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Abstract

I discuss the application of lattice simulations to particle physics phenomenology. After
a general introduction, I discuss the application of lattice computations to B-physics, I also
present a brief review of recent attempts to compute the matrix elements relevant for two-
hadron final states, such as those in K → ππ decays or the decays of B-mesons into two light
mesons.

1 Introduction

It is an embarrassment that for many physical processes, the leading error in extracting fundamental
information from experimental data is a theoretical one, namely our inability to compute the long-
distance QCD effects. During the last 15 years or so, lattice simulations have been used to quantify
these effects. In these lectures I will present an introduction to lattice simulations and illustrate
their value by discussing applications to a wide variety of quantities in B-physics (and in the final
section to K → ππ decays). For students who wish to study lattice field theory in detail I am happy
to recommend the books by Creutz [1] (for a detailed introduction to the formulation of lattice field
theory) and by Montvay and Münster [2]. I also draw to your attention the notes from the previous
time I lectured at the Spanish Summer School in 1995 in Almuñecar [3].

Lattice phenomenology starts with the evaluation of correlation functions of the form

〈0 |O(x1,x2, · · · ,xn) |0〉 =
1
Z

∫

[dAµ ] [dψ] [dψ̄] eiS O(x1,x2, · · · ,xn) , (1)

where O(x1,x2, · · · ,xn) is a multilocal operator composed of quark and gluon fields and Z is the
partition function:

Z =
∫

[dAµ ] [dψ] [dψ̄] eiS . (2)

These formulae are written in Minkowski space whereas lattice calculations are performed in Eu-
clidean space, and so one makes the replacement exp(iS) → exp(−S). The functional integral is
evaluated by discretising space-time and using Monte-Carlo integration.

The physics which can be studied depends on the choice of the multi-local operator O, and we will
see many examples of such operators in these lectures.

1



H
0 t

Figure 1: Pictorial representation of the two-point correlation function in eq.(6).

1.1 Two-Point Correlation Functions

We start with the simple case in which the operator O in eq.(1) is a bilocal one, and consider
two-point correlation functions of the form:

C2(t) =

∫

d 3x ei~p·~x〈0 |J(~x, t)J†(~0,0) |0〉 , (3)

where J and J† are any interpolating operators for the hadron H which we wish to study and the
time t is taken to be positive. For simplicity we assume the H is the lightest hadron which can be
created by J†.

Although t is taken to be positive, lattice simulations are frequently performed on periodic lattices,
in which case both time-orderings contribute.

Inserting a complete set of states {n} between the operators in eq.(3):

C2(t) = ∑
n

∫

d 3x ei~p·~x〈0 |J(~x, t) |n〉 〈n |J†(~0,0) |0〉 , (4)

=
∫

d 3x ei~p·~x〈0 |J(~x, t) |H 〉 〈H |J†(~0,0) |0〉+ · · · (5)

where the ellipses represent contributions from heavier states with the same quantum numbers as
H. Finally, using translational invariance we have:

C2(t) =
1

2E e−iEt | 〈0 |J(~0,0) |H(p)〉 |2 + · · · , (6)

where the energy is given by E =
√

m2
H +~p2. The term on the right hand side of eq.(6) is repre-

sented pictorially by the diagram in fig.1.

In Euclidean space, of course, we need to make the replacement exp(−iEt) → exp(−Et). By
fitting C2(t) to the form above, both the energy (or, if ~p = 0, the mass) and the modulus of the
matrix element

| 〈0 |J(~0,0) |H(p)〉 |
can be evaluated.

As an example consider the case in which J is the axial current, J = ūγ µγ 5d, in which case the
decay constant of the π–meson can be evaluated:

| 〈0 |ūγ µγ 5d |π−(p)〉 | = fπ pµ (7)
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Figure 2: Pictorial representation of the three-point correlation function in eq.(8).

and the physical value of fπ ' 132 MeV.

Since the correlation function decreases exponentially with Et, for sufficiently large times the con-
tribution of the lightest state will dominate. Much effort is being devoted to choosing appropriate
interpolating operators J, i.e. operators which will enable C2(t) to be dominated by the lightest
state for relatively small times. These are generally non-local or smeared operators, whereas phys-
ical quantities, such as fπ , are obtained from matrix elements of local operators. It is therefore
frequently convenient to compute correlation functions of two different operators.

1.2 Three-Point Correlation Functions

Consider now a three-point correlation function of the form:

C3(t) =

∫

d 3x d 3y ei~p·~x ei~q·~y 〈0 |J2(~x, tx)O(~y, ty)J†
1(~0,0) |0〉 , (8)

where J1,2 are interpolating operators for two (possibly different) particles and we assume that
tx > ty > 0 (see fig.2).

For sufficiently large times ty and tx − ty

C3(tx, ty) ' e−E1ty

2E1

e−E2(tx−ty)

2E2
〈0 |J2(0) |H2(~p)〉 ×

〈H2(~p) |O(0) |H1(~p+~q)〉〈H1(~p+~q) |J†
1(0) |0〉 , (9)

where E2
1 = m2

1 +(~p+~q)2 and E2
2 = m2

2 +~p2. From the evaluation of the two-point functions we
know the masses of the two hadrons and matrix elements of the form |〈0|J |H(~p)〉|. Thus from the
evaluation of three-point functions we obtain matrix elements of the form |〈H2|O|H1〉|.

