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1 Motivation

1.1 Theoretical

The lattice regularisation of quantum field theories
e is the only known nonperturbative regularisation

e admits controllable, quantitative nonperturbative
calculations

e provides insight into how QFT’s work and enables
study of unsolved problems in QFT’s

1.2 Applications of lattice field theories

e QED: ‘triviality’, fixed point structure, ...

e Higgs sector of the SM: bounds on Higgs mass,
baryogenesis, ...

e Quantum gravity
o SUSY

e QCD: hadron spectrum, strong interaction effects in
weak decays, confinement, chiral symmetry breaking,
exotics, finite T and/or density, fundamental
parameters (o, quark masses)
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Why lattice QCD?

e evaluate non-perturbative strong interaction effects in
physical amplitudes using large scale numerical
simulations: observables found directly from QCD
lagrangian

¢ long-distance QCD effects in weak processes are
frequently the dominant source of uncertainty in
extracting fundamental quantities from experiment

Example: K-K mixing and By
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Since m;, my, > Aqcp can do perturbative analysis at high

scales where QCD is weak and run by renormalisation
group down to low scales. Left with:
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e C(-): calculable perturbative coefficient (as long as
K/Aqcp not too small)

e evaluate matrix element on a lattice with u ~ 1/a (a is
lattice spacing)
e match lattice result to continuum at scale u ~ 1/a



CKM matrix and unitarity triangle
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Unitarity: Vg Vi + VeaVep + ViaVep = 0
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ViV, = —AX+0(17)
Vi, = AR —p—in)+0(4)

where p = p(1 —A2/2) and 7 = n(1 — A?/2).

...with sin2f from BaBar and Belle, Standard Model is in
good shape. Errors in the nonperturbative parameters are
now the limiting factor in more precise testing to look for
effects from New Physics.

There is also a rich upcoming experimental programme in
the next few years which will need or test lattice results:

e B-factories: constraining unitarity triangle, rare decays
e Tevatron Run II: AMBS, Al'g, b-hadron lifetimes, ...

e CLEOc: leptonic and semileptonic D decays, masses of
quarkonia, hybrids, glueballs

e LHC:...

Unitarity triangle
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(CKMfitter Spring 2002: H Hocker et al, hep-ph/0104062;
http://ckmfitter.in2p3.fr/)

2 Basics: Euclidean quantisation

Lattice embedded in d-dimensional Euclidean spacetime

Ta,

La; -

.as

a;
as,a, lattice spacings
Lag length in spatial dimension(s)
Ta, length in temporal dimension

Matter fields live on lattice sites x. Example: scalar field

x;=nas, n=0,...,L-1
¢(x)  with 7 *
Xo=ma,, m=,...,T-1



2.1 Lattice as a regulator

Fourier transform of a lattice scalar field in one dimension:
x =na, n=0,...,L—1, with periodic boundary conditions:

-1
¢(p) = a ZO e "9 (x) 2.2 Euclidean quantisation on the lattice
n=
¢(x+La) = ¢(x) Path integral well-defined in Euclidean space
e discretisation implies Wick
¢ ¢(p) periodic with period 27 /a Minkowski rotation Euclidean
e momenta lie in first Brillouin zone
T e ie prescription avoids poles
a a
Procedure
e have introduced a momentum cutoff;
A P 1. Continuum classical Euclidean field theory
Ca 2. Discretisation — lattice action
e spatial periodicity implies momentum p quantised in 3. Quantisation — functional integral

units of 27 /La
e gauge invariance and gauge fields, fermions: later

Lattice provides both UV and IR cutoffs. Ultimately want
infinite volume (L, T — oo) and continuum (a — 0) limits.
Most effort devoted to continuum limit.
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Step 2: Discretisation
Introduce a hypercubic lattice A with a, = a; = a.
0 1,23
Step 1 AE_{xeaZ4’x—_07...,T—l; ol _0,...,L—1}
a a
Euclidean fields ¢ (x) obtained formally from analytic
continuation o 3T lattice sites
. 0 o finite volume
t— —ix’, X, t X
- o0 1) = (%) e finite number d.o.f.
Action: . .
. 1 ) Lattice action:
selo)= [ @' {Ja0r+vio] o
' Sglo]=a' ) {Vm(xwm(x)w(m}
where it = 0,1,2,3 and xea, L2
1 A with forward and backward lattice derivatives
V(9) = 5m2¢2+$¢4 X
Vao(x) = —(9(x+af)—o(x)
Minkowski «—— Euclidean 1
Lorentz symmetry O(4) symmetry VZ¢(x) = p (q)(x) - ¢(x*ﬂﬂ))
t? —x? invariant (x9)? +x? invariant
+ +
_ n Lattice Laplacian:
_ + 3
_ + 80 = L ViV

3
= LY (oerap) + o(x—ai) - 26(x))

re=)

Q
™
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Lattice action for a free scalar field:

Selol =a* ¥ {—;¢<x>A¢<x>+V<¢>}

XEAR

Remarks

e Discretisation is not unique. Can use different
definitions for VL*) and/or V(¢) as long as they become
the same in the naive continuum limit, a — 0.

