description logic DL-LiteR [Calvanese et al., 2007], which
underpins OWL 2 QL [Motik et al., 2012]. DL-LiteR was
designed to ensure that queries against the ontology are first-
order rewritable; that is, they can be reformulated as a set of
relational queries over the sources [Calvanese et al., 2007].
Example 1. A company stores data about departments and
their employees in several databases. The sales department
uses the schema SalEmployee(id, name, salary, loc,mngr),
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where attributes id, name, salary, loc, and mngr stand for em-
ployee ID within the department, their name, salary, location,
and name of their manager. In turn, the IT department stores
data using the schema ITEmployee(id, surname, salary, city),
where managers are not specified. To integrate employee
data, the company relies on an ontology with TBox Tex, which
defines unary predicates such as SalEmp, ITEmp, and Mngr,
and binary predicates such as hasMngr relating employees to
their managers. The following mappings determine the ex-
tension of the predicates based on the data, where each att i
represents the attributes occurring only in the source:

SalEmployee(name, att1) → SalEmp(name),
SalEmployee(name,mngr, att2) → hasMngr(name,mngr),
SalEmployee(mngr, att3) → Mngr(mngr),
ITEmployee(surname, att4) → ITEmp(surname).

TBox Tex specifies the meaning of its vocabulary using in-
clusions (i) SalEmp v Emp and ITEmp v Emp, which
say that both sales and IT employees are company employ-
ees; (ii) ∃hasMngr− v Mngr, specifying the range of the
hasMngr relation, and (iii) Emp v ∃hasMngr, requiring that
employees have a (maybe unspecified) manager. Such inclu-
sions influence query answering: when asking for the names
of all company employees, the system will retrieve all rele-
vant sales and IT employees; this is achieved via query rewrit-
ing, where the query is reformulated as the union of queries
over the sales and IT databases. ♦

OBDA has received a great deal of attention in recent
years. Researchers have studied the limits of first-order
rewritability in ontology languages [Calvanese et al., 2007;
Artale et al., 2009], established bounds on the size of rewrit-
ings [Gottlob et al., 2014; Kikot et al., 2014], developed op-
timisation techniques [Kontchakov et al., 2014], and imple-
mented systems well-suited for real-world applications [Cal-
vanese et al., 2017; Calvanese et al., 2011].

An important observation about the conventional seman-
tics of OBDA is that it is set-based: the materialisation of
the views defined by the mappings is formalised as a virtual
ABox consisting of a set of facts over the ontology predicates.
This treatment is, however, in contrast with the semantics of
database views, which is based on bags (multisets) and where
duplicate tuples are retained by default. The distinction be-
tween set and bag semantics in databases is very significant
in practice; in particular, it influences the evaluation of aggre-
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gate queries, which combine various aggregation functions
such as Min, Max, Sum, Count or Avg with the grouping
functionality provided in SQL by the GroupBy construct.
Example 2. Consider the query asking for the number of
employees named Lee. Assume there are two different em-
ployees named Lee, which are represented as different tu-
ples in the sales database (e.g., tuples with the same em-
ployee name, but different ID). Under the conventional se-
mantics of OBDA, the virtual ABox would contain a single
fact SalEmp(Lee); hence, the query would wrongly return
one, even under the semantics for counting aggregate queries
in [Calvanese et al., 2008; Kostylev and Reutter, 2015]. The
correct count can be obtained by considering the extension of
SalEmp as a bag with multiple occurrences of Lee . ♦

The goal of this paper is to propose and study a bag se-
mantics for OBDA which is compatible with the semantics of
standard databases and can provide a suitable foundation for
the future study of aggregate queries. We focus on conjunc-
tive query (CQ) answering over DL-LiteR ontologies under
bag semantics, and our main contributions are as follows.
1. We propose the ontology language DL-Litebag

R and its re-
striction DL-Litebag

core, where ABoxes consist of a bag of
facts, thus providing a faithful representation of the views
defined by OBDA mappings. We define the semantics of
query answering in this setting and show that it is compat-
ible with the conventional set-based semantics.

2. We show that, in contrast to the set case, ontologies may
not have a universal model (i.e., a single model over which
all CQs can be correctly evaluated), and bag query answer-
ing becomes CONP-hard in data complexity even if we re-
strict ourselves to DL-Litebag

core ontologies.
3. To regain tractability, we study the class of rooted

CQs [Bienvenu et al., 2012], where each connected com-
ponent of the query graph is required to contain an indi-
vidual or an answer variable. This is a very general class,
which arguably captures most practical OBDA queries.
We show that rooted CQs over DL-Litebag

core ontologies not
only admit a universal model and enjoy favourable com-
putational properties, but also allow for rewritings that can
be directly evaluated over the bag ABox of the ontology.

For the proofs of all results we refer to [Nikolaou et al., 2017].