Important examples of physical quantities of phenomenological significance which can be deter-
mined using three-point functions are the semileptonic and rare radiative decays of hadrons of the
form B → π,ρ,D,D∗+ leptons or B → K∗γ . The operators in this case are quark bilinears.

I postpone a discussion of nonleptonic decays until the third lecture (section 8).

1.3 Systematic Uncertainties

Lattice computations are a truly first principles technique for evaluating non-perturbative strong
interaction effects. The precision of the results is limited however, by the available computing
resources, and in this section I discuss the principal sources of uncertainty in lattice simulations.
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Figure 3: Pictorial representation of a space-time lattice.

In order to study the properties of hadrons in QCD we require

L � 1fm and a−1 � ΛQCD. (10)

Computing resources limit the number of lattice points which can be included and hence the preci-
sion of the calculation. Typically, in full QCD, we can currently have up to about 24 points in each
spacial direction (O(50) points in quenched simulations) and so compromises have to be made.

The main sources of uncertainty in lattice simulations are:

• Statistical Errors: the functional integrals are evaluated by Monte-Carlo sampling. The
statistical error is estimated from the fluctuations of computed quantities within different
clusters of field configurations.

• Discretization Errors: these are uncertainties due to the fact that the lattice spacing a is
finite (i.e. non-zero). Current simulations are typically performed with lattice spacings in
the range

a ∼
(

1
20 – 1

10

)

fm, (11)

leading to errors of O(aΛQCD) of O(amQ) (with the Wilson formulation of QCD) 1. Dis-
cretization errors are particularly severe in heavy quark physics, where they are of O(mQa)

of O(m2
Qa2) where mQ is the mass of the heavy quark. In that case, however, we have some

guidance from the HQET. Indeed we can use simulations in the HQET to help reduce the
uncertainties.
A huge effort is being made to reduce discretisation errors. One approach is to perform
simulations at several values of a and to extrapolate to a = 0. It is also helpful to use Im-
proved Actions, i.e. to use a formulation of discretized QCD so that these errors are formally
reduced. As an illustration consider two discretizations of the derivative:

f ′(x) =
f (x +a)− f (x)

a +O(a) (12)

f ′(x) =
f (x +a)− f (x−a)

2a +O(a2) . (13)
1A useful translation is 0.1 fm∼ 2 GeV.
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In eq.(12) the error is the derivative is linear in the lattice spacing whereas in (13) it is of
O(a2). In QCD it has recently become possible to define a lattice formulation such that the
errors are quadratic in a. Large scale simulations are currently being performed with such
improved actions.
More ambitious still are attempts to derive perfect actions. By starting from the continuum
action and using the renormalization group, it is, in principle, possible to construct lattice
actions with no discretization errors. However the resulting actions are non-local and hence
truncations have to be made. Perfect actions have not been implemented in large-scale QCD
simulations to date.

• Finite Volume Effects: The pion is light (it is the pseudo-Goldstone boson of chiral sym-
metry breaking) and this implies that it can propagate over large distances. Simulations are
performed with heavier pions (typically with unphysically heavy light-quarks, typically with
mu,d ∼ ms) and the results are subsequently extrapolated to the chiral limit. Typically, in or-
der to suppress finite-volume errors, we impose a requirement such as mπL > 4. Up to now
we have not been able to perform a simulation with sufficiently light quarks for the ρ → ππ
decay to be possible, and this represents an important milestone for the future.
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Figure 4: Cost (in teraflop-months) estimate to generate 100 independent configurations vs.
mps/mv for a lattice with spatial size L = 3 fm and temporal size T = 2L. The cost is plotted
as a function of the quark mass parametrized by mπ/mρ .

.

• Quenching: Most (but increasingly not all) large scale simulations have been performed
in the quenched approximation, in which the effects of quark loops are neglected. The
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functional integral over the quark fields can be readily evaluated formally
∫

[dAµ ] [dψ] [dψ̄] exp(−Sgauge− ψ̄∆(A)ψ) ∼
∫

[dAµ ]det[∆(A)]exp(−Sgauge) , (14)

where Sgauge is the gauge-action. The evaluation of the fermion determinant is extremely
expensive. For example, a recent detailed investigation of the behaviour of algorithms for
Wilson fermions deduced that the number of floating-point operations required to generate
an independent field configuration is given by [4, 5]:

Nops per
indep. conf. ' 1.7×107 · (L3T )4.55/4

(

1
a

)7.25( 1
mπ

)2.7
, (15)

where L and T are the spatial and temporal extents of the lattice. This result is illustrated in
fig. 4 where the cost (in teraflops-months) is estimated for the generation of 100 independent
configurations for a lattice with L = 3 fm as a function of the quark mass (parametrized
by mπ/mρ ). The plot illustrates the large cost involved in lattice simulations with realistic
parameters. Moreover, it should be noted that the estimate in (15) is indeed just an estimate,
based on simulations with a = 0.08 fm with a limited range of quark masses and lattice sizes.

• Renormalization of Lattice Operators: The lattice formulation of QCD is in terms of
a bare theory with ultra-violet cut-off a. Similarly the operators whose matrix elements
are computed are bare ones, and one needs to relate these bare operators to renormalized
ones, defined in some standard renormalization scheme (such as the MS one). The key-
point is that, provided that both a−1 and the renormalization scale µ are much larger than
ΛQCD, then the renormalization constants depend on short distance physics only. They can
therefore be computed perturbatively. Recently, however, non-perturbative techniques have
been introduced to evaluate these constants. Nevertheless the renormalization procedure
does lead to uncertainties.

