
BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 1 (Tutors)

Question 1. Lattice derivatives

Use the definitions of the forward and backward lattice derivatives to verify the following relations:

[∇µ ,∇ν ] = [∇∗
µ ,∇∗

ν ] = [∇µ ,∇∗
ν ] = 0

and

∇µ{ f (x)g (x)} = {∇µ f (x)}g (x)+ f (x){∇µ g (x)}+ a{∇µ f (x)}{∇µ g (x)}
(no summation over µ in the second result)

Assuming translational invariance in all spacetime dimensions, show that:

∑
x∈ΛE

g (x)∆ f (x) = − ∑
x∈ΛE

3

∑
µ=0

{∇µ g (x)}{∇µ f (x)}

= − ∑
x∈ΛE

3

∑
µ=0

{∇∗
µ g (x)}{∇∗

µ f (x)}

where ∆ = ∑3
µ=0 ∇µ ∇∗

µ = ∑3
µ=0 ∇∗

µ ∇µ is the discretised Laplacian

Answer 1. Use the definitions

∇µ f (x) =
1

a
[ f (x + aµ̂)− f (x)], ∇∗

µ f (x) =
1

a
[ f (x)− f (x −aµ̂)]

and check explicitly

[∇µ ,∇∗
ν ] f (x) = ∇µ ∇∗

ν f (x)−∇∗
ν ∇µ f (x)

=
1

a2

{

f (x + aµ̂)− f (x)− f (x −aν̂ + aµ̂)+ f (x −aν̂)

− f (x + aµ̂)+ f (x + aµ̂ −aν̂)+ f (x)− f (x −aν̂)
}

= 0

Check similarly for [∇µ ,∇ν ], [∇∗
µ ,∇∗

ν ].

For second result:

∇µ{ f (x)g (x)} =
1

a
{ f (x + aµ̂)g (x + aµ̂)− f (x)g (x)}

=
1

a

{

[ f (x)+ a∇µ f (x)][g (x)+ a∇µ g (x)]− f (x)g (x)
}

= {∇µ f (x)}g (x)+ f (x){∇µ g (x)}+ a{∇µ f (x)}{∇µ g (x)}

For the last part, first observe that

∑
x∈ΛE

g (x){∇µ f (x)} =
1

a
∑

x∈ΛE

{g (x) f (x + aµ̂)− g (x) f (x)}

=
1

a
∑

x∈ΛE

{g (x −aµ̂) f (x)− g (x) f (x)}

= − ∑
x∈ΛE

{∇∗
µ g (x)} f (x)
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where we used translation invariance to change g (x) f (x + a µ̂) into g (x − aµ̂) f (x) inside the sum-

mation (this works with both periodic or antiperiodic boundary conditions). Now check:

∑
x∈ΛE

g (x)∆ f (x) = ∑
x∈ΛE

3

∑
µ=0

g (x)∇µ ∇∗
µ f (x) = − ∑

x∈ΛE

3

∑
µ=0

{∇∗
µ g (x)}{∇∗

µ f (x)}

and similarly for ∆ = ∇∗
µ∇µ .

Question 2. Generating functional and Feynman propagator

Verify the relation

exp(W [J ]) = exp

{

1

2
(J ,K−1J)

}

where (·, ·) denotes the scalar product of lattice scalar fields

Use the following steps to derive an expression for exp{1
2
(J ,K−1J)} in terms of the scalar field prop-

agator on the lattice.

(a) Recall that K =−∇∗
µ∇µ +m2 and compute K J(x) using the Fourier transform for J(x). Deduce

that K acts by multiplication with p̂2 +m2, where

p̂µ =
2

a
sin

(apµ

2

)

(b) Use the result in (a) and the Fourier transform for J(x) to show that

(K−1J)(x) = a4 ∑
y∈ΛE

G(x−y) J(y)

where

G(x−y) =
1

a4L3T
∑

p∈Λ∗
E

eip·(x−y )

p̂2 +m2

Write down the expression for eW [J ] in terms of G(x−y).