2 Preliminaries
Syntax of Ontologies We fix a vocabulary consisting of
countably infinite and pairwise disjoint sets of individuals I
(i.e., constants), variables X, atomic concepts C (unary pred-
icates) and atomic roles R (binary predicates). A role is an
atomic role P ∈ R or its inverse P−. A concept is an atomic
concept in C or an expression ∃R, where R is a role. An in-
clusion is an expression of the form S1 v S2 with S1 and
S2 either both concepts or both roles. A disjointness axiom
is an expression of the form Disj(S1, S2) with S1 and S2 ei-
ther both concepts or both roles. A concept assertion is of the
form A(a) with a ∈ I and A ∈ C. A role assertion is of the
form P (a, b) with a, b ∈ I and P ∈ R. A DL-LiteR TBox
is a finite set of inclusions and disjointness axioms. An ABox
is a finite set of concept and role assertions. A DL-LiteR on-
tology is a pair 〈T ,A〉 with T a DL-LiteR TBox and A an

ABox. The ontology language DL-Litecore restricts DL-LiteR
by disallowing inclusions and disjointness axioms for roles.
Semantics of Ontologies An interpretation I is a pair
〈∆I , ·I〉, where the domain ∆I is a non-empty set, and the
interpretation function ·I maps each a ∈ I to aI ∈ ∆I

such that aI 6= bI for all a, b ∈ I,1 each A ∈ C to
a subset AI of ∆I and each P ∈ R to a subset P I of
∆I × ∆I . The interpretation function extends to concepts
and roles as follows: (R−)I = {(u, v) | (v, u) ∈ RI} and
(∃R)I = {u ∈ ∆I | (u, v) ∈ RI for some v ∈ ∆I}.

An interpretation I satisfies ABox A if aI ∈ AI for all
A(a) ∈ A and (aI , bI) ∈ P I for all P (a, b) ∈ A; I satisfies
TBox T if SI1 ⊆ SI2 for all S1 v S2 in T and SI1 ∩ SI2 = ∅
for all Disj(S1, S2) in T ; I is a model of ontology 〈T ,A〉 if it
satisfies T andA. An ontology is satisfiable if it has a model.
Queries A conjunctive query (CQ) q(x) with answer vari-
ables x is a formula ∃y. φ(x,y), where x, y are (possibly
empty) repetition-free tuples of variables and φ(x,y) is a
conjunction of atoms of the form A(t), P (t1, t2) or z = t,
where A ∈ C, P ∈ R, z ∈ x ∪ y, and t, t1, t2 ∈ x ∪ y ∪ I.
If x is inessential, then we write q instead of q(x). If x is the
empty tuple 〈〉, then q is Boolean. A union of CQs (UCQ) is
a disjunction of CQs with the same answer variables.

The equality atoms in a CQ q(x) = ∃y. φ(x,y) yield an
equivalence relation ∼ on terms x ∪ y ∪ I, and we write t̃
for the equivalence class of a term t. The Gaifman graph of
q(x) has a node t̃ for each t ∈ x ∪ y ∪ I in φ, and an edge
{t̃1, t̃2} for each atom in φ over t1 and t2. We assume that all
CQs are safe: for each z ∈ x ∪ y, the class z̃ contains a term
mentioned in an atom of φ(x,y) that is not an equality.

The certain answers qK to a (U)CQ q(x) over a DL-LiteR
ontology K are the set of all tuples a of individuals such that
q(a) holds in every model of K. A class of queries Q1 is
rewritable to a classQ2 for an ontology languageO if for any
q1 ∈ Q1 and TBox T in O, there is q2 ∈ Q2 such that, for
any ABox A in O with 〈T ,A〉 satisfiable, q〈T ,A〉1 equals the
answers to q2 in (the least model of)A. Checking a ∈ q〈T ,A〉
for a tuple a, (U)CQ q, and DL-LiteR ontology 〈T ,A〉 is an
NP-complete problem with AC0 data complexity (i.e., when
T and q are fixed) [Calvanese et al., 2007]. The latter follows
from the rewritability of UCQs to themselves for DL-LiteR.
Bags A bag over a set M is a function Ω : M → N∞0 , where
N∞0 is the set of nonnegative integers and infinity. The value
Ω(c) is the multiplicity of c in M . A bag Ω is finite if there
are finitely many c ∈ M with Ω(c) > 0 and there is no c
with Ω(c) =∞. The empty bag ∅ overM is the bag such that
∅(c) = 0 for all c ∈ M . Given bags Ω1 and Ω2 over M , let
Ω1 ⊆ Ω2 if Ω1(c) ≤ Ω2(c) for each c ∈M .