2 Elements of Lattice QCD

In this section I introduce very briefly some of the standard disretizations of QCD (for a full
discussion see refs.[1, 2]). The quark fields ψ(x) are defined on the sites of the lattice whereas the
gluons are introduced in terms of link variables Uµ(x), defined on the link between x and x +aµ:

Uµ(x) = eiagAµ (x+aµ̂/2) . (16)

Under a local gauge transformation g(x):

ψ(x) → g(x)ψ(x) and Uµ(x) → g(x)Uµ(x)g†(x +aµ̂) . (17)

Thus Uµ(x) can be considered as an approximation to the path-ordered exponential from x to
x +aµ̂ . Links from x to x−aµ̂ are given by

U−µ(x) = U†
µ(x−aµ̂) . (18)

Closed loops of link variables are gauge invariant, and this is exploited in the construction of the
action and of the lattice operators representing observables.
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Figure 5: Pictorial representation of the Plaquette.

2.1 Wilson’s Gauge Action

The action for the gluons is given in terms of the plaquette variable (illustrated in fig.5):

Pµν(x) ≡ Tr [Uµ(x)Uν(x +aµ̂)U†
µ(x +aν̂)U†

ν (x)] . (19)

The gluon action is then written as:

Sgluon ≡ β ∑
x,µ,ν

{

1− 1
3

Re[Pµν(x)]

}

=
∫

d4x 1
4 F2

µν(x) + O(a2) (20)

where β = 6/g2
0.

2.2 Lattice Fermions

Consider the free Dirac action ψ̄(m+ 6 ∂ )ψ . Defining the derivative in terms of the difference
between neighbouring points, the free propagator S is given by

S(q)−1
free = m+

i
a ∑

µ
γµ sin(aqµ) . (21)

This has a pole at values of q such that q2 + m2 = 0 as expected in Euclidean space. However, it
also has additional poles when any component qµ is replaced by π/a− qµ , leading to 16 states
instead of one. This is the Fermion Doubling problem.

Wilson’s solution to this problem was to add irrelevant operators to the action such that the mass
of the doublers → ∞ as a → 0. In particular he added (for the free theory)

−ra
2

ψ̄∂ 2ψ = −ra4 ∑
x

{

1
2a ∑

µ

[

ψ̄(x)ψ(x +aµ̂)+ ψ̄(x)ψ(x−aµ̂)−2ψ̄(x)ψ(x)
]

}

. (22)
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The free propagators now is modified to

S(q)free = m+
i
a ∑

µ
γµ sin(aqµ)+

r
a ∑

µ
(1− cos(aqµ)) , (23)

so that the mass of the doublers → O(1/a).

The Wilson Action is given by:

SW = Sgluon +a4 ∑
x

{

− κ
a ∑

µ

[

ψ̄(x)(r− γµ)Uµ(x)ψ(x +aµ̂)

+ψ̄(x +aµ̂)(r + γµ)U†
µ(x)ψ(x)

]

+ ψ̄(x)ψ(x)

}

, (24)

where κ = 1/(2m + 8r) and the fields have been rescaled by a factor of 2κ . A new term with a
corresponding value of κ is introduced for every quark flavour.

The Wilson term (i.e. the term proportional to the parameter r) breaks chiral symmetry! Chiral
symmetry is restored for a special value of κ (=κc) or equivalently of the bare mass: κc = 1/8r +
O(αs). The Wilson action reduces to contrinuum QCD as a → 0:

SW = Scont
QCD +O(a) , (25)

where O(a) means O(pa), O(ma) or O(ΛQCDa). There are other formulations of lattice fermions
(staggered fermions, domain-wall fermions etc.), and in particular there is considerable activity in
developing practical formulations of lattice fermions which preserve chiral symmetry. The use of
improved actions, reduces the discretization errors from being linear in the lattice spacing to ones
of O(αsa) or even of O(a2).

3 Evaluation of Correlation Functions

3.1 Pure Gauge Theories:

We start by considering the evaluation of correlation functions in a pure gauge theory:

〈0|O(x1,x2, · · · xn) |0〉 =
1
Z

∫

[dU ]e−S(U) O(x1,x2, · · · ,xn) . (26)

The integral in eq.(26) is a well defined multi-dimensional one (for SU(n) gauge theory it is a
4V (n2 − 1) dimensional integral, where V is the number of space-time points in the lattice). It is
estimated by Monte-Carlo sampling. Gluon configurations are generated (iteratively) on all the
links of the lattice with probability 1/Z exp(−S(U)). The correlation function is then the average
of the operator O evaluated on each of the independent configurations:

〈0|O|0〉 =
1

Nc

Nc

∑
c=1

O(Uc) , (27)
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where c represents configuration. The Statistical Error is estimated from the variation of the result
as configurations are added and subtracted.

From two-point correlation functions in the pure gauge theory one obtains the spectrum of glue-
ball states, the potential between a static quark and antiquark, information about the topological
properties of the theory, etc. .