Answer 2. The generating functional is

eW [J ] = 〈e(J ,φ)〉 =
1

ZE

∫

∏
x∈ΛE

dφ(x)e−SE [φ ]+(J ,φ)

=
1

ZE

∫

∏
x∈ΛE

dφ(x)exp

{

−
1

2
(φ ,K φ)+ (J ,φ)

}

In the exponent [using (θ ,Aφ) = (ATθ ,φ)]:

−
1

2
(φ ,K φ)+ (J ,φ) = −

1

2

(

φ − (K−1)TJ ,K (φ −K−1J)
)

+
1

2
(J ,K−1J)

= −
1

2
(φ ′,K φ ′)+

1

2
(J ,K−1J)

using φ ′ = φ −K−1J . Now shift integration variables (Jacobian is 1):

eW [J ] =
1

ZE

∫

∏
x∈ΛE

dφ ′(x)e−SE [φ ′]e
1
2
(J ,K−1J) = e

1
2
(J ,K−1J) (1)

since the φ ′ integration produces ZE = (det K )−1/2.
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(a) Action of K on J(x):

K J(x) =
1

a4L3T
∑

p∈Λ∗
E

(−∇∗
µ ∇µ +m2)eip·x J̃(p)

=
1

a4L3T
∑

p∈Λ∗
E

[

3

∑
µ=0

1

a2
(− eip·(x+aµ̂) − eip·(x−aµ̂) + 2eip·x ) +m2eip·x

]

J̃(p)

=
1

a4L3T
∑

p∈Λ∗
E

[

3

∑
µ=0

(
−eip·aµ̂ − e−ip·aµ̂ + 2

a2
)+m2

]

eip·x J̃(p)

This simplifies using p·aµ̂ = apµ and

−eip·aµ̂ − e−ip·aµ̂ + 2

a2
=

2

a2

(

1− cos(apµ)
)

=
4

a2
sin2(apµ/2) = p̂2

µ

so that

K J(x) =
1

a4L3T
∑

p∈Λ∗
E

(p̂2 +m2)eip·x J̃(p)

(b) Now easy to invert:

K−1J(x) =
1

a4L3T
∑

p∈Λ∗
E

eip·x

p̂2 +m2
J̃(p) = a4 ∑

y∈ΛE

(

1

a4L3T
∑

p∈Λ∗
E

eip·(x−y )

p̂2 +m2

)

J(y)

so that

G(x − y) =
1

a4L3T
∑

p∈Λ∗
E

eip·(x−y )

p̂2 +m2
(2)

Finally subsitute for K−1 in equation 1 using the result in 2:

eW [J ] = exp

{

a8

2
∑

x ,y∈ΛE

J(x)G(x − y)J(y)

}
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Question 3. Zero 3-momentum propagator of a free scalar field in configuration space

Let

C (x0) = a3 ∑
x

〈φ(x0,x)φ(0)〉 = a3 ∑
x

G(x0,x)

This is a 2-point correlator where a particle is created at the origin and propagates to any point on

the timeslice labelled by t where x0 = t a. The sum on x projects onto zero 3-momentum. Show that

C (x0) =
1

aT
∑
p0

eip0x0

p̂2
0 +m2

Now for simplicity let T → ∞ so that

1

aT
∑
p0

→
∫ π/a

−π/a

dp0

2π

leaving us to evaluate:

C (x0) =
1

2π

∫ π/a

−π/a

dp0eip0x0

p̂2
0 +m2

We can do this by contour integration.

(a) Show that the integrand has poles at p0 = ±i m + 2nπ/a, for n ∈ Z, where

sinh

(

am

2

)

=
am

2

(b) For x0 > 0 close the contour in the upper half plane with lines C1 from π/a + i 0 to π/a + i ∞
and C2 from −π/a + i ∞ to −π/a + i 0. The contributions from C1 and C2 cancel because of the

periodicity of the integrand. For x0 < 0 close the contour in the lower half plane in a similar

way. Hence show that

C (x0) =
e−m|x0|

2m(1 +m2a2/4)1/2

This result shows that (at least on a Euclidean lattice with infinite time extent) the free scalar two-

point function decays exponentially with time. Viewed as a function of the timeslice label t , the

exponent fixes ma (lattice calculations produce dimensionless numbers). Compare this to the gen-

eral discussion of two-point functions later in the lectures.