The intersection ∩, max union ∪, arithmetic union ], and
difference − are the binary operations defined for bags Ω1

and Ω2 over the same set M as follows: for every c ∈
M , (Ω1 ∩ Ω2)(c) = min{Ω1(c),Ω2(c)}, (Ω1 ∪ Ω2)(c) =
max{Ω1(c),Ω2(c)}, (Ω1 ] Ω2)(c) = Ω1(c) + Ω2(c), and
(Ω1 −Ω2)(c) = max{0,Ω1(c)−Ω2(c)}; difference is well-
defined only when Ω2 is finite.

1We adopt the unique name assumption for convenience; drop-
ping it does not affect results (modulo minor changes of definitions).
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3 DL-LiteR with Bag Semantics
In this section we present a bag semantics for DL-LiteR on-
tologies, define the associated query answering problem, and
establish its intractability in data complexity.

We formalise ABoxes as bags of facts (rather than sets)
in order to faithfully represent the materialised views over
source data defined by OBDA mappings.
Definition 3. A bag ABox is a finite bag over the set of
concept and role assertions. A DL-Litebag

R ontology is a pair
〈T ,A〉 of a DL-LiteR TBox T and a bag ABox A; the ontol-
ogy is DL-Litebag

core if T is a DL-Litecore TBox.

The semantics of DL-Litebag
R is based on bag interpreta-

tions I, with atomic concepts and roles mapped to bags of do-
main elements and pairs of elements, respectively, and where
the interpretation function is extended to complex concepts
and roles in the natural way; in particular, a concept ∃P is in-
terpreted as the bag projection of P I to the first component,
where each occurrence of a pair (u, v) in P I contributes to
the multiplicity of domain element u in (∃P )I .
Definition 4. A bag interpretation I is a pair 〈∆I , ·I〉 defined
the same as in the set case with the exception that AI and
P I are bags (not sets) over ∆I and ∆I ×∆I , respectively.
The interpretation function extends to concepts and roles as
follows: (P−)I maps each (u, v) ∈ ∆I × ∆I to P I(v, u),
and (∃R)I maps each u ∈ ∆I to

∑
v∈∆I R

I(u, v).
The definition of semantics of ontologies is as expected.

Definition 5. A bag interpretation I = 〈∆I , ·I〉 satisfies a
bag ABox A if A(A(a)) ≤ AI(aI) for each concept asser-
tion A(a) in A and A(P (a, b)) ≤ P I(aI , bI) for each role
assertion P (a, b). Satisfaction of T is defined as in the set
case, except that ⊆ and ∩ are applied to bags instead of sets.
Bag interpretation I is a bag model of the DL-Litebag

R ontol-
ogy 〈T ,A〉, written I |=b 〈T ,A〉, if it satisfies both T and
A. The ontology is satisfiable if it has a bag model.

Example 6. Let Kex = 〈Tex,Aex〉 be a DL-Litebag
R ontology

with Tex as in Example 1 andAex has SalEmp(Lee) with mul-
tiplicity 3, ITEmp(Lee) and hasMngr(Lee,Hill) both with
multiplicity 2 (and all other assertions with multiplicity 0).
Let Iex be the bag interpretation mapping individuals to them-
selves and with the following non-zero values:

SalEmpIex(Lee) = EmpIex(Lee) = 3, ITEmpIex(Lee) = 2,

hasMngrIex(Lee,Hill) = 2, hasMngrIex(Lee, w) = 1,

MngrIex(Hill) = 2, MngrIex(w) = 1,

where w is a fresh element. We can check that Iex |=b Kex. ♦
We now define the notion of query answering under bag

semantics. We first define the answers qI of a CQ q(x) over
a bag interpretation I. Intuitively, qI is a bag of tuples of in-
dividuals such that each valid embedding λ of the body of q
into I contributes separately to the multiplicity of the tuple
λ(x) in qI ; in turn, the contribution of each specific λ is the
product of the multiplicities of the images of the query atoms
under λ. The latter is in accordance with the interpretation of
joins in the bag relational algebra and SQL, where the multi-
plicity of a tuple in a join is the product of the multiplicities
of the joined tuples (e.g., see [Garcı́a-Molina et al., 2009]).

Definition 7. Let q(x) = ∃y. φ(x,y) be a CQ. The bag an-
swers qI to q over a bag interpretation I = 〈∆I , ·I〉 are
defined as the bag over tuples of individuals from I of the
same size as x such that, for every such tuple a,

qI(a) =
∑

λ∈Λ

∏
S(t) in φ(x,y)

SI(λ(t)),

where Λ is the set of all valuations λ : x ∪ y ∪ I→ ∆I such
that λ(x) = aI , λ(a) = aI for each a ∈ I, and λ(z) = λ(t)
for each z = t in φ(x,y).