3.2 Including Fermions

We have seen that performing the integral over the fermion fields introduces the fermion determi-
nant:

∫

[dψ][dψ̄]e−SW = det[∆(U)]e−Sgluon

∫

[dψ][dψ̄]ψiψ̄ j e−SW = ∆−1
i j (U)det[∆(U)]e−Sgluon

· · ·

where {i, j} represent space-time coordinates, and colour and spin indices. ∆−1(U) is the quark
propagator in the gluon background field U . We therefore see that in the integral over the gluon
fields:

Sgluon → Sgluon− lndet[∆(U)] . (28)

The second term in (28) represents the effects of closed quark-loops. It is non-local and expensive
to evaluate. The expense of the repeated evaluation of the fermion determinant is the reason for
the frequent use of the quenched approximation.

4 B-Physics From the Lattice – Introduction

Having discussed the basics of lattice simulations in the above sections, I now turn my attention
to illustrating what lattice simulations can do for phenomenology. I will use the important field of
B-physics for the purposes of this illustration. This will complement the lectures of Ben Grinstein
at this school [6].

A huge amount of experimental data is currently being presented on the decays of the b-quark
and much more will become available in the coming years. From this data we would like to
extract fundamental information about the parameters of the standard model and CP-violation,
and (by overconstraining the comparison with the standard model) to search for signals of new
physics. A major difficulty (indeed probably the major difficulty) in achieving the above goals
is our inability to quantify non-perturbative strong interaction effects. Lattice QCD provides the
opportunity for evaluating these effects ab initio, and there is indeed a wide-ranging program of
numerical simulations of B-physics. In the remaining 2 lectures I will briefly review some of the
recent progress in lattice studies of B-physics, focusing on recent results and on prospects for future
calculations.

In any simulation, computing resources are limited, and one therefore has to compromise when
minimising competing systematic errors, those due to the granularity of the lattice (discretization
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Figure 6: Diagrammatic representation of a leptonic decay of a B–meson.

effects) and finite-volume errors. In current simulations, this typically leads to a choice for the
lattice spacing (a) in the range given by eq.(11), a−1 ∼ 2 – 4 GeV, i.e. a is larger than the Compton
wavelength of the b-quark. This means that we cannot study the propagation of a physical b-quark
directly and either have to i) use effective theories, such as the Heavy Quark Effective Theory
(HQET) or Non-Relativistic QCD (NRQCD) or ii) calculate physical quantities with the heavy-
quark mass mQ in the region of mc (the mass of the charm-quark), and perform the extrapolation
to mQ = mb.

5 Decay Constants, B–Parameters and Form-Factors

Leptonic decay constants fB and fBs
, the B–parameters of B–B̄ mixing and the form-factors for

semileptonic B-decays have been computed in lattice simulations for over ten years now. In this
section I briefly discuss each of these quantities in turn.

5.1 fB

The strong interaction effects in leptonic decays of B–mesons (see fig.6) are contained in the matrix
element

〈0 |Aµ(0) |B(p)〉= i fBpµ . (29)
Lorentz and Parity Invariance imply that all the non-perturbative QCD effects are parametrized in
terms of a single number, fB, defined in eq.(29).

Claude Bernard, the reviewer at the Lattice 2000 symposium [7] summarised the current status of
the results as 2:

Full Theory N f = 0
fB 200±30 MeV 175±20 MeV
fBs

/ fB 1.16±0.04 1.15±0.04

At last year’s conference the reviewer S.Hashimoto stated that all available data is consistent with
the following estimates: [8]

N f = 2 N f = 0
fB 210±30 MeV 170±20 MeV
fBs

245±30 MeV 195±20 MeV
fBs

/ fB 1.16±0.04 1.15±0.04
2Ref. [7] contains a detailed critical analysis of all the lattice results for the quantities considered in this section.
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These results have been largely stable for some time. The last time that I performed a compila-
tion was in 1997 together with Jonathan Flynn [9] and reported (on what were mainly quenched
calculations):

fB = 170±35MeV, fBs
= 195±35MeV,

fBs

fB
= 1.14±0.08. (30)

Although the results have been stable, the errors have been decreasing very slowly (if at all).
The errors will not decrease significantly until we begin to get a serious control of quenching
errors. In unquenched calculations, the value of the lattice spacing typically varies by 10% or so
depending on the physical quantity which is used to set the scale. It is therefore not really possible
to determine dimensional quantities such as fB with a better precision than about 10%.

In the last two years we have began to study quenching effects, although it must be remembered
that at present the masses of the sea-quarks are still relatively heavy (typically a little smaller that
the strange quark mass). These effects can only be studied meaningfully if all other variables are
kept constant. Using results from the MILC [10], CPPACS [11] and NRQCD [12] collaborations,
C. Bernard estimates that there is about a 20 MeV increase in the value of fB in going from the
quenched approximation to the N f = 2 case (using fπ to set the scale) [7]. The value of fBs

/ fB
appears to be the same in the two cases.

Although the errors have not been reduced substantially, there have been many systematic checks
on the stability of the results. For example discretization errors have been studied by using im-
proved actions and/or extrapolating the results to the continuum limit. It had been suggested that
fB may be significantly lower than the results presented above because of discretization errors (this
suggestion was based on some extrapolations to the chiral limit), but this has not survived more
careful analyses [7].