Answer 3. Using ∑x eip·x = L3δp,0,

C (x0) = a3 ∑
x

1

a4L3T
∑

p∈Λ∗
E

eip0x0+ip·x

p̂2
0 + p̂2 +m2

=
1

aT
∑
p0

eip0x0

p̂2
0 +m2

(a) Look for zeros of p̂2
0 +m2 = 4 sin2(ap0/2)/a2 +m2. If p0 = ±i m, then we want

−4 sinh2(am/2)/a2 +m2 = 0 or sinh

(

am

2

)

=
am

2
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Note: m = E(p = 0) is called the physical mass, where the dispersion relation is

sinh2

(

aE(p)

2

)

=
a2m2

4
+

3

∑
i=1

sin2
(api

2

)

Accounting for periodicity we find poles for

p0 = ±i m +
2nπ

a
, n ∈ Z

(b) For x0 > 0 close the contour as shown and use
∫

C1
= −

∫

C2
. The residue at i m is found by,

π/a−π/a

C2 C1i m

p0 f (p0) =
4

a2
sin2

(ap0

2

)

+m2

∂ f

∂p0

=
4

a2
2 sin

(ap0

2

)

cos

(ap0

2

)a

2

∂ f

∂p0

∣

∣

∣

∣

p0=i m

=
4i

a
sinh

(am

2

)

√

1 + sinh2(am/2)

= 2im
√

1 +m2a2/4

From the residue theorem

C (x0) =
1

2π
2π i

e−mx0

2im
√

1 +m2a2/4

Including the case x0 < 0 gives

C (x0) =
e−m|x0|

2m
√

1 +m2a2/4

The exponential falloff is governed by the physical mass. The same is true more generally by

the spectral decomposition of two-point functions: two-point functions are used to extract

particle masses.

For finite T you would get the modification e−mx0 → e−mx0 + e−m(Ta−x0).
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BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 2 (Tutors)

Question 1. Naive discretisation of the Yang-Mills action

Consider the transformation law of the nonabelian gauge potential in the continuum

Aµ(x) → g (x)Aµ(x)g−1(x)+ g (x)∂µ g−1(x), g (x) ∈ SU (N), x ∈ R
4

and its naive transcription to the lattice:

Aµ(x) → g (x)Aµ(x)g−1(x)+ g (x)∇µ g−1(x), g (x) ∈ SU (N), x ∈ ΛE

Show that the continuum transformation law is not reproduced using the naive transcription. Hint:

apply a gauge transformation g (x) = g1(x) · g2(x) in the continuum and on the lattice and compare

the results.

Answer 1. Continuum: let Ag
µ = g Aµ g−1 + g ∂µg−1 and let g = g1 · g2 (where g2 acts first) and com-

pare

Ag1g2
µ = g1g2Aµ g−1

2 g−1
1 + g1g2(∂µ g−1

2 · g−1
1 + g−1

2 ∂µ g−1
1 )

(Ag2
µ )g1 = g1(g2Aµ g−1

2 + g2∂µ g−1
2 )g−1

1 + g1∂µ g−1
1 = Ag1g2

µ

−→ compatible in the continuum.

Lattice: let Ag
µ = g Aµ g−1 + g ∇µ g−1 and use a result from Problem Sheet 1, Q1

Ag1g2
µ = g1g2Aµ g−1

2 g−1
1 + g1g2∇µ(g−1

2 g−1
1 )

= g1g2Aµ g−1
2 g−1

1 + g1g2(∇µ g−1
2 · g−1

1 + g−1
2 ·∇µ g−1

1 )+ ag1g2 ·∇µ g−1
2 ·∇µ g−1

1

(Ag2
µ )g1 = g1(g2Aµ g−1

2 + g2∇µ g−1
2 )g−1

1 + g1∇µ g−1
1 = Ag1g2

µ + O(a)

−→ not compatible: gauge invariance is broken by lattice artifacts.

