BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 1 (Tutors)

Question 1. Lattice derivatives

Use the definitions of the forward and backward lattice derivatives to verify the following relations:

[V#7V = [Vyvvv]_[vﬁ7vz]::0

and
Vil f(x)g(x)} = {Vuf(x)}g(x) + f(x){Vug(x)} +a{Vy f(x)}{Vug(x)}
(nosummation over u in the second result)

Assuming translational invariance in all spacetime dimensions, show that:

3

Y gAf(x) = =} Y {Vug()HV,uSf(x)}
XEAL XeAL u=0
3

= - L L {VusHVLS()}
XeAp u=0

where A = 22:0 VuV, = Zi:O Vv,V is the discretised Laplacian

Answer 1. Use the definitions
Vil (¥) =2 {f(c+ai) ~ f@, Vi) = <1f(x)~ fx - ai)]
and check explicitly
Vi ViIf) = VaVif(0) - ViV f(x)
= {f ) - f()~ f(x-ab+ai)) + fx - ab)

— fx+ap)+ f(x+ai —av)+ f(x) - f(x—av)}
=0
Check similarly for [V, Vy], [V}, Vi ].
For second result:

1 A N
Vilfg) = —{f0r+ a)glx+aih) - [(x)g(x)}
= {00+ @ 8(0) + Vg ()]~ (g0}
— (VuSG)E) + FO{Vug )} + alVu f(OHTug ()

For the last part, first observe that

Y 8{Vuf(x)} =

XEAL

XA: f(x+aj)—g(x)f(x)}

S S | —

Z;( {g(x—ap)f(x) - g(x)f(x)}
= = 2 V8@ f(x)

XEAL

1



where we used translation invariance to change g(x) f(x + afl) into g(x — aft) f(x) inside the sum-
mation (this works with both periodic or antiperiodic boundary conditions). Now check:

Y gAf(x) = ) Zg WVuViflx)=— Y Z{V#g VHV, f(x)}
XEAR XEAL u=0 XeAL u=0

and similarly forA =V, V.

Question 2. Generating functional and Feynman propagator

Verify the relation
1
exp (W[J]) = exp {5(]’ K‘lf)}

where (-, -) denotes the scalar product of lattice scalar fields

Use the following steps to derive an expression for exp {%( J,K~'J)} in terms of the scalar field prop-
agator on the lattice.

(@) RecallthatK=-V,V,+ m? and compute K J(x) using the Fourier transform for J(x). Deduce
that K acts by multiplication with p? + m?, where

N 2 (ap#>
=—gsin|—
Pu a 2

(b) Use the result in (a) and the Fourier transform for /(x) to show that

(K )(x)=a" Y, Gx—y)J ()

YeAg

where .
1 eir-(x=y)

G(x—y) = =
( y) a4L3TpEA*E p2+m2

Write down the expression for eVV! in terms of G(x—y).

Answer 2. The generating functional is

Wil = (eU9)y do( Sgl9)+U.9)
‘ < 2%‘ xEIE ¢
1 1
- xgEd¢<x>exp{—5(¢,K¢)+<L¢)}

In the exponent [using (6,A¢) = (A0, ¢)I:
1

—S0.K0)+0.0) =~ (0 - (K VLK~ K ) + 50K )

= KO+ UK)
27 277
using ¢’ = ¢ — K~!J. Now shift integration variables (Jacobian is 1):

ewm_Zi/ T] do'(x)e 53Uk — UKD D
E

XEAL

since the ¢ integration produces Z, = (det K) /2.



(@) Action of K on J(x):

1 . ip-x
S A R
E
Ly [ B L et oiseai gy e g
a4L3TpeA*E | u=0 @
1 [ 3 _eip~aﬁ_e—ip'ﬂﬁ+2 ol ipxs
. +m° | e?*
a4L3Tp€ZA*E EO( p ) I(p)

This simplifies using p-aft = ap, and

_elpait _g-ipaii Lo 9 4 ., 2
= (1 — cos(ap#)) = ?sm (apy/2) = Py

a? a?
so that )
_ ~2 2\ Ip-X 7,
K = Gipg L P+ me” )
E

(b) Now easy to invert:

;) 1 elPx A 1 el (x=y)
KW =cmr B P =4 X | apr X J)

52 52 1 72
eAr PTt+m yeA ea, Pt m

so that .
1 eip(x—y)

G(x—y)= 2)

413 52 2
a*L TpeAzp +m

Finally subsitute for K~ ! in equation 1 using the result in 2:

8
eVl = exp {% Y J(x)G(x —y)](y)}

X, yEAE



Question 3. Zero 3-momentum propagator of a free scalar field in configuration space
Let
Clxy) = @’ Y (#(x0,%)9(0)) = @’ ), G(xp, %)
X X

This is a 2-point correlator where a particle is created at the origin and propagates to any point on
the timeslice labelled by ¢ where x, = ta. The sum on x projects onto zero 3-momentum. Show that

1 etPo%o
Clxg)=—=) 55—
(xo) aT o pg +m?
Now for simplicity let T — oo so that
1 /e dp,
—y - 4Po
aTl Po _n/a 2m
leaving us to evaluate:
1 [7/a dp,e'Po%o
C(xp)

N 27[ —ﬂ:/a ﬁg‘f—mz

We can do this by contour integration.