When lattice computations of the leptonic decay constants of heavy mesons were beginning there
were no experimental data. In 1997 we compiled the (quenched) lattice predictions for the decays
constants of charmed mesons as [9]:

fD = 200±30MeV and fDs
= 220±30MeV. (31)

In view of this the experimental result

fDs
= (251±30)MeV

is very satisfying.

Finally let me mention that lattice computations have shown that there are large corrections to the
HQET scaling law for the decay constants of heavy-light pseudoscalar mesons P

fP ∼ 1
√mP

. (32)

5.2 BB:

The relevant matrix element for B0-B̄0 mixing is:

M(µ) ≡ 〈 B̄0 | b̄γµ(1− γ5)q b̄γ µ(1− γ5)q |B0 〉 ,

11
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b̄ b

q q̄

Figure 7: Diagramatic representation of B0-B̄0 mixing.

where q represents d or s. This is illustrated in fig. 7.

Following the conventions introduced in kaon physics, B-parameters are defined by

M(µ) =
8
3 f 2

Bm2
BBB(µ). (33)

BB(µ) is scheme and scale-dependent, so it is convenient to define a scheme-independent (up to
NLO) quantity

B̂nlo
B = αs(µ)2/β0

[

1 +
αs(µ)

4π
Jn f

]

BB(µ). (34)

where Jn f
is a known constant. Many groups have studied mixing in lattice simulations and

C. Bernard, the reviewer at this year’s lattice conference, summarised the results as:

B̂Bd
= 1.30±0.12±0.13, B̂Bs

/B̂Bd
= 1.00±0.04 (35)

fB

√

B̂Bd
= 230±40MeV, ξ ≡

fBs

√

B̂Bs

fB

√

B̂Bd

= 1.16±0.05 . (36)

The second error for BBd
is an estimate of the error due to quenching. ξ is a particularly important

quantity for studies of the unitarity triangle. It should be noted that the error on ξ is not a small one
from the lattice perspective, indeed given its central importance in phenomenological studies most
groups tend to be cautious in determining this error. The reason that it should not be considered
small is that the quantity which is being computed is ξ −1 = 0.16±0.05, i.e. it has a quoted error
of over 30%. In my judgement therefore the uncertainty in the value of ξ should not be further
inflated in phenomenological studies. The results for ξ are stable, and there is no evidence that
they change as sea-quarks are introduced.

For comparison with the results quoted above I present also those quoted in our 1997 review [9]:

B̂Bd
= 1.4±0.1, B̂Bd

/B̂Bs
= 1.01±0.01 (37)

fB

√

B̂Bd
= 201(42)MeV ξ ≡

fBs

√

B̂Bs

fB

√

B̂B

= 1.14±0.08. (38)

All the results presented above have been obtained with propagating heavy quarks (i.e by extrapo-
lating results obtained with mQ ' mc). In the static approximation the perturbative corrections are
very large and hence these have not given us much useful information to date.
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5.3 Exclusive Semi-Leptonic B-Decays

Exclusive semileptonic decays of B-mesons are being used to determine the Vcb and Vub CKM-
matrix elements. Diagramatically the amplitudes can be represented by the diagram in fig. 8.
Lorentz and parity invariance imply that the amplitudes can be expressed in terms of invariant

B D(∗),π,ρ

leptons

b c,u

⇒ Vcb , Vub

Figure 8: Diagramatic Representation of Semileptonic B-Decays.

form factors. For example for the decays into a pseudoscalar P (B → π or B → D decays), in the
helicity basis,

〈P(pP) |Vµ(0) |B(pB)〉 = f 0(q2)
M2

B−M2
P

q2 qµ + f +(q2)

{

(pB + pP)µ −
M2

B−M2
P

q2 qµ

}

. (39)

As a result of parity invariance only the vector component (from the V −A weak current) con-
tributes in this case. When the final-state hadron is a vector meson (ρ or D∗) the amplitude is
written in terms of four invariant form factors.

I will only make a few brief comments about semileptonic decays:
• Lattice simulations of B → π,ρ decays require the momentum of the final-state light meson

to be small in order to avoid discretization errors. This means that from lattice simulations of
B → π,ρ semileptonic decays we only obtain results at large values of q2. This is illustrated
by the first diagram in fig. 9, which contains recent data from the APE [13] and UKQCD
collaborations [14] 3.

• Lattice computations of semileptonic form-factors have been performed for many years now.
At the lattice 2000 symposium updated results were presented from the APE, UKQCD,
JLQCD and Fermilab collaborations and “the results were fairly consistent in the region
where all groups had direct calculations (19 GeV2 < q2 < 23GeV2)” [7]. As an example,
the first diagram in fig. 9 shows the results for the form factors f + and f 0 for B → π decays.

• Much effort is being devoted to extrapolating the lattice results to smaller values of q2,
using as many theoretical constraints as possible (e.g. HQET scaling relations, unitarity
and analyticity, kinematical constraints, soft pion relations etc.) [15]. The results of such
extrapolations for f 0 and f + are also shown in fig. 9.