Question 2. Wilson plaquette action

For gauge group SU (N), let Aµ(x) be a given gauge potential in the continuum which defines a link

variable Uµ(x) through

Uµ(x) = eaAµ (x), A†
µ(x) = −Aµ(x)

Using this definition, derive the following result for the trace of the plaquette:

Tr Pµν(x) = Tr
{

Uµ(x)Uν(x+aµ̂)U †
µ (x+aν̂)U †

ν (x)
}

a→0
= N +

a4

2
Tr (Fµν(x)Fµν (x)) + O(a5)

where

Fµν(x) = ∂µ Aν(x)− ∂ν Aµ(x)+ [Aµ(x),Aν(x)]

is the field tensor in the continuum.
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Hint: write Tr Pµν as Tr(S·T ) where

S = U †
ν (x)Uµ(x), T = Uν(x+aµ̂)U †

µ (x+aν̂)

and apply the Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2
[A,B]+ 1

12
[A,[A,B]]+ 1

12
[B,[B,A]]+···

separately to S and T . Use relations of the kind

Aν(x + aµ̂) = Aν(x)+ a∂µ Aν(x)+ O(a2)

and expand the product S·T in powers of a before taking the trace.

Answer 2. Write Tr Pµν(x) = Tr(S ·T ) as in the question and use:

S = U †
ν (x)Uµ(x) = e−aAν(x)eaAµ (x)

BCH
= exp

{

a(Aµ −Aν)+
1

2
a2[Aµ ,Aν ]+ O(a3)

}

T = Uν(x + aµ̂)U †
µ (x + aν̂) = eaAν (x+aµ̂)e−aAµ (x+aν̂)

BCH
= exp

{

−a(Aµ −Aν)+ a2(∂µ Aν − ∂ν Aµ)+
1

2
a2[Aµ ,Aν ]+ O(a3)

}

S ·T
BCH
= exp

{

a2Fµν + O(a3)
}

Now expand the exponential and take the trace:

• use Tr Fµν = 0

• traces over ‘nested’ commutators vanish: Lie algebra reduces these to (vanishing) traces over

generators

• O(a3) term comprises such nested commutators

Finally:

Tr(S ·T ) = Tr

(

1 + a2Fµν + O(a3)+
a4

2
Fµν Fµν + · · ·

)

= N +
a4

2
Tr(Fµν Fµν)+ O(a5)
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BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 3 (Tutors)

Question 1. Strong coupling expansion at order β 2

Consider the strong coupling expansion of a Wilson loop W (R,T ) of size R × T for gauge group

SU (3). Compute the contribution at order β 2 by evaluating a graph like:

Combine the result with that obtained at order β and derive the expression for the string tension σ
by observing that

〈W (R,T )〉 = e−V (R)T , V (R) ≈ σR

Hint: use the expressions for group integrals in SU (3), in particular:

∫

dU Ui j Ukl Umn =
1

3!
εikmε jln

Answer 1. Consider a tiling like the one shown in the question.

• Each plaquette contributes β/2N = β/6 (set N = 3 from now on)

• RT possibilities to place on surface

• Can swap ‘inner’ and ‘outer’ plaquettes in , giving symmetry factor of 1/2 (quadratic term

in exponential series gives 1/2!)

−→
1

2
RT

(

β
6

)RT +1

• Integration over each pair of links gives 1/3

−→
(

1

3

)(R+1)T+R(T+1)−4
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• Integration over 3 links gives 1/3!

−→
(

1

3!

)4

• Every site where 8 links meet contributes a factor 3 (just as in lowest order contribution; also

works at edges, corners)

−→ 3(R+1)(T+1)−4

• Every site where 10 links meet contributes a factor of 3!.

Group integrals give

δeaδab δcdδdh δquδut δsr δrm

× εi f bε jg c ε jg hεlpq εlpt εkns εknmεi f e

= εi f bεi f b ε jg cε jg c εlpqεlpq εknsεkns

= 3! 3! 3! 3!