(a) Show that the integrand has poles at p, = +im +2nn/a, for n € Z, where

. am am
sinh| — | = —

(b) For x, > 0 close the contour in the upper half plane with lines C, from 7/a+i0to n/a+ ico
and G, from —n/a+ icoto —x/a+i0. The contributions from C; and C, cancel because of the
periodicity of the integrand. For x, < 0 close the contour in the lower half plane in a similar

way. Hence show that
e_m‘xo‘

C(xO) = 2m(1 + m2a2/4)1/2

This result shows that (at least on a Euclidean lattice with infinite time extent) the free scalar two-
point function decays exponentially with time. Viewed as a function of the timeslice label ¢, the
exponent fixes ma (lattice calculations produce dimensionless numbers). Compare this to the gen-
eral discussion of two-point functions later in the lectures.

Answer 3. Using Yy elPx — 3 5p70,

1 elPo%o+ipX 1 ePoXo

C(xo):a3 — =—)y —
X a“LSTpeZA:; po+pP+m?  al o pg+m?

(a) Look for zeros of pi + m* = 4sin?(ap,/2)/a* + m?. If p, = +im, then we want

am
—4sinh2(am/2)/a2 +m*=0 or sinh <7> -



Note: m = E(p = 0) is called the physical mass, where the dispersion relation is

E 2.2 3 .
sinp? [ ZE®@)) _a'm +Y sin? (%)
2 4 = 2

Accounting for periodicity we find poles for

2
po=tim+ ﬂ, neZ
a
(b) For x; > 0 close the contour as shown and use fcl =— sz The residue at im is found by,
P - = 4Po
P fp) = —sin®(S2) 4
8_f = —Zsm (i) co (apo)
G ®.— G P, 2
d
af _ —smh( >\/ 1+ sinh? (armi/2)
> > apo pPo=im
—n/a m/a = 2im+\/1+m2a?/4

From the residue theorem

1 e ™o

= —2mi
2 2im+\/1+m?a®/4

Including the case x; < 0 gives

e_m‘xo‘

C(xy) =
(o) 2m/1+m?a?/4

The exponential falloff is governed by the physical mass. The same is true more generally by
the spectral decomposition of two-point functions: two-point functions are used to extract
particle masses.

For finite T you would get the modification e "0 — e~ "% 4 e 7(Ta=%),



BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 2 (Tutors)

Question 1. Naive discretisation of the Yang-Mills action

Consider the transformation law of the nonabelian gauge potential in the continuum
Au(x) = g(0)Au(x)g 7 (1) + g(x)dug ' (x),  g(x) €SUN), xeR
and its naive transcription to the lattice:

Au(x) = g0 A ()7 (x) + g(X)Vug ' (x),  g(x) ESUN),  x€Ag

Show that the continuum transformation law is not reproduced using the naive transcription. Hint:
apply a gauge transformation g(x) = g, (x) - & (x) in the continuum and on the lattice and compare
the results.

Answer 1. Continuum: let Aﬁ =gAu8 ' +8dug 'andlet g = g - g (where g, acts first) and com-
pare

AS = g Ag g &g & & g )
(A28 = g(eAug  +8%u& )& +8&ug = ARE:
— compatible in the continuum.

Lattice: let A8 = gA,g~' + gV, g ' and use a result from Problem Sheet 1, Q1

ASE = geAg e aeVu(g )
88418 & +8&(Vug & ' +&  Vug ) +agi& - Vug - Vusi
(A2)& = 8 (&MAug ' +&Vug e+ & Vgl = Ag® +0(a)

— not compatible: gauge invariance is broken by lattice artifacts.

Question 2. Wilson plaquette action

For gauge group SU(N), let A, (x) be a given gauge potential in the continuum which defines a link
variable U, (x) through
Uy(x) = e Al (x) = —Ay(x)

Using this definition, derive the following result for the trace of the plaquette:

TrBy(x) = Tr{Uu(x)Uy(x+ai)U} (x+ah)U;(x)}

4
a0 N % Tr (Fuy (X) By (%)) + O(a®)

where
Fuiy(x) = 9y Ay(x) — dyAu(x) + [Ayu(x), Ay (x)]

is the field tensor in the continuum.