• For a direct application of lattice computations one should compare the lattice results to
experimental distributions at large values of q2. An example of such a comparison is shown

3The curves are APE collaborations fits to their points [13].
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Figure 9: The left-hand diagram shows results for f + (upper points) and f 0 (lower points) from the
APE [13] and UKQCD [14] collaborations. The curves are fits to the points from APE, showing
an extrapolation to lower values of q2. The right-hand diagram shows the UKQCD results for the
distribution for b → ρ decays in the range 14 GeV2 < q2 < 20.3 GeV2, which corresponds to the
high q2 bin of CLEO. The region marked phase space only is inaccessible to the lattice calculations
and the curve corresponds to taking the form-factors from the last lattice point and extrapolating
using the phase-space only.

in the second diagram in fig.9, where the lattice results from the UKQCD collaboration for
B → ρ decays [14] are compared with the high-q2 bin from CLEO [16]. Integrating the
results in this bin the comparison takes the form:

∆Γ(14 < q2/GeV2 < 20.3)

ps−1 GeV−2 = 8.3 |Vub|2 UKQCD preliminary (40)

= 7.1(2.4)×10−5 CLEO (41)

from which one obtains Vub = 2.9(0.5)×10−3.

6 Inclusive Decays and Lifetimes of Beauty Hadrons

In this section I will briefly mention some physical quantities for which the first lattice calculations
were performed in the last few years. It will certainly be possible to improve on the precision of
these first-generation computations.

6.1 Lifetimes of Beauty Hadrons:

The fact that the b-quark is heavy makes it possible to derive an operator product expansion for
inclusive beauty decays [17], which results in an expansion in inverse powers of mb. Specifically
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for widths of beauty hadrons:

Γ(Hb) =
G2

F m5
b |Vcb|2

192π3

{

c3

(

1+
λ1 +3λ2

2m2
b

)

+ c5
λ2
m2

b
+O

(

1
m3

b

)}

(42)

where c3 and c5 are calculable in perturbation theory and

−λ1 =
1

2mHb

〈Hb | h̄~D2h |Hb 〉 and 3λ2 =
1

2mHb

〈Hb |
g
2

h̄σi jG
i jh |Hb 〉 (43)

defined in the rest frame of Hb (λ1 and λ2 are the matrix elements of the kinetic energy and chro-
momagnetic operators respectively). This leads to

τ(B−)

τ(B0)
= 1 + O

(

1
m3

b

)

(44)

τ(Λb)

τ(B0)
= 1 − λ1(Λb)−λ1(B0)

2m2
b

+ 3cG
λ2(Λb)−λ2(B0)

m2
b

+ · · · (45)

= (0.98±0.01)+ O
(

1
m3

b

)

, (46)

to be compared to the experimental values 4

τ(B−)

τ(B0)
= 1.06±0.04 and

τ(Λb)

τ(B0)
= 0.79±0.05 . (47)

In view of the discrepancy between the theoretical prediction in (46) and the experimental results
for the ratio τ(Λb)/τ(B0) it is important to evaluate the O(1/m3

b) corrections 5. These may be
significant because it is only at this order that the light-quark in B-meson is involved in the weak
decay, and hence their contribution is enhanced by phase-space factors [19]. To evaluate these
O(1/m3

b) corrections we need to compute the matrix elements of the following dimension-6 oper-
ators [19]:

O1 = b̄γµ(1–γ 5)q q̄γ µ(1–γ 5)b, O2 = b̄(1–γ 5)q q̄(1+ γ 5)b,

T1 = b̄γµ(1–γ 5)T aq q̄γ µ(1–γ 5)T ab and T2 = b̄(1–γ 5)T aq q̄(1+ γ 5)T ab, (48)

where T a represents the colour matrix.

For mesons, the evaluation of these matrix elements is very similar to that of BB and is totally
straightforward. For the Λb baryon the calculation is a little less straightforward, but can be per-
formed using standard techniques. Together with M. di Pierro we found [20]

τ(B−)

τ(Bd)
= 1.03±0.02±0.03 , (49)

in good agreement with the experimental result. The first error in (49) is the lattice one and the
second is our estimate of the uncertainty due to the fact that the (perturbative) coefficient function

4See also ref[18] in which the result τ(B−)/τ(B0) = 1.07(2) is quoted.
5The significance of the discrepancy is underlined when one notes that it is really 1− τ(Λb)/τ(B0) which we

calculate.
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is only known to one-loop. There is a remarkable factorization of the lattice operators, i.e. the
lattice B-parameters are close to 1. For the Λb baryon we have only performed an exploratory
calculation, in which we did not have sufficient control of the behaviour with the mass of the light-
quark [21]. The spectator effects were found to be very significant but, at least for lights quarks
corresponding to mπ '1 GeV, the result of τ(Λb)/τ(B0) ' 0.91 would imply that spectator effects
would not be sufficiently large to account for the full discrepancy. It is clear however, that these
calculations need to be improved (which will be relatively simple to do) and that this will make a
considerable impact on our understanding of this important question.