−→ (3!)4

m n

sr

p q

ut

c d

hg

a b

fe
i j

lk

• Recall 1/N = 1/3 in definition of Wilson loop.

Putting everything together:

1

2
RT

(β
6

)RT +1(1

3

)(R+1)T+R(T+1)−4( 1

3!

)4

3(R+1)(T+1)−4 (3!)4 1

3
= RT

( β
18

)RT( β
12

)

and combining with the lowest order result:

〈W (R,T )〉 =
( β

18

)RT(

1 + RT
β
12

+ O(β 2)
)

= eRT ln(β/18)
(

eRT β/12 + O(β 2)
)

= exp
{

RT [ln(β/18)+ β/12] + O(β 2)
}

≈ e−σRT

so that

σ = − ln

( β
18

)

−
β
12

+ O(β 2)

Question 2. Ginsparg-Wilson relation and exact chiral symmetry

Let Q be an arbitrary lattice transcription of the free Dirac operator in Euclidean spacetime. Assume

that Q satisfies the Ginsparg-Wilson relation,

{Q, γ5} = aQγ5Q

Show that the fermion lattice action

S[ψ,ψ ] = a4 ∑
x∈ΛE

ψ(x)(Qψ)(x)

is invariant under the global infinitesimal transformation

ψ → ψ + εγ5(1−
1

2
aQ)ψ , ψ → ψ + εψ(1−

1

2
aQ)γ5

Compare to the usual chiral transformation in the continuum.

9



Answer 2. Using

δ ψ = εγ5(1−
1

2
aQ)ψ and δ ψ = εψ(1−

1

2
aQ)γ5

you find

δ S = a4 ∑
x∈ΛE

{δ ψQψ + ψQδ ψ}

= εa4 ∑
x∈ΛE

ψ
{

(1−
1

2
aQ)γ5Q + Qγ5(1−

1

2
aQ)

}

ψ

= εa4 ∑
x∈ΛE

ψ(γ5Q + Qγ5 −aQγ5Q)ψ

= 0 (by the G-W relation γ5Q + Qγ5 = aQγ5Q)

Question 3. Neuberger’s operator

Follow the steps outlined below to show that Neuberger’s operator satisfies the Ginsparg-Wilson

relation.

Recall that Neuberger’s operator is defined through

QN =
1

a
(1−A(A†A)−1/2), A = 1−aQW (1)

where

QW =
1

2
γµ(∇µ + ∇∗

µ)−
a

2
∇∗

µ∇µ

is the free massless Wilson-Dirac operator. The combination U = A (A†A)−1/2 satisfies

U †U = 1, γ5U γ5 = U † (2)

(a) Show that any operator which satisfies the properties in equation 2 also satisfies

γ5(1−U )−1γ5 = 1− (1−U )−1 (3)

Hint: recall that γ −1
5 = γ5.

(b) Use the result of equation 3 and the definition of QN in equation 1 to show that

QNγ5 + γ5QN = aQNγ5QN

which is the Ginsparg-Wilson relation.

Answer 3.

(a) Rewrite in several steps . . .

γ5(1−U )−1γ5 = γ −1
5 (1−U )−1γ −1

5 = (γ5(1−U )γ5)
−1

= (1− γ5U γ5)
−1 = (1−U †)−1

= UU−1(1−U †)−1 = U ((1−U †)U )−1

= U (U − 1)−1 = −U (1−U )−1 = (1−U − 1)(1−U )−1

so that γ5(1−U )−1γ5 = 1− (1−U )−1.
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(b) Use the definition QN = 1
a
(1−A(A†A)−1/2) = 1

a
(1−U ) in the result from (a):

γ5a−1Q−1
N γ5 = 1−a−1Q−1

N

Multiply by aγ5 on right:

γ5Q−1
N = aγ5 −Q−1

N γ5

then multiply by QN on both sides

QNγ5 + γ5QN = aQNγ5QN

which is the G-W relation.
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BUSSTEPP 2002
Lattice Methods in Field Theory: Problem Sheet 4 (Tutors)

