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ABSTRACT

We consider the problem of query containment under ontological
constraints, such as those of RDFS. Query containment, i.e., de-
ciding whether the answers of a given query are always contained
in the answers of another query, is an important problem to areas
such as database theory and knowledge representation, with appli-
cations to data integration, query optimization and minimization.
We consider unions of conjunctive queries, which constitute the
core of structured query languages, such as SPARQL and SQL.
We also consider ontological constraints or axioms, expressed in
the language of Tuple-Generating Dependencies. TGDs capture
RDF/S and fragments of Description Logics. We consider classes
of TGDs for which the chase is known to terminate. Query con-
tainment under chase-terminating axioms can be decided by first
running the chase on one of the two queries and then rely on clas-
sic relational containment. When considering unions of conjunc-
tive queries, classic algorithms for both the chase and containment
phases suffer from a large degree of redundancy. We leverage a
graph-based modeling of rules, that represents multiple queries in
a compact form, by exploiting shared patterns amongst them. As a
result we couple the phases of both for chase and regular contain-
ment and end up with a faster and more scalable algorithm. Our
experiments show a speedup of close to two orders of magnitude.

Categories and Subject Descriptors

H.2.3 [Database Management]: Languages—Query Languages;
H.2.4 [Database Management]: Systems—Query processing

General Terms

Algorithms, Performance, Experimentation

1. INTRODUCTION
The classic version of the problem we study is: given a database

schema R and two queries Q1, Q2 on R, decide whether for all
database instances I of R, it is the case that Q1(I) ⊆ Q2(I), with
Q(I) being the set of answer tuples of a query Q on database I .
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We focus on unions of conjunctive queries (UCQs). UCQs is an
important class of structured queries; it corresponds to the select-
project-join-union fragment of structured languages like SPARQL
and SQL. Deciding containment for two conjunctive queries is an
NP-complete problem [15] , which can be solved by finding a ho-
momorphism that maps one query into the other. A UCQ Q1 is
contained in another UCQ Q2, if every conjunctive query in Q1

is contained in at least one conjunctive query of Q2 [30]. Test-
ing query containment (and query equivalence) is fundamental to
database and knowledge representation systems. It is central to
query optimization and minimization [15] and to data integration
problems such as view-based query answering [25].

Given the great practical significance of the problem consid-
erable effort has been devoted in order to find tractable classes
of queries. Most efforts focus in identifying syntactic restrictions
of queries for which polynomial-time algorithms for containment,
equivalence and minimization exist [6, 21, 9]. However, less atten-
tion has been paid to developing optimized algorithms for conjunc-
tive query containment per se, which is the focus of our work.

Recently, there has been significant interest in approaches to in-
corporate intensional knowledge on a database schema, in the form
of ontologies, constraints or dependencies. Relevant research has
focused on specific types of constraints that provide a good trade-
off between expressiveness and complexity [13, 11, 12, 19, 18, 17].

We deal with query containment under constraints that can be
written as tuple-generating dependencies (TGDs) [8, 2]. TGDs are
a generalization of the language of inclusion dependencies. Query
containment and answering under general TGDs is undecidable [7],
so efforts have been made to devise syntactic restrictions of TGDs
so that these problems are decidable and/or tractable. These de-
vised fragments are usually studied along with relevant reasoning
algorithms that allow us to solve the aforementioned problems. The
reasoning algorithm that we employ here is the well-known chase
algorithm [5, 26]. The chase is a tool that allows query answer-
ing over incomplete databases (w.r.t a set of decidable TGDs), by
“completing” the data missing. The chase is also useful for check-
ing containment; for all conjunctive queries q1, q2 and for all sets
Σ of TGD constraints, it holds that q1 is contained in q2 under the
constraints, iff the chase of q1 with Σ is contained in q2. Hence,
once having an algorithm for containment of conjunctive queries,
we can reuse it for queries under dependencies by firstly using the
chase on one of the two queries [21, 29, 10].

The chase algorithm does not always terminate (even for decid-
able TGD languages). For example under DL-Lite/OWL-2 QL [13]
axioms (which is a decidable language mostly expressible in TGDs)
the chase does not terminate (i.e., it is infinite1). For such lan-
guages there are other reasoning algorithms (e.g., perfect reformu-

1The term chase refers both to the chase algorithm and its output.



lation [13]) for query answering and containment. In other lan-
guages (such as sticky-TGDs [12] and variants of Datalog+/- [11])
only a finite part of the infinite chase is needed. While our work
has applications to these languages as well, we mainly focus on
cases of TGDs for which the chase terminates (i.e., is finite), such
as weakly-acyclic constraints [19] or full TGDs [2] (which capture
RDF/S). In this paper in particular, we focus on weakly acyclic
constraints with a single antecedent predicate. Our contributions
are the following:

• We leverage a previously introduced graph-modeling of rules [23],
which can represent multiple queries into compact graph struc-
tures, exploiting overlapping parts of these queries (Sect. 3).

• This modeling allows us to create an efficient index for the
predicates in a UCQ. Through this index we can map (or fail
to map) a certain predicate into a set of predicates/queries
at once. Moreover for a certain predicate pattern we keep
pointers to other joined predicates in the UCQ.