* Universality: discretisations fall into classes, each
member of which has the same continuum limit

*x Improvement: optimise choice of lattice action for
a faster approach to the continuum limit

e O(4) (eventually Lorentz symmetry) is not preserved.
Have cubic symmetry instead; recover O(4) symmetry
asa— 0.
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2.3 Generating functional

Scalar product on space .%

(01.6,) =a* Y ¢,(x)9,(x)

XEAR

of fields ¢ over Ay:

Action for free scalar field:

Splo] = ¢K¢> K=-ViV,+n

K is a linear operator on .% .

Let J(x) be an external field (source) on Ag, J € Z,and
define the generating functional W/[J] through,

Wil = <(L¢)>

= — [ [T do(x)eSeloleVe)

E XEAR

Correlation functions found by differentiating w.r.t. J(x):

O~ ahgmel?)

= (a")*(9(x1)9(x,)
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Step 3: Quantisation—functional integral

Zg= [ Dlge 5
D]¢] is the measure, eg:
= [l do(x)
XEAR

e finite number of integrations

Correlation functions

(0(x1) - ¢(xn)) = ZL/D[¢]¢(x1)...¢(xn)efSE[¢]
E

(-) is shorthand for (0|T - |0), time-ordered vacuum
expectation value
well-defined if Sp[¢] > 0

particle spectrum implicitly determined by correlation
functions

analytically continue to Minkowski space and get
S-matrix elements (= physics) via LSZ
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Lattice propagator
Relation between WJ] and K:
oW / TT do(x)e Sel¥leVe) — UKD
2%‘ XEAR
Diagonalise K through Fourier transform:
f(p) —at Z e—i/zz-y](y)7 J(x) = a4L3T Z esz
YEAR PEA}
A% is the dual lattice (or set of momentum points in the
Brillouin zone):
2r 2n
- 0 123 _ .
Ap = {P’P = T_ano’ = L_anl,z,sr
ny=0,...,T—1, n,y= O,...,Ll}
alL
alL g 2r/a
Ag Ag
16



Propagator (continued)

Find:
(K 'Nx)=a" Y Gx-y)(y)

yEAR

G(x—y) is the Green function for K:

1 eir(x-y)
Gx=y) a*l3T pezA’* p? +m?
with
p*= iﬁuﬁuv Pu = Esin(ﬂ)
=0 a 2

Therefore the propagator is:

12wy
OD00) = 5 57970

17

Free Scalar Two-point Correlator in
Position Space

Clxy) = @ Y (9(%,%)9(0)) = @’ ¥ G(xg,x)

e Create a particle at the origin; propagate it to any
spatial point at time x;

e Y- projects onto zero 3-momentum ( ¥ e’?*. would
project on momentum p).
e Can evaluate explicitly for free scalar field (exercise)
e~ I%l
" 2m(1+ m2a2/4)\ 2

C(x)

with ‘physical mass’ (position of pole in propagator for
p = 0) m, satisfying

. am am
sinh| — | = —

¢ Fitting exponential decay of a lattice 2-point function
lets you extract masses. Works more generally, see
later.
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Remarks

e Asa— 0 (and L, T — o), G(x — y) becomes the
Euclidean Feynman propagator:

a—0 d4p eip'(xfy)
CE=N = | np

using p? = p? + 0(a?).

e Particle masses defined through poles of the
propagator, here poles of (p? +m?)~!, which is
periodic in each component of p with period 27 /a.

4 3 ap

~D .2 u
=— Y sin®(—%
P a’ 1= ( 2 )

Unique mass spectrum inside first Brillouin zone,
pﬂ € (—717/61771'/@].
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QCD Lore

Confinement:

e gluons confine quarks and antiquarks into colour
singlets

qq q4q4q
mesons baryons

e gluons confine gluons into glueballs
¢ no free quarks or gluons as asymptotic states

Lattice QCD: a non-perturbative regulator which preserves
gauge symmetry — allows us to study these questions

20



3 Nonabelian lattice gauge fields

Perform steps 1-3 for Yang-Mills

Step 1
Classical continuum Euclidean Yang-Mills action
1 4
SplAl = —=— [ d*xTr (Fuy(x)Fuy(x))
2g0

g, is the bare gauge coupling
SU(N) gauge fields in R* (N co ours):