6.2 Bs-Meson Lifetime Differences:

We now consider the difference of the widths of the Bs mesons. Using the operator product expan-
sion we have [22]

∆ΓBs

ΓBs

=
G2

Fm2
b

12πmBs

∣

∣VcbVcs
∣

∣

2 τBs
×

{

G(z)〈Bs|QL(mb)|Bs〉−GS(z)〈Bs|QS(mb)|Bs〉+δ1/m
√

1−4z
}

(50)

where z = mc/mb, the operators are QL = b̄γ µ
L s b̄γ µ

L s and QS = b̄(1− γ5)s b̄(1− γ5)s, the δ1/m
term represents O(1/mb) corrections and G(z) and GS(z) have been computed in perturbation
theory up to NLO [23]. The evaluation of these hadronic matrix elements has recently began to be
performed in lattice simulations by Hashimoto et al. [24] and APE collaborations [25] 6 The APE
collaboration quote

∆ΓBs

ΓBs

= (4.7±1.5±1.6)% APE [25], (51)

where the second error represents an assumed 30% uncertainty on the 1/mb corrections. The
calculations were obtained with propagating heavy quarks. The result from Hashimoto et al. is

∆ΓBs

ΓBs

= (10.7±2.6±1.4±1.7)% Hashimoto et al. [24], (52)

where the first error is due to the uncertainty in our knowledge of fBs
, the second is the lattice error

in the matrix elements and the third is the estimate of the error due to the O(1/mb) corrections.
These results were obtained by simulating NRQCD.

The central values in eqs. (51) and (52) are somewhat different (although they are compatible
within errors), however it should be noted that this difference is not due to different lattice results
for the matrix elements. Indeed the values of the matrix elements determined by the two groups
are in good agreement. The difference is due to the different inputs: Hashimoto et al. use a lattice
result for fBs

= 245±30 MeV and the experimental value of the inclusive semileptonic branching
ratio; APE use the lattice value of ξ and the experimental value of τBs

∆mBd
mBs

/mBd
.

6There are also some even more recent results in the static limit, both in the quenched approximation and with two
flavours of sea quarks [26]. The results quoted in these papers are 5.1±1.9±1.7 % (quenched) and 4.3±2.0±1.9 %
(n f = 2), to be compared to those in eqs.(51) and (52).
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7 The mass of the b-quark

The mass of the b-quark, mb, is one of the parameters of the standard model. In this section I will
review recent progress in evaluating mb from simulations of effective theories, such as the HQET
or NRQCD 7. The discussion will be based on the evaluation of the two-point correlation function

C(t) = ∑
~x

〈0|A0(~x, t)A0(
~0,0) |0〉 (53)

in the HQET. Aµ is the axial current, Aµ = h̄γµγ 5 q, and h (q) is the heavy-quark (light-quark) field.
The evaluation of C(t) is relatively straightforward and has been performed for many years now.
The progress in recent years has been in the theoretical understanding of how one can determine
mb from C(t), and in the perturbative calculations which have been performed up to three-loop
order enabling the results to be obtained with good precision.

At large times t
C(t)' Z2 exp(−ξ t) (54)

and from the prefactor Z we obtain the value of the decay constant fB in the static approxima-
tion [28]. It is for this reason that calculations of C(t) have been performed for some years now.
It was realised later that one can obtain mb from the measured value of ξ (up to O(Λ2

QCD/mb)
corrections) [29].

The relation between ξ and mb is a delicate one:

MB = mpole
b +ξ −δm , (55)

where MB ' 5.28 GeV is the mass of the B-meson, mpole
b is the pole-mass of the b-quark and ξ

is determined from lattice computations using eq. (54). δm is the residual mass, generated in
perturbation theory in the lattice formulation of the HQET,

δm =
1
a ∑

n
Xn αn

s (mb) . (56)

In other words even if the action in the HQET is written without a mass term, higher order terms
in perturbation theory generate such a term, δm. Each term in the series for δm diverges linearly
as a → 0, and these terms (partially) cancel the divergence in ξ . In order for the cancellation to be
sufficiently precise the lattice spacing a cannot be too small.

The perturbation series for δm diverges. Indeed it is not Borel Summable, leading to a renormalon
ambiguity, which is an intrinsic ambiguity of O(ΛQCD). The pole mass of a quark is also not
a physical quantity; it also contains a renormalon ambiguity [30, 31]. The renormalons in the
pole mass and δm cancel (for a detailed discussion of the cancellation of such renormalons see
ref. [32]). Let mb be the b-quark mass defined in the MS renormalization scheme defined at the
scale mb itself (I use mb as an example of a “physical” quark mass). The pole mass and mb can be
related in perturbation theory:

mb = [1+∑
n

Dn αn
s (mb)]m

pole
b (57)

= [1+∑
n

Dn αn
s (mb)]

{

MB−ξ +
1
a ∑

n
Xn αn

s (mb)
}

. (58)

7For a detailed review of lattice determinations of quark masses in general, and mb in particular, see ref. [27].
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7.1 Perturbative Matching

All the perturbative coefficients necessary to compute mb to N3LO have recently been calculated.

• The coefficients D2 and D3 in the relation (57) between mb and the pole mass have been
calculated in refs. [33] and [34] respectively.

• The relation between the lattice (bare) coupling constant α0 and the MS coupling takes the
form

αs(µ) =

(

1+∑
n

dn(aµ)αn
0

)

α0. (59)

and the coefficient d2 can be found in refs [35, 36].

• Finally we need to consider the perturbative expansion of the residual mass:

aδm = C1α0 +C2 α2
0 +C3α3

0 + · · · (60)

– C1 is well known, C1 = 2.1173.
– C2 has been determined from the calculation of large Wilson loops

W (R,T ) ∼ exp(−2δm(R+T )), (61)

where R and T are the spatial and temporal lengths of the Wilson loop.
C2 = 11.152+n f (−0.282+0.035cSW −0.391c2

SW ) [37].
– The Parma-Milan group has pioneered the numerical computation of perturbative co-

efficients at high orders using the stochastic formulation of theory. For the coefficients
in eq. (60) they find [38]

C1 = 2.09(4), C2 = 10.7(7), C3 = 86.2(5) . (62)

– From a numerical Monte-Carlo study on very small and very fine-grained lattices Lep-
age at al. [39] find:

C3 = 80(2)+5.6(1.8) . (63)

For NRQCD only the first coefficient (C1) is known.