• This allows us to compactly chase a UCQ, by triggering con-
straints for a set of queries in batch, and by adding multiple
consequents across queries in a single step. This compact
chase algorithm runs much faster than the classic chase algo-
rithm, and in addition it results in a compact representation
of the chased queries.

• This compact graph representation of UCQs allows us to
compute homomorphisms among multiple queries in batches,
saving the redundant cost of checking each predicate of each
individual query. These designs result in a faster, more scal-
able containment under constraints. We experimentally show
(Sect. 5) that we can check containment among UCQs of sev-
eral hundreds of queries, under hundreds of constraints, be-
ing two orders of magnitude faster than the classic solutions.

2. PRELIMINARIES
Queries and Containment. We use the well-known notions of
variables, predicates, terms, and atoms of first-order logic. We use
safe conjunctive queries (CQs); these are rules of the form q(~x)←
P1(~y1), ..., Pn( ~yn) where q,P1, ..., Pn are predicates of some fi-
nite arity and ~x,~y1,..., ~yn are tuples of variables. In the scope of the
current paper we only consider variables in our queries. We define
the body of the query to be body(q) = {P1(~y1), ..., Pn( ~yn)}, while
q(~x) is the head of the query. Predicates appearing in the body of
a query stand for relations of a database schema R, while the head
represents the answer relation of the query over R. The query be-
ing safe means that ~x ⊆

⋃n

i=1
~yi. All variables in the head are

called head, distinguished, or returning variables, while the vari-
ables appearing only in the body (i.e., those in

⋃n

i=1
~yi \ ~x) are

called existential variables. The same variable name used in two
predicates denotes equality of the corresponding arguments of the
predicates, within one formula (variables across multiple rules are
considered different). For all sets of atoms S, vars(S) is the set
of variables appearing in all the atoms in S (similarly, vars(Q) is
the set of all query variables). q(I) refers to the result of evaluating
the query q over the database instance I . A union of conjunctive
queries (UCQ) is a set of queries, all having the same head. When
considering UCQs, we will formally refer to the UCQ as the query
while an individual conjunctive query in a query will be explicitly
called so. We denote conjunctive queries with lower-case letters
(e.g., q), while UCQs use upper-case letters (e.g., Q). The result of
evaluating a UCQ Q over a database I is Q(I) =

⋃
q∈Q

q(I).
The following query asks for doctors treating patients with chronic

diseases:

q1(doc, dis)← TreatsPatient(doc,pat), HasChronicDisease(pat,dis)

In our example, q1 asks only for references to the doctors and the
diseases they treat, but not to the patients that have these diseases;
this information conceptually exists in the body but is not required
in the answer. In effect, ‘pat’ is an existential variable in q1.

DEF. 1. Query Containment: For all schemasR, for all queries

Q1, Q2 on R, query Q2 is contained in query Q1, denoted by

Q2 ⊆ Q1, iff for all database instances I of R, Q2(I) ⊆ Q1(I).

DEF. 2. Query Equivalence: Q1 is equivalent to Q2, denoted

Q1
∼= Q2 iff Q1 ⊆ Q2 and Q2 ⊆ Q1.

To ground the above definitions, consider the following query
which asks for doctors treating chronic diseases such that the doctor
is also a surgeon:

q2(d, ds)← TreatsPatient(d,p), HasChronicDisease(p,ds), Surgeon(d)

It is easy to notice that q2 ⊆ q1, since q2 asks for the same infor-
mation as q1 plus an additional join with Surgeon which can only
cut down on the answers. Also, the queries are not equivalent since
q1 returns doctors who might not be surgeons. These intuitions can
be formalized with the use of containment mappings (which use
homomorphisms) [15, 2].

DEF. 3. Homomorphism: Given two sets of atoms S1, S2, a

homomorphism from S1 to S2 is a function h:vars(S1)→ vars(S2),
such that for all atoms A(~x) ∈ S1, it holds that A(h(~x)) ∈ S2.

DEF. 4. Containment Mappings: Given two conjunctive queries

q1, q2, a containment mapping from q1 to q2, is a homomorphism

h:body(q1) → body(q2) s.t. h(head(q1)) = head(q2) (a homo-

morphism h is extended over atoms, sets of atoms, and queries in

the obvious manner). For same schema conjunctive queries q1, q2,

q2 ⊆ q1 iff there is a containment mapping from q1 to q2.

For the aforementioned query, the containment mapping that proves
that q2 ⊆ q1, is h :{doc→ d, dis→ ds, pat→ p} which “maps”
q1 to q2. It is important to emphasize that containment mappings
map distinguished to distinguished variables. For example, q3 be-
low is not contained in q1 nor q2 as the disease is not being returned.

q3(d)← TreatsPatient(d,p), HasChronicDisease(p,ds), Surgeon(d)

For deciding query containment among unions of conjunctive
queries, the following holds [30].

PROPOSITION 1. For all UCQs Q1 and Q2, Q2 ⊆ Q1 iff for

all conjunctive queries qj ∈ Q2, there exists a conjunctive query

qi ∈ Q1 and a containment mapping from qi to qj .