If q is Boolean then qI are defined only for the empty tu-
ple 〈〉. Also, conjunction φ(x,y) may contain repeated atoms,
and hence can be seen as a bag of atoms; while repeated atoms
are redundant in the set case, they are essential in the bag set-
ting [Chaudhuri and Vardi, 1993] and thus the definition of
qI(a) treats each copy of a query atom S(t) separately.

The following definition of certain answers, capturing
open-world query answering, is a reformulation of the defi-
nition in [Kostylev and Reutter, 2015] for counting queries. It
is a natural extension of the set notion to bags: a query answer
is certain for a given multiplicity if it occurs with at least that
multiplicity in every bag model of the ontology.
Definition 8. The bag certain answers qK to a query q over a
DL-Litebag

R ontology K are the bag
⋂
I|=bK q

I .

We study the problem BAGCERT[Q,O] of checking, given
a query q from a class of CQs Q, ontology K = 〈T ,A〉 from
an ontology languageO, tuple a over I, and number k ∈ N∞0 ,
whether qK(a) ≥ k; data complexity of BAGCERT is stud-
ied under the assumption that T and q are fixed. Following
[Grumbach and Milo, 1996], we assume that the multiplici-
ties of assertions inA and k (if not infinity) are given in unary.
Example 9. Let qex(x) = ∃y. hasMngr(x, y) and Kex be as
in Example 6. Then qKex

ex (Lee) = 3. Indeed, on the one hand,
qIex

ex (Lee) = 3 for Iex in Example 6. On the other, for any bag
model I of Kex, qIex(Lee) = Σu∈∆IhasMngrI(LeeI , u) ≥ 3,
because Aex(SalEmp(Lee)) = 3 and Tex contains inclusions
SalEmp v Emp and Emp v ∃hasMngr . ♦

The bag semantics can be seen as a generalisation of the set
semantics of DL-Lite: first, satisfiability under bag semantics
reduces to the set case; second, certain answers under bag and
set semantics coincide if multiplicities are ignored.
Proposition 10. Let 〈T ,A〉 be a DL-LiteR ontology and
〈T ,A′〉 be a DL-Litebag

R ontology with the same TBox such
that {S(t) | A′(S(t)) ≥ 1} = A. Then, the following holds:
1. 〈T ,A〉 is satisfiable if and only if 〈T ,A′〉 is satisfiable;
2. for each CQ q and tuple a of individuals from I, a ∈
q〈T ,A〉 if and only if q〈T ,A

′〉(a) ≥ 1.
An important property of satisfiable DL-LiteR ontologies

K is the existence of so called universal models for CQs, that
is, models I such that the certain answers to every CQ q over
K can be obtained by evaluating q over I [Calvanese et al.,
2007]. This notion extends naturally to bags.

Definition 11. A bag model I of a DL-Litebag
R ontology K is

universal for a class of queries Q if qK = qI for any q ∈ Q.
Unfortunately, in contrast to the set case, even DL-Litebag

core
ontologies may not admit a universal bag model for all CQs.
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Proposition 12. There exists a satisfiable DL-Litebag
core ontol-

ogy that has no universal bag model for the class of all CQs.
The lack of a universal model suggests that CQ answering

under bag semantics is harder than in the set case. Indeed, this
problem is CONP-hard in data complexity, which is in stark
contrast to the AC0 upper bound in the set case.
Theorem 13. BAGCERT[CQs,DL-Litebag

core] is CONP-hard in
data complexity.

4 Universal Models for Rooted Queries
Theorem 13 suggests that bag semantics is generally not well-
suited for OBDA. Our approach to overcome this negative
result is to consider a restricted class of CQs, introduced in
the context of query optimisation in DLs [Bienvenu et al.,
2012], called rooted: in a rooted CQ, each existential variable
is connected in the Gaifman graph to an individual or an an-
swer variable. Rooted CQs capture most practical queries; for
example, they include all connected non-Boolean CQs.
Definition 14. A CQ q(x) is rooted if each connected com-
ponent of its Gaifman graph has a node with a term in x ∪ I.

In contrast to arbitrary CQs, any satisfiable DL-Litebag
core on-

tology admits a universal bag model for rooted CQs. Al-
though we define such a model, called canonical, in a fully
declarative way, it can be intuitively seen as the result of ap-
plying a variant of the restricted chase procedure [Calı̀ et al.,
2013] extended to bags. Starting from the ABox, the proce-
dure successively “repairs” violations of T by extending the
interpretation of concepts and roles in a minimal way.