7.2 Numerical results for mb

Before presenting the numerical results I repeat that the evaluation of ξ is relatively straightfor-
ward. The recent progress has been in the evaluation of the high order perturbative coefficients
described in subsection 7.1. The results obtained using the method described in this section have
been:

•
mb = 4.15±0.05±0.20GeV [40], (64)

obtained in quenched QCD at NLO (i.e. with only the one-loop coefficient C1). The second
error is the estimate of the uncertainty due to higher order perturbation theory.
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•
mb = 4.30±0.05±0.10GeV [37], (65)

obtained in quenched QCD at N2LO (with coefficients up to C2).

•
mb = 4.30±0.05±0.05GeV [41], (66)

obtained in quenched QCD at N3LO (using all the known coefficients of section 7.1.

•
mb = 4.34±0.03±0.06GeV [42], (67)

obtained from the static limit of quenched NRQCD at N3LO.

• There is also an unquenched result:

mb = 4.26±0.06±0.07GeV [43], (68)

obtained in unquenched QCD, with 2 flavours of sea-quarks at N2LO.

We take the results in eqs.(66) (or (67)) and (68) as the current best estimates for mb.

Results obtained using NRQCD are in good agreement with those in the static theory, but we need
to understand the errors due to higher orders of perturbation theory in that case.

8 Nonleptonic Decays

Up to now we have been unable to compute matrix elements with multi-hadron final states, in
particular those relenant for the important class of two body decays such as K → ππ and B →
two-meson decays. The recent measurements of ε ′/ε and the long-standing ∆I = 1/2 rule prob-
lem (i.e. our inability to understand why amplitudes in which the isospin changes by 1/2 are
enhanced by a factor of 22 or so with respect to those in which it changes by 3/2) make the control
of non-perturbative QCD effects in K → ππ decays particularly desirable. Exclusive two-body
decays of B-mesons are one of the principal sources of information about the unitarity triangle
and CP-violation. However, apart from the golden process B → J/ΨKs, the determination of the
fundamental parameters from two-body B-decays is severely restricted by our inability to quantify
non-perturbative QCD effects. At present we are some way from understanding how to compute
these effects in lattice simulations, however considerable effort is being devoted to developing the
necessary theoretical framework for K → ππ decay amplitudes

K π

π

and I will briefly discuss recent recent ideas [44, 45, 46]. There are two important features which
need to be understood:

1. Lattice calculations are performed in Euclidean space and hence yield real quantities. One
can therefore ask how one can get the full decay amplitude including the phase due to the
final state interactions? It is true that from each correlation function one obtains a real
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quantity, however different correlators give different quantities and the full amplitude can
(at least in principle) be reconstructed. For example, one can obtain the modulus of the
amplitude from one correlator and the real part from another which is sufficient to determine
the amplitude [46].

2. Although momentum is conserved in lattice calculations of correlation functions, energy is
not.

K

0

t2

t1

~p=0

~p=0

~q

−~q

In this diagram the kaon decays at the origin producing two pions, which are annihilated at
t1 and t2 respectively with momenta~q and −~q. However the pions interact, and can rescatter
(as represented by the grey oval). Whilst the total momentum remains zero, energy is not
conserved and hence there is a contribution in which the two pions are each at rest (this is
the lowest energy state). Correlation functions decay exponentially with time as exp(−Et),
where E is the energy, and hence at large times the dominant contribution comes from the
unphysical matrix element corresponding to a kaon at rest decaying into two pions, each of
which is at rest. This is a major difficulty for lattice calculations.
In a finite volume the energy levels of the two-pion states are discrete and Lüscher and
Lellouch have proposed to exploit this fact to determine the decay amplitude directly [45].
One needs to have a state for which the energy of the two-pion state is equal to mK , the mass
of the kaon, and to be able to isolate the term corresponding to this energy. In practice, for
the near future, this is likely to be the first excited state, which requires a lattice of about
6 fm, which is large but not hugely so 8.

The ideas discussed above need to be explored numerically and developed further. In particular
we need to understand how to include the contributions from inelastic channels (i.e. contributions
from intermediate states other than two-pion ones). The current numerical studies of K → ππ
decays are performed on lattices which are considerably smaller than 6 fm, and so correspond to
unphysical kinematics. However, one can then use chiral perturbation theory to obtain the physical
amplitudes. For B-physics of course chiral perturbation theory is inapplicable and the neglect of
inelastic channels is not possible, so more theoretical developments are necessary.

9 Conclusions

Lattice simulations are a central tool in particle physics phenomenology. In order to gain the maxi-
mum return from the investment in future experimental facilities, it is crucial to gain a quantitative
control of non-perturbative QCD effects. Lattice simulations provide the best prospect for the ab

8The finite volume corrections have also been discussed in considerable detail in refs. [45, 46].
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initio computation of these effects. In these lectures I have presented an introduction to lattice
phenomenology and illustrated the ideas by reviewing recent applications to B-physics.
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