As mentioned, deciding containment is an NP-complete problem
and containment mappings is an expensive procedure (exponential
time is expected, unless P=NP). Moreover for UCQs this procedure
has to be repeated (worst-case) for all pairs of conjunctive queries
in the two unions. As we will explain later, our algorithms try to
exploit overlapping parts of the conjunctive queries in a union so as
to prune the number of candidate containment mappings.
Constraints on the relational schema. Various forms of con-
straints have been studied in the literature. Our focus, Tuple Gen-
erating Dependencies, are a generalization of inclusion dependen-
cies. TGDs are formulas of the form: ∀~x, ~z φ(~x, ~z)→ ∃~y ψ(~x, ~y),
with φ and ψ conjunctive formulas over a schema R and ~x, ~z, ~y
tuples of variables.

The semantics of query answering in the presence of constraints
can be formalized using the notion of certain answers [1, 20]. Intu-
itively, a tuple t is a certain answer of a query Q over a schema R



with respect to a set of constraints if t is an answer in any database
I of R that is consistent with the constraints. In general, query
answering and containment under TGDs is undecidable [8, 14].
Nevertheless several syntactic restrictions have been studied that
provide expressive and useful fragments of TGDs, which are decid-
able in the problems above, and some times even computationally
tractable. Note that apart from TGDs there is another important
class of dependencies in the literature, the equality generating de-
pendencies (generalizations of functional dependencies) [14]. Al-
though we focus on TGDs we conjecture that our results are appli-
cable to certain classes of EGDs as well.
The chase [5, 26, 19]. LetB be a conjunction of atoms of some fi-
nite arity (B can be a database instance or the body of a query). Let
σ be a TGD constraint/rule of the form ∀~x, ~z φ(~x, ~z)→ ∃~y ψ(~x, ~y).
We say that the rule σ is applicable to B iff there is a homomor-
phism h from the antecedent, φ(~x, ~z) of the rule, to B (intuitively
this means that the premise of the rule holds in B), s.t. h cannot be
extended from φ(~x, ~z) ∧ ψ(~x, ~y) to B (i.e., the rule is not already
satisfied). The application of the rule happens by adding the con-
sequent of the rule in B. As the chase step we define the addition
toB of ψ(h(~x), f(~y)), where h(~x) is the tuple of the images of the
homomorphism h for the tuple ~x and f(~y)) creates fresh (that is,
new and unforseen) variables for all the (existential) variables in ~y.

The standard chase is an exhaustive series of chase steps (rule
applications) which could be terminating (i.e., be finite) or be infi-
nite depending on the constraints at hand. By chase

Σ
(B) (and oc-

casionally just chase(B) when Σ is clear from context) we denote
the result of chasing B with all constraints in a set Σ. Similarly for
a UCQ Q, chase

Σ
(Q) refers to the union of chase

Σ
(qi), for all

conjunctive queries qi ∈ Q. Next, we present a fairly general class
of TGDs called weakly acyclic TGDs [19], for which the chase is
guaranteed to terminate in polynomial time.

DEF. 5. Weakly Acyclic TGDs [19] Let Σ be a set of TGDs over

schema ℜ = {R1, R2, ..., Rn}. Construct a directed graph, called

the dependency graph, as follows:

(1) there is a node for every pair (Ri, A) with A an attribute of Ri,

call such pair (Ri, A) a position;

(2) add edges as follows: for every TGD ∀~x, ~z φ(~x, ~z)→ ∃~y ψ(~x, ~y)
in Σ, for every x in ~x that occurs in ψ and for every occurrence of

x in φ in position (Ri, Ai):

• for every occurrence of x in ψ in position (Rj , Bk), add an

edge (Ri, Ai)→ (Rj , Bk) (if it does not already exist)

• in addition, for every existentially quantified variable y and

for every occurrence of y in ψ in position (Rt, Cm), add a

special edge (Ri, Ai)  (Rt, Cm) (if it does not already

exist).

Then Σ is weakly acyclic (wa) if the dependency graph has no cycle

going through a special edge.

In this paper we will use weakly acyclic sets of constraints which
only have a single atom in the antecedent. These are known as
weakly-acyclic LAV constraints [4] and are a superset of the use-
ful class of weakly-acyclic inclusion dependencies, as well as the
class of LAV TGDs with no existential variables (LAV full TGDs),
including useful web ontology languages like RDF/S2. Weakly-
acyclic LAV constraints are known to have good properties in data
integration and exchange [3] and in inconsistent databases [4].
Containment under Constraints. A query Q2 is contained in a
query Q1 under TGD constraints Σ, denoted by Q2 ⊆Σ Q1, iff for
all databases I that satisfy Σ, Q2(I) ⊆ Q1(I).

2http://www.w3.org/RDF/

Under chase-terminating sets of constraints query containment
(or answering) can be solved by first chasing the candidate “con-
tainee” query (or data, resp.). The next theorem holds (even for non
chase-terminating constraints).

THEOREM 1. CQ Containment using the chase [21, 29, 10]:

For all conjunctive queries q1, q2, for all sets of TGD constraints

Σ, q2 ⊆Σ q1 iff there is a homomorphism that maps the body(q1)
onto the chase of the body(q2), and the head of q1 onto the head of

q2, that is q2 ⊆Σ q1 iff chase
Σ
(q2) ⊆ q1.

The above theorem is straightforwardly extended to check con-
tainment under constraints for UCQs. In effect, it holds thatQ2 ⊆Σ

Q1 iff chase
Σ
(Q2) ⊆ Q1. In order to decide containment we can

chase all conjunctive queries in Q2 then check for regular contain-
ment, through containment mappings, according to Prop. 1.