To formalise canonical models, we need two auxiliary no-
tions. First, the concept closure cclT [u, I] of an element u ∈
∆I in a bag interpretation I = 〈∆I , ·I〉 over a TBox T is the
bag of concepts such that, for any concept C, cclT [u, I](C)
is the maximum value of CI0 (u) amongst all concepts C0 sat-
isfying T |= C0 v C. Second, the union I ∪ J of bag inter-
pretations I = 〈∆I , ·I〉 and J = 〈∆J , ·J 〉 with aI = aJ

for all a ∈ I is the bag interpretation 〈∆I ∪∆J , ·I∪J 〉 with
aI∪J = aI for a ∈ I and SI∪J = SI ∪SJ for S ∈ C∪R.
Definition 15. The canonical bag model C(K) of a
DL-Litebag

core ontology K = 〈T ,A〉 is the bag interpre-
tation

⋃
i≥0 Ci(K) with the bag interpretations Ci(K) =

〈∆Ci(K), ·Ci(K)〉 defined as follows:
- ∆C0(K) = I, aC0(K) = a for each a ∈ I, and SC0(K)(a) =
A(S(a)) for each S ∈ C ∪R and individuals a;

- for each i > 0, ∆Ci(K) is

∆Ci−1(K) ∪ {w1
u,R, . . . , w

δ
u,R | u ∈ ∆Ci−1(K), R a role,

δ = cclT [u, Ci−1(K)](∃R)− (∃R)Ci−1(K)(u)},
where wju,R are fresh domain elements, called anonymous,
aCi(K) = a for all a ∈ I, and, for all A ∈ C, P ∈ R, and
elements u, v,

ACi(K)(u) =

{
cclT [u, Ci−1(K)](A), if u ∈ ∆Ci−1(K),

0, otherwise,

P Ci(K)(u, v) =


P Ci−1(K)(u, v), if u, v ∈ ∆Ci−1(K),

1, if v = wju,P or u = wjv,P− ,

0, otherwise.

It is easily seen that C(K) satisfies K whenever K is satis-
fiable. We next show that it is universal for rooted CQs.
Theorem 16. The canonical bag model C(K) of a satisfiable
DL-Litebag

core ontology K is universal for rooted CQs.
Example 17. Consider an ontology Kr = 〈Tr,Ar〉 with

Tr = {Emp v ∃hasMngr, ∃hasMngr− v Mngr},
Ar(Emp(Lee)) = Ar(Mngr(Hill)) = 1.

The canonical model C(Kr) interprets (all with multiplicity
1) Emp by Lee , Mngr by Hill and w1

Lee,hasMngr, and hasMngr

by (Lee, w1
Lee,hasMngr). Note that C(Kr) is not universal for

all CQs: for instance, qC(Kr)
nr (〈〉) = 2 for non-rooted qnr =

∃y.Mngr(y), but qInr
nr (〈〉) = 1 for the model Inr interpreting

Emp by Lee , hasMngr by (Lee,Hill), and Mngr by Hill . ♦

We conclude this section by showing an important property
of rooted CQs, which justifies their favourable computational
properties. As in the set case for arbitrary CQs, given a satis-
fiable DL-Litebag

core ontology K and a rooted CQ q, qK can be
computed over a small sub-interpretation of C(K).

Theorem 18. LetK be a satisfiable DL-Litebag
core ontology with

C(K) =
⋃
i≥0 Ci(K) and q be a rooted CQ having n atoms.

Then, qC(K) = qCn(K).

5 Rewritability of Rooted Queries
Rewritability is key for OBDA, and we next establish to what
extent rooted CQs over bag semantics are rewritable.

The first idea would be to use the analogy with the set case
and rewrite to unions of CQs. There are two corresponding
operations for bags: max union ∪ and arithmetic union ]. So
we may consider max unions qmax = q1(x) ∨ · · · ∨ qn(x) or
arithmetic unions qar = q1(x)∨· · · · ∨· qn(x) of CQs qi(x),
1 ≤ i ≤ n, with the following semantics, for any interpre-
tation I: qImax = qI1 ∪ · · · ∪ qIn and qIar = qI1 ] · · · ] qIn ,
respectively. Our first result is negative: rewriting to either of
these classes is not possible even for DL-Litebag

core.
Proposition 19. The class of rooted CQs is rewritable neither
to max nor to arithmetic unions of CQs for DL-Litebag

core.
Next we show that rooted queries are rewritable to

BALG1
ε-queries: the class directly corresponding to the al-

gebra BALG1
ε for bags [Grumbach et al., 1996; Grumbach

and Milo, 1996; Libkin and Wong, 1997]. Since BALG1
ε ⊂

LOGSPACE [Grumbach and Milo, 1996], where BALG1
ε

is the complexity class for BALG1
ε algebra evaluation,

rewritability to BALG1
ε-queries is highly desirable.