Question 1. Quark matrix

Consider the fermionic part of the QCD lattice action with Wilson fermions,

SF [U ,ψ,ψ ] = ∑
x∈ΛE

ψ(x)(Qψ)(x) = ∑
x ,y∈ΛE

ψ(x)Qxy ψ(y)

where the quark matrix is given by:

Qxy = δxy −κ
3

∑
µ=0

{

δ
y,x+µ̂(1− γµ)Uµ(x)+ δ

y,x−µ̂(1 + γµ)U †
µ (y)

}

(a) Show that γ5Q†γ5 = Q (recall that γµ = γ †
µ and {γµ , γ5} = 0)

(b) Use the result in (a) to show that (det Q) is real

Answer 1. Note that Q† here means transpose colour, spin and site indices and take complex con-

jugate.

For the first part:

(γ5Q†γ5)xy = γ5(Q†)xy γ5 = γ5δy x γ5 −κ
3

∑
µ=0

[

δ
x ,y+µ̂γ5(1− γ †

µ )γ5U †
µ (y)+ δ

x ,y−µ̂ γ5(1 + γ †
µ )γ5Uµ(x)

]

= δxy −κ
3

∑
µ=0

[

δ
y,x+µ̂(1− γµ)Uµ(x)+ δ

y,x−µ̂(1 + γµ)U †
µ (y)

]

= Qxy

We interchanged the two terms in [· · ·] in going from the first to the second line.

For the second part:

det Q = det(γ5Q†γ5) = (det γ5)
2 det(Q†) = det(γ 2

5 )(det Q)∗ = (det Q)∗

Question 2. Fixed point of Neuberger’s construction

Starting from a Dirac operator Q (satisfying Q† = γ5Qγ5), Neuberger’s operator, QN, is constructed

according to:

A = 1−aQ, U =
A√
A†A

, QN =
1

a
(1−U ).

Show that if Q already satisfies the Ginsparg-Wilson relation, then it is reproduced by the Neuberger

construction, QN = Q.
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Answer 2. Note that

A†A = (1−aQ†)(1−aQ) = (1−aγ5Qγ5)(1−aQ) = 1−aγ5Qγ5 −aQ + a2γ5Qγ5Q = 1

since Q already satisfies GW. So, U = A and QN = Q.

Question 3. Ginsparg-Wilson eigenvalues

If a Dirac operator Q, satisfying Q† = γ5Qγ5, also satisfies the Ginsparg-Wilson relation, {Q, γ5} =

aQγ5Q, show that Q’s eigenvalues lie on the circle (1 + eiθ )/a.

Answer 3. Consider an eigenvector e with eigenvalue λ, Qe = λe. The Dirac condition on Q gives,

e†γ5Q = e†Q†γ5 = λ∗e†γ5.

The GW relation gives,

Qγ5e = (aQγ5Q − γ5Q)e = λ(aQγ5 − γ5)e,

or

Qγ5e =
−λ

1−aλ
γ5e.

Combining these two results,

e†γ5Qγ5e = λ∗e†e =
−λ

1−aλ
e†e.

Since e†e > 0, we find,

λ∗ =
−λ

1−aλ
,

which is solved (for example by letting aλ = 1 + ξ and finding ξ ) to get

λ =
1

a
(1 + eiθ ).

Question 4. Step-scaling

In quenched SU (3) Yang-Mills, at large β , so that one-loop perturbation theory holds, by how much

should you increase β to halve the lattice spacing a?

Answer 4. For large β (small g0), use the 1-loop result,

−a
∂ g0

∂ a
= −b0g 3

0 .

Integrate to get,

ln(a2/a1) =
1

2b0

(

1

g 2
1

−
1

g 2
2

)

.

In SU(3), b0 = 11/16π 2, and β = 6/g 2
0 , so

ln(a2/a1) =
1

2

16π 2
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1

6
(β1 −β2).

For a2 = a1/2, this gives ∆β = β2 −β1 = 33 ln 2/4π 2 = 0.579.
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