Consider the following rules which capture “domain” and “range”
properties in RDF/S, as well as “subclass” relations. Constraint c1
states that the domain and the range of the TreatsPatient relation are
Doctors and Patients respectively. Constraint c2 states that Doctors
are ClinicEmployees.
c1: ∀x, y TreatsPatient(x,y)→ Doctor(x), Patient(y)

c2: ∀x Doctor(x)→ ClinicEmployee(x)

Consider the following UCQ Q4:
q4(d)← TreatsPatient(d,p), Surgeon(d)

q4(d)← TreatsPatient(d,p), HasCronicDisease(p,dis)

q4(d)← TreatsPatient(d,p), Doctor(d)

Without considering the constraints, no query in Q4 is contained
in query q5 below:
q5(doc)← ClinicEmployee(doc), Doctor(doc)

However, under the constraints c1 and c2, the entire UCQ Q4

is contained in q5. This can seen by chasing Q4 and noticing that
there exist containment mappings from q5 to each one of the queries
in the chase(Q4):
chase(q4)(d) ← TreatsPatient(d,p), Surgeon(d), Doctor(d), Patient(p),

ClinicEmployee(d)

chase(q4)(d)← TreatsPatient(d,p), HasCronicDisease(p,dis), Doctor(d),
Patient(p), ClinicEmployee(d)

chase(q4)(d)← TreatsPatient(d,p), Doctor(d), Patient(p), ClinicEmployee(d)

The standard chase algorithm repeatedly finds homomorphisms
from the rule’s antecedents into the queries. We firstly notice that
there is a redundancy here. In effect, the chase algorithm will sepa-
rately consider the three occurrences of the predicate TreatsPatient
in Q4 and add the consequents of c1. Similarly for every different
occurrence of the Doctor predicate across all conjunctive queries,
rule c2 will be applied. In this paper we adopt a graph-based mod-
eling of queries, introduced in [23], which can compactly represent
different occurrences of the same predicate across multiple rules (in
[23] this is done for views). This ends up in an optimized chase al-
gorithm that detects homomorphisms and chases parts of multiple
queries in a single rule application. Moreover this algorithm adds
consequents in the same graph-based form, resulting in a compact
representation of the chased queries. The compact output of our
chase algorithm is tailored towards, and proves particularly use-
ful for, optimizing the relational containment algorithm as well.
Classic containment of chase(Q4) in q5 suffers for the same re-
dundancies as the chase, since the algorithm has to iterate over all
different predicates of chase(Q4) in order to find mappings for the
predicates of q5, considering the same patterns multiple times. This
redundancy would symmetrically be worse in the case that q5 was
a UCQ. All candidate “containing” queries would be checked (no
matter how overlapping they are), until we find one that maps to a
particular query in chase(Q4). As our initial results show, our com-
pact representation speeds up containment under constraints signif-
icantly. Next we present our graph-based modeling of queries.
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Figure 1: (a) The conjunctive queries in Q4, and in chase(Q4)
as graphs. (b) Predicate Join Patterns (PJs) for all the queries

in Q4.

3. GRAPH-BASED MODELING
Our graph representation, translates predicates and their argu-

ments to graph nodes. Predicate nodes are labeled with the name
of the predicate, and they are connected through edges to their ar-
guments. Shared variables between atoms result in shared variable
nodes, directly connected to predicate nodes. We equip our edges
with integer labels that stand for the variables’ positions within
the atom’s parentheses, and we discard variables’ names; the only
knowledge we require for deciding on a mapping is the types of
the variables involved. Distinguished variable nodes are depicted
with a circle, while for existential ones we use the symbol ⊗. Us-
ing these constructs the queries forQ4 of the previous section (with
abbreviated predicate names for brevity, e.g., q4(doc)← TP (doc),
S(doc)) correspond to the graphs seen on the left part of Fig. 1(a).
The right part of Fig. 1(a) shows the graph representation (again
with abbreviated predicate names) of the conjunctive queries in
chase(Q4). Our algorithms consist of mapping subgraphs of the
constraints or queries to subgraphs of queries, and to this end the
smallest subgraphs we consider represent one atom’s “pattern”:
they consist of one central predicate node and its (existential or
distinguished) variable nodes. We call these primitive graphs pred-

icate join patterns (or PJs) for the predicate they contain. Fig. 1(b)
shows all predicate join patterns that query Q4 contains.

A critical feature that boosts our algorithms’ performance is that
the patterns of predicates as graphs repeat themselves in multiple
queries. Therefore we choose to compactly represent each such
occurrence of the same predicate across different queries with the
same PJ. This has a tremendous advantage; mappings from a query
PJ to another one are computed just once instead of every time this
predicate (or set of predicates) is met in the queries. For a constraint
predicate that has 2 variables there are 4 distinct patterns as query
PJs that could potentially trigger the constraint (all combinations of
distinguished/existential variables). These 4 patterns represent all
different of occurrences of the constraint predicate in the queries,
and unless our queries contain one of these four patterns the UCQ
fails (right away) to trigger the constraint.