Intuitively, in addition to projection ∃, join ∧, and unions
∨ and ∨· , BALG1

ε also allows for difference \. Domain-
dependent queries, inexpressible in algebraic query lan-
guages, are precluded by restrictions on the use of variables.
Definition 20. A BALG1

ε-query q(x) with answer variables
x is one of the following, where qi are BALG1

ε-queries:
- S(t), for S ∈ C ∪R, t tuple over x ∪ I mentioning all x;
- q1(x1) ∧ q2(x2), for x = x1 ∪ x2;
- q0(x0)∧(x = t), for x ∈ x0, t ∈ X∪I, x = x0∪({t}\I);
- ∃y. q0(x,y); q1(x)∨ q2(x); q1(x)∨· q2(x); q1(x) \ q2(x).
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The semantics of BALG1
ε-queries is defined as follows.

Definition 21. The bag answers qI to a BALG1
ε-query q(x)

over a bag interpretation I = 〈∆I , ·I〉 is the bag of tuples
over I of the same size as x inductively defined as follows,
for each tuple a and the corresponding mapping λ such that
λ(x) = aI and λ(a) = aI for all a ∈ I:
- SI(λ(t)), if q(x) = S(t);
- qI1 (λ(x1))× qI2 (λ(x2)), if q(x) = q1(x1) ∧ q2(x2);
- qI0 (λ(x0)), if q(x) = q0(x0) ∧ (x = t) and λ(x) = λ(t);
- 0, if q(x) = q0(x0) ∧ (x = t) and λ(x) 6= λ(t);
-
∑
λ′:y→∆I q

I
0 (aI , λ′(y)), if q(x) = ∃y. q0(x,y);

- (qI1 op qI2 )(aI) if q(x) = q1(x) op′ q2(x), where op is ∪,
], or − and op′ is ∨, ∨· , or \, respectively.
The data complexity of BALG1

ε-query evaluation is ob-
tained by showing that BALG1

ε-queries can be be mapped to
the BALG1

ε algebra of [Grumbach and Milo, 1996].
Proposition 22. Given a fixed BALG1

ε-query q(x), the prob-
lem of checking whether qC(〈∅,A〉)(a) ≥ k for a bag ABox A,
tuple a, and k ∈ N∞0 is AC0 reducible to BALG1

ε.
Our rewriting algorithm is inspired by the algorithm in

[Kikot et al., 2012] for the set case of DL-LiteR. Before going
into details, we provide a high-level description.

The key observation is that the set of valuations of a CQ
q(x) = ∃y. φ(x,y) over the bag canonical model C(K) can
be partitioned into subsets, each of which is characterised
by variables z ⊆ y that are sent to anonymous elements of
C(K). Hence, we can rewrite q(x) for each of these subsets
separately and then take an arithmetic union of the result-
ing queries, provided these queries are guaranteed to give the
same answers as the corresponding subsets of valuations.

Our rewriting proceeds along the following steps.
Step 1. First, each z is checked for realisability, that is,
whether the subquery induced by z can indeed be folded into
the anonymous forest-shaped part of C(K). This can be done
without the ABox, looking only at the atoms of q that link
z to other terms of q (these linking atoms exist because q is
rooted). Non-realisable z can be disregarded.
Step 2. For every realisable z, CQ q(x) is replaced (for this z
in the arithmetic union) by a CQ qz(x) obtained from q by re-
placing each maximal connected component of the subquery
induced by z by just one linking atom. This transformation is
equivalence-preserving, because the anonymous part of C(K)
does not involve multiplicities other than 0 and 1.
Step 3. Finally, each resulting qz(x) is rewritten to a BALG1

ε-
query q̄z(x) by “chasing back” each unary atom and each bi-
nary atom mentioning a variable in z with the TBox; for the
binary atoms it is also guaranteed, by means of difference,
that the variable in z is indeed mapped to the anonymous part,
thus avoiding double-counting in the arithmetic union.

For the rest of this section, let us fix a rooted CQ q(x) =
∃y. φ(x,y) and a DL-Litebag

core TBox T . We start by formalis-
ing Step 1.
Definition 23. Given an ontologyK with a TBox T and vari-
ables z ⊆ y, let [q, z]C(K) be the bag of tuples over I such
that, for each tuple a of individuals,

[q, z]C(K)(a) =
∑

λ∈Λz

∏
S(t) in φ(x,y)

SC(K)(λ(t)),

where Λz is the set of valuations λ : x ∪ y ∪ I → ∆C(K)

such that λ(x) = a, λ(a) = a for each a ∈ I, λ(x) = λ(t)
for each x = t in φ(x,y), λ(z) is an anonymous element for
each z ∈ z, and λ(y) ∈ I for each y ∈ y \ z.

Hence, the bag answers to q can be partitioned as follows:

qC(K) =
⊎

z⊆y
[q, z]C(K). (1)

Variables z ⊆ y are equality-consistent if φ(x,y) has no
equality z = t with z ∈ z and t /∈ z. If z is not equality-
consistent, then [q, z]C(K) = ∅ and these z can be disregarded
in (1). Next, we show which other z can be ignored.
Definition 24. Given equality-consistent z ⊆ y, variables
z′ ⊆ z are maximally connected in the anonymous part (ma-
connected) if z̃ ⊆ z′ for the equivalence class z̃ of any z ∈
z′ and the equivalence classes z̃′ are a maximal subset of z̃
connected in the Gaifman graph of q via nodes in z̃.