Hint: write Tr B,, as Tr(S-T)) where
S=U/(x)Uu(x), T =U/(x+ap)U}(x+av)
and apply the Baker-Campbell-Hausdorff formula
eAeB — oATBH3ABI+ 5 [A[AB]+3;[B.[BA]+-
separately to S and T'. Use relations of the kind

Ay(x+afi) = Ay(x) + adyAy(x) + O(a”)

and expand the product S-T in powers of a before taking the trace.

Answer 2. Write Tr P, (x) = Tr(S- T) as in the question and use:
S = Uer(x)U#(x) = e~ Mv(¥) gau(x)
= exp{a(A# —Av)+%az[Au,Av]+O(as)}
T = Uf(x+ aﬁ)UJ(x + af/) _ eaAv(x—i-a[L)e—aAu(x-&-a\?)
=" exp {—a(A# —Ay) +a*(IuAy — A, + %az [Ay, Ay] + O(a3)}
ST = exp{azF,’erO(a?’)}
Now expand the exponential and take the trace:

e uselrk,, =0

e traces over ‘nested’ commutators vanish: Lie algebra reduces these to (vanishing) traces over
generators

e O(a®) term comprises such nested commutators

Finally:

4 4
a a
Te(S- T) = Tr <1+a2F,‘w+O(a3)+?1~Lv1:l’w+...> - N+?Tr(Fva}w)+ 0(d®)



BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 3 (Tutors)

Question 1. Strong coupling expansion at order °

Consider the strong coupling expansion of a Wilson loop W (R, T) of size R x T for gauge group
SU(3). Compute the contribution at order 2 by evaluating a graph like:

Combine the result with that obtained at order  and derive the expression for the string tension o
by observing that
W(R,T))=e VBT V(R)~0oR

Hint: use the expressions for group integrals in SU (3), in particular:
1
AU U;; Uy, Upp = 31 EikmEin

Answer 1. Consider a tiling like the one shown in the question.

Each plaquette contributes /2N = /6 (set N = 3 from now on)

RT possibilities to place D on surface

e Canswap ‘inner’ and ‘outer’ plaquettes in L] giving symmetry factor of 1/2 (quadratic term

in exponential series gives 1/2!)
RT+1
1
— ZRT E
2 6

Integration over each pair of links =— gives 1/3

1\ B+DTHR(T+1)~4
= ()




. . —_— .
e Integration over 3 links —} gives 1/3!

()

e Every site where 8 links meet contributes a factor 3 (just as in lowest order contribution; also

works at edges, corners)
(R+1)(T+1)—4

- 3
e Every site where 10 links meet contributes a factor of 3!.

Group integrals give allp clla
0ead,p, 6,461, Oqudur OsrOrm el |f gl [n

XE o€ €€ € & € € i

ifb“jgc “jgh®lpqg “lpt“kns “knm®ife v ] \

€ rp€irb €jgc€ige Eipg€ipg Ekns€ins k 1
313131 3! mpn P14
. 3y r|fs t|lu

e Recall 1/N = 1/3 in definition of Wilson loop.

Putting everything together:
1 RT+1 ;1\ (RF)T+R(T+1)-4 , 1\ 4 1 RT
(5] G) () 3" e =re()(55)
and combining with the lowest order result:

(W(R,T)) = (%)RT(I + RTF—2 + O(ﬁ2)>

eRTln(B/lS) (eRTﬁ/IZ + O(ﬁz))

= exp{RT[In(B/18)+ B/12] + O(B*)} ~ e °F"
so that
B\ B

6=—In (E) 5+ 0

Question 2. Ginsparg-Wilson relation and exact chiral symmetry

Let Q be an arbitrary lattice transcription of the free Dirac operator in Euclidean spacetime. Assume
that Q satisfies the Ginsparg-Wilson relation,

{Q,%} = aQyQ

Show that the fermion lattice action

Sw,vl=a" Y, w(x)(Qy)(x)

XeAR

is invariant under the global infinitesimal transformation

1 . . . 1
w—>l//+675(1—5aQ)1//, W—>W+8W(1—EQQ)75

Compare to the usual chiral transformation in the continuum.



Answer 2. Using

1 _ _ 1
Sy =eys(1— EaQ)w and Sy =¢ey(l- EdQ)Ys

you find
88 = da'') {5VQvw+yQsy}
XeAL
1 1
- Sa4x€ZAEW{(1—EaQ)YsQJrQYs(l—EaQ)}W
= ed' Y V(5Q+Qy—aQyQv
XEAR

= 0 (bythe G-Wrelation ;Q + Qy; = aQyQ)

Question 3. Neuberger’s operator

Follow the steps outlined below to show that Neuberger’s operator satisfies the Ginsparg-Wilson

relation.