The “join conditions” for a particular PJ within each query are
different and some ”bookkeeping” is needed to capture these joins.
To retain this information we use a conceptual data structure called
information box (or infobox). Each infobox is attached to a vari-
able. Fig. 2 shows PJs with their infoboxes. A variable’s infobox
contains a list of queries that this PJ appears in and for each such
query the variable’s join descriptions. This way we record which
other PJs this variable (directly) joins to within any of the queries
this pattern appears in. Fig. 2(a) shows for all predicates of Q4, all
the different PJs (with their infoboxes) that appear in its conjunctive
queries (we assume the queries are named q41 ,q42 , and q43 ).

In the face of multiple occurrences of the same predicate in a
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Figure 2: (a) All the PJs of Q4 with their infoboxes. (b) All the

PJs of chase(Q4) (the result of the compact chase algorithm on

the PJs of Q4). In the two figures we see the infoboxes for all

variable nodes. For example, we can find the PJ for P (bottom

right corner of figure b) in three queries: q41 , q42 , and q43 . The

two join descriptions related to q42 in the PJ for P tell us that

its variable, in query q42 , joins with the second argument of

HCD and the second argument of TP . In figure (b) all the

pre-existing infoboxes have been updated by our algorithm to

reflect the new chased set of queries.

conjunctive query, it is suitable to imagine all query PJs discussed
so far as classes of PJs: we instantiate the same query PJ that cov-
ers a specific predicate pattern as many times as this patterns ap-
pears within the same conjunctive query. Each time we instantiate
the same PJ we “prime” its name creating a different PJ for it but
knowing that we are using the same conjunctive pattern but a sec-
ond, different time. This modeling is a natural extension of our
approach for repeated predicates in the views (described in [23]).
We omit further details due to space limitations.

4. UCQ CONTAINMENT UNDER CONST-

RAINTS
Given the set of queries and considering them as graphs, we

break them down to atomic PJs, by splitting each graph on the
shared variable nodes. On top of the PJ generation we construct
infoboxes for every variable node in those PJs. Fig. 2(a) shows all
the query PJs as constructed by this phase. The details of the PJ
construction algorithm are rather obvious and omitted, but it can be
easily verified that this phase has a polynomial complexity to the
number and length of the queries. On top of our PJ generation we
create a simple index on the queries, by creating a hashtable on ev-
ery different pattern (PJ) so we can retrieve it efficiently. As noted
for a specific pattern we might retrieve more than one PJs if we have
repeated predicates within the conjunctive queries themselves.

4.1 Our Algorithm for chasing
Algorithm 1 is used for chasing a union of queries using a set of

weakly acyclic LAV dependencies. In line 1 the algorithm iterates
over all constraints, and in line 2 finds all the different antecedents



in the queries. SetA in line 2 contains all different patterns (PJs)
for the antecedent predicate. As mentioned SetA could contain the
same exact pattern twice, in order to distinguish a predicate with
same pattern repeating itself within one query. Line 3 checks that
indeed there have been occurrences of the antecedent found in the
queries (otherwise we can go to the next constraint).

Algorithm 1 Compact Chase

Input: A UCQ query Q, a set of LAV-WA constraints Σ
Output: A set of PJs representing the chase

Σ
(Q)

1: for all σ ∈ Σ : P (~x, ~z) → C1(~x, ~y), C2(~x, ~y), ..., Cn(~x, ~y)
do

2: SetA ← RetrievePJwithPredicate(P ) //occurrences
of P (~x, ~z) in the query

3: if SetA is empty then
4: continue to the next constraint (line 1)
5: else
6: if σ has been triggered for all PJs in SetA then
7: continue to the next constraint (line 1)
8: for all PJs PJa ∈ SetA do
9: for all i, take consequent Ci of σ do

10: SetCi ← RetrievePJSet(Ci) //occurrences of
Ci(~x, ~z) in the queries

11: for all PJs PJCi
∈ SetCi do

12: for all common conjunctive queries q in PJa and
PJCi

do
13: if checkQueryPJCanBeUsed(q,PJCi

,Ci,PJa)
then

14: mark Ci already satisfied in q
15: if there is a consequentCi with a unsatisfied query q then
16: mark all other consequents as unsatisfied for query q
17: for all i, take consequent Ci of σ do
18: construct a new query PJ holding information for all con-

junctive queries q not satisfied in Ci

19: add the new query PJ in our index and update the query-
boxes of the other PJs

For every distinguished PJ, we trigger every applicable constraint
only once; if the consequents have been added for this specific PJ,
we will not apply the rule again. This is checked in line 6. In line 8
we iterate over all candidate antecedent PJs, PJa, in our UCQ and
in the following lines we will try to see whether the consequents of
the rule are already implied for some of the conjunctive queries in
the infoboxes of PJa (those are the queries that the pattern PJa
appears in). For some of those we might find PJs that imply them
and for some others we might have to create new PJs to stand for
the consequents predicates. For each consequent Ci in the rule, we
retrieve all PJs, PJCi

, that match this consequent and we get all the
common queries between PJa and PJCi

(lines 11,12). Depending
on the different join descriptions of these queries inside PJCi

, the
already existing PJ PJCi

might be useful to “stand as”Ci for some
of those queries and for some might not. This is what the call to
checkQueryPJCanBeUsed (which is shown in Alg. 2) decides.