Next we introduce several notations for ma-connected z′ ⊆
z with equality-consistent z ⊆ y. First, let φz′ be the sub-
conjunction of φ(x,y) that consists of all atoms mentioning
at least one variable in z′ (these sub-conjunctions are disjoint
for different z′). Second, since q is rooted, φz′ contains an
atom αz′ of the form P (t, z) or P (z, t) with z ∈ z′ and t /∈ z
(note that this definition may be non-deterministic). Third, let
qaz′() = ∃x′. ∃z′. φz′ ∧

∧
t∈tz′

(t = a) ∧
∧
z∈z′(z 6= a),

where tz′ are all such terms t, a is an individual in tz′ if
it exists or a fresh individual otherwise, and x′ = tz′ ∩ X,
(this definition may also be non-deterministic because of a).
Notice that qaz′ is a Boolean CQ with possible equalities of in-
dividuals and inequalities, and we can define the bag answers
of such a query q′ over a bag interpretation I in the same way
as for usual CQs in Definition 7 with the extra requirement
that each contributing valuation λ should satisfy λ(x) 6= λ(t)
for each inequality x 6= t of q′ (and equalities of individuals
are handled as usual equalities).
Definition 25. Given equality-consistent variables z ⊆ y,
ma-connected z′ ⊆ z are realisable by TBox T if

(qaz′)
C(〈T ,A′〉)(〈〉) ≥ 1,

where, for a fresh individual b, A′ is the bag ABox having
either only the assertion P (a, b) (with multiplicity 1), when
αz′ = P (t, z), or only P (b, a), when αz′ = P (z, t).

This definition does not depend on the choice of αz′ and
a. Indeed, if there are two atoms P1(t1, z1) and P2(t2, z2)
satisfying the definition of αz′ , then either P1 = P2 and both
pairs (t1, z1) and (t2, z2) are mapped by a valuation of qaz′ to
the same tuple, or z′ are not realisable regardless of the choice
of αz′ . Similarly, if tz′ contains two individuals a, a′, then
qaz′ has the equality a = a′, and hence z′ are not realisable
regardless of this choice.

Intuitively, z′ are realisable if their corresponding subquery
qaz′ is satisfied by the tree-shaped model induced by the TBox
from a connection αz′ of z′ and the rest of the query. This
definition does not essentially involve multiplicities, because
all tuples of anonymous elements in the canonical model have
multiplicity at most 1, and, hence, if qaz′ matches a part of the
canonical model, it does so in a unique way. Thus, checking
realisability is decidable using standard set-based techniques.
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Definition 26. Variables z ⊆ y are realisable by TBox
T if they are equality-consistent and each non-empty ma-
connected subset of z is realisable by T .

We proceed to Step 2. For realisable z ⊆ y, let qz(x) be
the CQ ∃y′. φz(x,y′) such that φz(x,y′) is obtained from
φ(x,y) by replacing φz′ , for each ma-connected z′ ⊆ z, with

αz′ ∧
∧
y∈tz′∩X, t∈tz′

(y = t),

where tz′ is as in qaz′ , and y′ is the subset of y remaining in
φz. In other words, qz contains, for each z′, just one atom αz′

and equalities identifying tz′ instead of conjunction φz′ in q.
The following lemma justifies Steps 1 and 2. It says that in

partitioning (1) we only need to iterate over tuples z that are
realisable by T and can also replace q with qz for each z.
Lemma 27. For any ontology K with TBox T and z ⊆ y
with qz(x) = ∃y′. φz(x,y′),
1. if z is realisable by T then [q, z]C(K) = [qz, z ∩ y′]C(K);
2. if z is not realisable by T then [q, z]C(K) = ∅.

For Step 3, it suffices to rewrite each CQ qz(x) =
∃y′. φz(x,y′) to a BALG1

ε-query q̄z(x) = ∃yz. ψz(x,yz),
for yz = y′ \ z, which is guaranteed to give [qz, z ∩ y′]C(K)

as the bag answers on the ABox in any ontology K with
TBox T . To this end, we use the following notation: for
t ∈ X ∪ I, let ζA(t) = A(t) for A ∈ C, while ζ∃P (t) =
∃y. P (t, y) and ζ∃P−(t) = ∃y. P (y, t) for P ∈ R, where
y is a variable different from t. Then, formula ψz(x,yz) is
obtained from φz(x,y′) by replacing all atoms mentioning a
term t ∈ I ∪ x ∪ yz or a variable z ∈ z as follows:
- each A(t) with

∨
T |=CvA ζC(t);

- each P (t, z) with
(∨
T |=Cv∃P ζC(t)

)
\ ζ∃P (t);

- each P (z, t) with
(∨
T |=Cv∃P− ζC(t)

)
\ ζ∃P−(t).