Recall that Neuberger’s operator is defined through

Qy = %(1 —AATA)TV?), A=1-aQ,

where )
* a *
QW = 5’}/“ (V“ —|—V“) — EV“V#

is the free massless Wilson-Dirac operator. The combination U = A(AA)~1/2

satisfies
utu=1, yUp=U"
(a) Show that any operator which satisfies the properties in equation 2 also satisfies
K1-U) ' =1-(1-0)"
Hint: recall that y5*1 =Y.
(b) Use the result of equation 3 and the definition of Qy in equation 1 to show that

QnYs + % Qn = aQn ¥ Qy

which is the Ginsparg-Wilson relation.

Answer 3.

(a) Rewrite in several steps ...
Ys(1— U)7175 = 7571(1 - U)717571 = (%(1- U)V5)_l
= (1-%Up) '=a-UH"
vuta-uht=u@-uhu)!

- vu-1nt=—va-u)yt=g-uv-na-u)!

sothaty;(1-U) 'y =1-(1-U)"".

10
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(b) Use the definition Qy = %(1 —A(ATA)1/?) = %(1 — U) in the result from (a):

na Q' =1-a'Qy'

Multiply by ay; on right:
7’5Q1§1 =aYs — Qﬁl%
then multiply by Qy on both sides

QnYs + % Qn = aQy ¥ Qy

which is the G-W relation.

11



BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 4 (Tutors)

Question 1. Quark matrix

Consider the fermionic part of the QCD lattice action with Wilson fermions,

SEU Wyl = Y, U(x)(Qy)(x)= Y, W(x)Qqw(y)

XEAR X, yEAE

where the quark matrix is given by:
Quy = ey — & 2 {8l U+ 8, (Ul |

(a) Show that QT}/5 = Q (recall that y, = }/J and {7,755} =0)

(b) Use the result in (a) to show that (det Q) is real

Answer 1. Note that Q" here means transpose colour, spin and site indices and take complex con-
jugate.

For the first part:

3
(YsQT?’5)xy :Ys(QT)xﬂ’s = Y50yx¥s — #ZO[ xyﬂﬂ’s VJ)%UJ(J’)+5x7y,ﬁ75(1+7J)V5Uu(x)]

3
= byx L 18, a1 M) Ua0) +8, 1 (147U} )]
e
= Qxy

We interchanged the two terms in |- - -] in going from the first to the second line.

For the second part:

det Q = det(y Q") = (det ;) det(Q") = det(y?)(det Q)" = (det Q)*

Question 2. Fixed point of Neuberger’s construction

Starting from a Dirac operator Q (satisfying Q" = Y5 QYs), Neuberger’s operator, Qy;, is constructed

according to:
A

VATA'
Show that if Q already satisfies the Ginsparg-Wilson relation, then it is reproduced by the Neuberger
construction, Qy = Q.

A=1-aQ, U=

1
QN: ;(1_U)~

12



Answer 2. Note that

ATA=(1-aQ")(1-aQ) = (1-ayQy)(1-aQ) =1-ayQy - aQ+d’yQyQ =1
since Q already satisfies GW. So, U = Aand Qy = Q.

Question 3. Ginsparg-Wilson eigenvalues

If a Dirac operator Q, satisfying Q" = Y5 Q7s, also satisfies the Ginsparg-Wilson relation, {Q, y;} =
aQy;Q, show that Q’s eigenvalues lie on the circle (1 +e®)/a.

Answer 3. Consider an eigenvector e with eigenvalue A, Qe = Ae. The Dirac condition on Q gives,
eTYE,Q = eTQT?’s = Fe”’s-
The GW relation gives,
Qrse = (aQyQ—1Q)e = A(aQy — 15)e,

or

Qyse = Yse.

1—ai
Combining these two results,
iy ‘
e'e.
1—al

ey Qre=21e'e=

Since e'e > 0, we find, N
T 1-ad

which is solved (for example by letting aA = 1+ & and finding &) to get

1 .
A=—(1+e).
a

Question 4. Step-scaling

In quenched SU(3) Yang-Mills, at large f3, so that one-loop perturbation theory holds, by how much
should you increase 3 to halve the lattice spacing a?

Answer 4. Forlarge  (small g,), use the 1-loop result,

Integrate to get,
In(a,/a) 1 (1 1)
na/a)=—\—5—-——1-
7 2, & &
InSU@3), by = 11/16x%, and B = 6/gZ, so

1167°% 1

ln(az/al)zi 11 E(ﬁl_ﬁ2)~

For a, = a, /2, this gives AB = B, — B, = 33In2/4x* = 0.579.
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