Alg. 2 essentially checks that for a specific query the joins of Ci

are described in the query’s boxes inside PJCi
. This guarantees

that for the specific query, Ci homomorphically maps to PJCi
.

Notice that later, some other PJCj
might fail to cover another con-

sequent,C2, of the same constraint for the same query. This renders
the entire containment infeasible. The intuition is that when we
mapped PJCi

to Ci (by checking the inclusion of their joins), we
believed that there is a homomorphism from all the consequents to
the PJs of the specific conjunctive query. However Cj spoils that.
Our algorithm remembers that fact, backtracks and “cancels” all
previous associations. For ease of presentation we included this in
lines 15-16 of Alg. 1; even though in our implementation this check
is done at the same time as the mappings, using some pointers and
data structures in order to remember “what” to cancel. Lastly in

Algorithm 2 checkQueryPJCanBeUsed(q,PJCi
,Ci,PJa)

Input: A conjunctive query q, a prexisting query PJ PJCi
, a con-

straint PJ Ci, the query pattern PJa which unified with con-
straint antecedent

Output: true if PJCi
already implies Ci

1: for all edges k of PJCi
get node Nk do

2: boxq ← the query box for q from Nk’s infobox
3: Mk ← node in edge k of Ci

4: boxc← the constraint box in Mk’s infobox
5: if Mk is a distinguished in the constraint then
6: if joins with antecedent in boxc * joins in boxq then
7: return false
8: else
9: if Joins in boxc * joins in boxq then

10: return false
11: return true

line 17, we construct new PJs to hold information for all queries
and consequents left unsatisfied, essentially compactly adding con-
sequents in the original queries.

We would like to point out line 6 in Alg. 2. This basically relaxes
the demand that all joins of a variable in the constraint need to be
in the query, if that variable is a distinguished variable in the con-
straint. If a variable is a distinguished variable in the consequent
this means it belongs to the constraint antecedent as well. When
we unify the constraint antecedent with a predicate p in a query all
the consequents of the constraint mentioning this variable will au-
tomatically map this to the same variable. As an example, consider
chasing q6 with c3 below.

c3: ∀x, y TreatsPatient(x,y)→ Doctor(x), Surgeon(x), Patient(y)

q6(d)← TreatsPatient(d,p), Doctor(d)

There is no homomorphism from the consequents of c3 to q6,
nevertheless we don’t have to add the Doctor predicate again in
q6; the fact that x is in the antecedent of the rule means that there
is only one value it can take when we add it in q6, (and that is d
since TreatsPatient(x,y) unified with TreatsPatient(d,p)). Hence if
the Doctor in the query already joins with TreatsPatient on d, we
don’t have to look to satisfy other joins on the constraint.

Running our compact chase algorithm on the query PJs of Fig. 2(a)
with constraints c1 and c2, results in the query PJs of Fig. 2(b).

4.2 Our Algorithm for containment
After running our compact chase algorithm we are left with a set

of PJs representing our chased UCQ. In order to check containment
among of this UCQ in another one, we transform the second one
into PJs as well and run Alg. 3.

In line 1, our algorithm keeps list queriesLeft with all con-
junctive queries q1 in the “containee3” UCQ, Q1 (the one coming
out from the chase algorithm). As soon as we find a query q2 in
the other UCQ, Q2 (the “containing” one), such that q1 ⊆ q2, we
remove q1 from the list queriesLeft. Alg. 3 starts (line 2) by it-
erating among all PJs for Q1. For each such PJ, PJQ1

we retrieve
the same exact patterns that appear in Q2. If we fail to retrieve any
PJ in Q2 having the same pattern as PJQ1

, the algorithm instantly
fails (line 4), since this means that the queries of PJQ1

cannot be
covered (i.e., proven contained). If we do retrieve some PJs we
will try to use them to prove containments into all the queries in
the infoboxes of PJQ1

, that have not already been satisfied (line
6). For all such conjunctive queries q1 in PJQ1

, we iterate over the
retrieved PJs of Q2 and the queries they contain (lines 7-8).

3We are using the terms “‘containee” and “containing” to ease the
presentation even if containment might fail for some queries.



Algorithm 3 checkContainment({PJs in Q1},{PJs in Q2})

Input: Two sets of PJs representing the PJs of two UCQs Q1 and
Q2 resp.

Output: true if Q1 ⊆ Q2

1: queriesLeft← all conjunctive queries in Q1
2: for all PJQ1

∈ {PJs in Q1} do
3: PJsInQ2ForQ1← RetrievePJs(PJQ1

,{PJs in Q2})
4: if PJsInQ2ForQ1 is empty then
5: return false
6: for all conjunctive queries q1 in the intersection of

queriesLeft and PJQ1
do

7: for all PJQ2
∈ PJsInQ2ForQ1 do

8: for all conjunctive queries q2 in PJQ2
do

9: for all edges k of PJQ2
get node Nk do

10: boxq2 ← the query box for q2 from Nk’s infobox
11: Mk ← node in edge k of PJQ1

12: boxq1 ← the query box for q1 from Mk’s
13: if Joins in boxq2 * joins in boxq1 then
14: continue queries in PJQ2