Note that φz(x,y′) does not contain any atoms of the form
A(z) for z ∈ z, so ψz(x,yz) does not mention variables z.
Also, atoms over roles without variables z stay intact, because
T contains no role inclusions.

Finally, the rewriting of q(x) over T is the BALG1
ε-query

q̄(x) =
∨·

z realisable by T q̄z(x).

Example 28. Consider TBox Tr from Example 17 and the
rooted CQ qr(x) = ∃y. hasMngr(x, y)∧Mngr(y). The query
q̄r(x) = q̄r

〈〉(x)∨· q̄r
y(x), where q̄r

〈〉(x) and q̄r
y(x) are

∃y. hasMngr(x, y) ∧
(
Mngr(y) ∨ ∃z. hasMngr(z, y)

)
and(

Emp(x) ∨ ∃y. hasMngr(x, y)
)
\ ∃y. hasMngr(x, y),

is a rewriting of qr over Tr, since 〈〉 and y are realisable. ♦

The following theorem establishes the correctness of our
approach and leads to the main rewritability result.

Theorem 29. For any rooted CQ q and DL-Litebag
core ontology

K = 〈T ,A〉 we have that qC(K) = q̄C(〈∅,A〉).

Corollary 30. The class of rooted CQs is rewritable to
BALG1

ε-queries for DL-Litebag
core.

We conclude this section by establishing the complexity of
rooted query answering. The bounds follow as an easy con-
sequence of Theorem 18, Proposition 22, and Corollary 30.

Theorem 31. BAGCERT[rooted CQs,DL-Litebag
core] is NP-

complete and in LOGSPACE in data complexity.
However, the next theorem implies that rooted queries are

not BALG1
ε-rewritable for unrestricted DL-Litebag

R TBoxes.

Theorem 32. BAGCERT[rooted CQs,DL-Litebag
R ] is CONP-

hard in data complexity.

6 Related work
Query answering under bag semantics has received signifi-
cant attention in the database literature [Libkin and Wong,
1994; Grumbach et al., 1996; Grumbach and Milo, 1996;
Libkin and Wong, 1997]. These works study the relative ex-
pressive power of bag algebra primitives, the relationship
with set-based algebras, and establish the data complexity
of query answering. Such problems have also been recently
studied in the setting of Semantic Web and SPARQL 1.1 in
[Kaminski et al., 2016; Angles and Gutierrez, 2016].

Bag semantics in the context of Description Logics has
been studied in [Jiang, 2010], where the author proposes a
bag semantics forALC and provides a tableaux algorithm. In
contrast to our work, their results are restricted to ontology
satisfiability and do not encompass CQ answering.

CQ answering under bag semantics is closely related to
answering Count aggregate queries. The semantics of ag-
gregate queries for database settings with incomplete infor-
mation, such as inconsistent databases and data exchange,
have been studied in [Arenas et al., 2003; Libkin, 2006;
Afrati and Kolaitis, 2008]. As pointed out in [Kostylev and
Reutter, 2015], these techniques are not directly applicable to
ontologies. The practical solution in [Calvanese et al., 2008]
is to give epistemic semantics to aggregate queries, where
the query is evaluated over ABox facts entailed by the on-
tology; thus, the anonymous part of the ontology models is
essentially ignored, and the semantics easily leads to counter-
intuitive answers. To remedy these issues, [Kostylev and
Reutter, 2015] propose a certain answer semantics for Count
aggregate queries over ontologies and prove tight complexity
bounds for DL-LiteR and DL-Litecore. Similarly to our work,
their semantics is open-world and considers all models of
the ontology for query evaluation, which leads to more intu-
itive answers. The main difference resides in the definition of
the ontology language, where they consider set ABoxes and
adopt conventional set-based semantics for TBox axioms. Al-
though DL-Litebag

R is closely related to the logic in [Kostylev
and Reutter, 2015], the two settings do not coincide even
for set ABoxes. For example, if A comprises only assertions
R(a, b) and R(a, c) and T comprises axiom ∃R v B, then
the query over 〈T ,A〉 that counts the number of individuals a
in conceptB returns 1 in the setting of [Kostylev and Reutter,
2015], while the corresponding DL-Litebag

R query returns 2.

7 Conclusion and Future Work
We have studied OBDA under bag semantics and identified
a general class of rewritable queries over DL-Litebag

core ontolo-
gies. As our framework covers already the class of Count ag-
gregate queries, in future work we plan to extend it to capture
further aggregate functions and more expressive ontologies.
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