//goto line 8
15: else
16: for all joined/neighbour PJsNPJQ2

in {PJs in
Q2} as described in boxq2 do

17: if there is no joined/neighbour PJ NPJQ1

in {PJs in Q1} as described in boxq1 , s.t.
checkPJQ2mapsOnPJQ1(NPJQ2

,NPJQ1
,q1,q2)

then
18: continue queries in PJQ2

//goto line 8
19: queriesLeft = queriesLeft \ q1

// reaching here means q2 maps to q1 so q1 is con-
tained

20: if queriesLeft is empty then
21: return true
22: else
23: continue queries in PJQ1

//goto line 6
24: return false

Inside the for loop in line 8 we consider whether a specific PJQ2

for one of the queries it contains, say q2, can map onto query q1 in
PJQ1

. This is done by looking in all variables of PJQ2
and getting

the joins described for q2 (line 10). If those joins are not contained
in q1 in PJQ1

, q2 cannot map to q1, so we should try the next
candidate containing query in the infobox of PJQ2

(lines 13-14).
Else, if the joins are contained in the information related to q1 in
the infobox of PJQ1

, this is an indication that q2 might map on
q1. However we are not done yet since we need to make sure that
the other (joined) predicates of q2 in PJQ2

can themselves map
to q1. Lines 16-18 describe this; we follow the joins described in
the corresponding infoboxes of PJQ2

and PJQ1
and make sure

the “neighboring” PJs also map to each other for q2 and q1. In
fact since we are looking to map q2 in q1, only one (line 17) of
the neighbors of PJQ1

is sufficient to cover a neighbor of PJQ2

(essentially this says that q1 can have more joins). The aforemen-
tioned check involves a call to Alg. 4 which is almost identical
to Alg. 2 and always checks that the neighbors indeed map on all
variables for queries q1, q2 (variable types don’t matter here as in
Alg. 2). Line 19 is in the for loop of line 8 and if we reach there it
means q1 was satisfied (otherwise previous lines would jump back
to the beginning of the loop and exhaust it). Hence in lines 19-23
we remove q1 from our list and goto line 6 to continue with the next
containee conjunctive query.

5. EXPERIMENTAL EVALUATION
We evaluated our approach by comparing against our implemen-

tation of the brute force algorithms for chase and UCQ containment
using containment mappings. To the best of our knowledge there is
no other optimized algorithm available for the definitions we intro-

Algorithm 4 checkPJQ2mapsOnPJQ1(PJQ2
,PJQ1

,q1,q2)

Input: Conjunctive “containee” query q1, and conjunctive “con-
taining” query q2, a “containee” query PJ PJQ1

, and a “con-
taining” query PJQ2

Output: true if q2 in PJQ2
maps to q1 in PJQ1

1: for all edges k of PJQ2
get node Nk do

2: boxq2 ← the query box for q2 from Nk’s infobox
3: Mk ← node in edge k of PJQ1

4: boxq1 ← the query box for q1 from Mk’s infobox
5: if joins in boxq2 * joins in boxq1 then
6: return false
7: return true

duced in section 2. The classic chase algorithm is straightforward:
we get all containee query predicates and for all those for which
a chase rule is applicable (i.e., there is a homomorphism from the
antecedent to the query predicate, that cannot be extended over the
consequents) we add the (image of the) consequents in the query.

The classic containment that we implemented takes all chased
containee query predicates and then looks in the first predicates
of every containing query until it finds one that can map onto the
containee predicate. For a query to be containing, all its predicates
must map to the containee, so we choose the first one as a "seed" for
the homomorphism. For that first containing predicate and a given
containee query, if we don’t find a mapping we check the next con-
tainee predicate, of the same query. If we do, then we check that the
rest of the containing query has an extended containment mapping
to the containee query; if not, we go again to the next containee
predicate, for the same query. Alg.5 describes this procedure.

Algorithm 5 checkBruteForceContainment(Q1,Q2)

Input: A “containee” UCQ query Q1, and a “containing” UCQ
query Q2

Output: true if Q1 ⊆ Q2

1: for all conjunctive queries, q1 ∈ Q1 do
2: for all conjunctive queries, q2 ∈ Q2 do
3: firstAtom← first atom of q2
4: for all atoms p1 ∈ q1 do
5: if exists a containment mapping from firstAtom to p1

then
6:
7: if exists an extension to the containment mapping

from the rest of q2 to q1 then
8: continue with the next containee query

//goto line 1
9: else

10: continue with the next containee predicate
//goto line 4

11: else
12: continue with the next containee predicate

//goto line 4
13: return false

//if we reach here there is some q1 which could not be
mapped by any q2

14: return true

We used the random-data generator from [23] to produce 1000
chain queries (queries where each predicate joins with the next
one). We created a space with 20 predicate names out of which
each conjunctive query chooses randomly 8 to populate its body
and it can choose the same one up to 5 times (for instantiating
repeated predicates). Each atom has 4 randomly generated vari-
ables. We generated the first 80 queries with 10 head variables,
and the rest with just 3. Having less distinguished variables among
the queries in general, makes the containment problem harder as
containment mappings need to map distinguished to distinguished



Figure 3: Checking containment for two UCQs of 700 queries

each, under various numbers of constraints. The containment

check fails for all cases. We run each experiment 5 times and

took the average times.

variables. For generating our constraints we wrote a weakly-acyclic
constraint generator, and we generated 200 constraints. Each con-
straint had a single antecedent predicate with 4 head variables, and
4 consequent predicates (with 4 variables each) joined in a chain.
In order to generate the predicates and variables of constraints we,
again, chose randomly from the same predicate and variable space
as in the queries. Each constraint could have up to 3 repeated pred-
icates. We run our experiments on a mac book with a 2.3GHz pro-
cessor. We implemented our code in Java and gave 2GB of RAM
to the running environment. We run two sets of experiments.

For the first run we randomly chose two sets of 700 queries out
of the same 1000 above. We ended with two UCQs with no con-
tainment between them. This fact does not change even when we
chase the containee UCQ and add more predicates to it (when q2 *
q1, then chase(q2) * q1 as well). We run containment checks for
these two sets of 700 queries under several numbers of constraints.

Fig. 3 shows our results. As the number of constraint grows, our
total time becomes about two orders of magnitude better than the
classic algorithms. Our total time is divided into the graph chase
time and the graph containment time. The latter is the time it takes
for Algorithm 3 to check containment after the queries have been
chased; it hence gives a feeling of how our algorithm behaves when
we have no constraints, and rather we have “longer” (chased) con-
tainee queries. From the graph of Fig. 3 we see that when: 1)
there is no containment among the UCQs, 2) there are no con-
straints (interpreting each point of the ‘x’ axis as a point with no
constraints but with longer “chased” containee queries), and 3) the
queries in the containee UCQ are not much “longer” than the con-
taining queries (x ≤ 150), the classic algorithm for containment
seems to perform better. This is because it is sufficient for one
query to be proved non-contained and the classic algorithm stops.
The classic containment algorithm pays the full cost when there
are actually containments for every query; it then has to check all
of them. Nevertheless we see that as the queries become larger (e.g.
after chasing them with 150 constraints in this setting), our graph
containment starts performing better (still with no constraints and
no containment). Our graph-based approach for just the contain-

Figure 4: Checking containment for two UCQs with 500 and

1000 queries resp. under various numbers of constraints. The

containment check always succeeds. We run each experiment 5

times and took the average times.

ment induces a cost of generating graphs which does not pay off
when the algorithms fail fast to prove containment, since the con-
tainee queries are "short". Nevertheless our compact format of the
containee queries pays off as they get longer (x ≥ 150).

For our second experiment we would like to see how the al-
gorithms perform when there are containment mappings (Fig. 4).
Hence for our containee UCQ we randomly chose 500 queries from
our original set of 1000 queries, and we checked for containment
against the latter (containment always exists). Here our graph-
based approach outperforms the classic times in all phases of the
problem, again by about two orders of magnitude. Interestingly,
it seems that once we have the chased containee queries as graphs
our containment time seems to remain constant, which means that
the algorithm efficiently navigates through our compact graphs and
finds the same containments at the same time even though the length
of the queries grows. This is still true when ignoring the constraints
and assuming relatively short (x > 30) chased queries as our input.

The dominating time in the algorithms in both figures is the time
to chase the queries. This is because while in the containment case
it is sufficient for one query to fail, in the chase case one needs to
consider all predicates of all containee queries. Our compact chase
algorithm does this much faster and hence is a clear win in all in-
teresting cases in both figures. Moreover, when we consider con-
straints as part of the problem our algorithms combined run much
faster than the classics, in almost all cases (with more than 30 con-
straints). An additional advantage of our approach in the presence
of constraints is that our chase algorithm outputs our graphs right
away (so in a sense we get those for free for the containment phase).

6. RELATED WORK
The problem of query containment has been thoroughly studied,

starting with the seminal work of Chandra and Merlin [15], who
proved that conjunctive query containment, without constraints, is
an NP-complete problem. Containment of conjunctive queries with
comparison predicates is πP

2 [22], and containment of datalog pro-
grams is undecidable [16]. Containment of conjunctive queries un-
der unrestricted functional and inclusion dependencies is undecid-



able [28]. Starting with the work of Johnson and Klug [21] a num-
ber of decidable combinations have been explored, using the chase
[27] as the core reasoning tool. Ensuring termination of the chase
by imposing syntactic restrictions on the form of the constraints
has been particularly fruitful [10, 11, 12, 31]. We follow on this
work by presenting an algorithm for query containment under LAV
weakly-acyclic dependencies.

7. CONCLUSIONS & FUTURE WORK
We have presented a radically improved (by two orders of mag-

nitude) solution to the problem of UCQ query containment under
weakly acyclic LAV dependencies, for which the chase terminates,
and which can represent practically important languages such as
RDFS. Inspired by our previous work on query rewriting [23], we
achieve significant scalability by exploiting common patterns in the
constraints and queries. Thus, we provide a practical algorithm to
reason and optimize query evaluation in the semantic web.

We are working towards extending the languages of supported
constraints. Extending to TGDs with more than one predicates
in the antecedent should be relatively straightforward since we al-
ready have a graph-based method for computing homomorphisms
among conjunctive formulas. Extending to non chase-terminating
cases of constraints would need a preprocessing of the containing
query as well, with algorithms that look more like perfect reformu-
lation [13] rather than the chase. In line with our previous work [23,
24] we would like to extend the algorithms presented here for sup-
porting query answering using views under constraints.
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