Ay (x) xeRYu=o0,..,3
Ay = AT Ay € su(N) (Lie algebra)
T a=1,...,N*—1. Generators
Ay real vector field
[T%, T?) = fe¢T¢  Structure constants f**°
AL =—-Ay (antihermitian)
Dy = 9y +Ay
Field strength:

Fiv = 9duAy — A, + [ALAY]
Gauge transformations:

Ag(x) = g(0)AL(x)g (%) + g(x)dug (%)
Eyv — gx)Evg '(x)
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3.1 Defining lattice gauge fields

Continuum
Y .
Curve % from y to x parametrised
by:
% z(t), 0<t<1
0) = 1) =
. z(0) =y, =z(1)

Parallel transport along 4

{;t +z'“A#(z)} v(t) =0

Solution
v(1) = POexp {_/x dz”Au(z)} v(0)
y

Parallel transporter from y to x along % is,

U%(x,y) = POexp {— /x dz”A#(z)}
y

Lattice

Choose %’s connecting neighbouring lattice sites.
U(x,x+ajf) = Uy(x) € SU(N)

X x+afl

U(x+afi,x) = U (x,x+ap) = U, ' (x)

23

Step 2: Discretisation

For the discretised gauge field, A, (x), x € A, the
transformation law

Ap(x) = g(X)Au(x)g ™" (%) +8(x) Vg (%)

is inconsistent with group multiplication for nonabelian
groups (Exercise).

e naive discretisation of classical Y-M action fails

¢ need a different concept to discretise pure gauge
theory

e use parallel transport on lattice

Definition

Alattice gauge field is a set of SU(N) matrices Uy (x),
X €Ag, n=0,1,2,3. Uy(x) is called a link variable.

Remarks

e Where is the gauge potential A, (x)? Can define a
lattice potential A, via

Uu(x) = e (%)

but this is not unique. If Affm(x) is a given continuum
gauge potential, one can use a link variable to
approximate it for small a:

. 1 __ ACtm
lim p (Up(x)—1) = AT™(x)

e Gauge transformations on the lattice. Let
g(x) € SU(N)forx € Ap.

Uu(x) — g(x)Uu(x)g ™" (x + aid)

By inspection, if € is a closed loop of link variables
then

W(€)=TrU"(x,x)
is gauge-invariant. This is called a Wilson loop.
e Approximate locally gauge invariant continuum fields

by gauge invariant combinations of link variables (see
following example....).

22
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Exercise
Tr (ES™ (x) ES™(x))

F;&m is a field strength defined in terms of a given
continuum gauge potential Af}m.

Consider the plaquette:
X+ av x+afi+av
Biy(x) =
x x+ap
Show that
TtBy(x) = Te{Uu(x)U(x+ai)U, " (x+av)U, " (x)}

4

0 a
=N+ ST (BT OBV () + 0(a)

25

N

Sl = 5 Y % (2%Tr(P,W+PJv)>

2
go XEAR BV
S ou<v

2N

= Y Y <I%ReTrP“v(x)>

802 xehg 1Y
1
= 1— —ReTrR
PL(1-yRelrhy)

° Z is sum over all oriented plaquettes
O
e no A, fields: degrees of freedom are SU(3) matrices

2N . . .
e = — isthelattice coupling
&
e Last line is the Wilson plaquette action
e not obligatory to use simple plaquette: all traces of
closed Wilson loops are proportional to F-F as a — 0,
allowing other choices for lattice gauge action

27

3.2 Wilson plaquette action

Return to Step 2: discretise the continuum action:

Seld] = —% [ a5 () ()
0

Consider
1
SplU] = — Y YTr(1-Ru(x))
80 xeApuv
1 a' 5
= 2 X L5 T(An@)Ehy(x) +0(@)
80 xeAguv
B 1
= oz / d* X T (Buy (x) Fuy (x))
0
Rewrite as
N 1
Splul = 5 X ) (2__Tr(P’”+P“TV)>
80 xeAy o N

2N

= Y Y <1%ReTrP,W(x)>

& xeAp Y
1
= 1— —ReTr P
PE(1- y Remir)
° Z is sum over all oriented plaquettes
O

2N . . .
e = — isthelattice coupling
8o
e Last line is the Wilson plaquette action
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Step 3: Quantisation

Define a functional integral:
. 3
Z:\/D[U]eisE[U] = H H dU”(x)efsE[U]
XEAL u=0
dU, (x): invariant group measure for compact Lie group,
eg SU(N)
Uy (x) — US (x) = g(x) Uy (x)g " (x + afi)
dU§(x) = dUy(x) sothat D[U®]= D[U]

Measure can be normalised, since SU(N) compact:

[ e
SU(N)

Not true for [ dA,, A, € su(N)

e Functional integral well-defined: finite number of
variables integrated over compact domain

¢ No gauge fixing required in lattice gauge theory (in
general: but becomes necessary if you want to do a
perturbative evaluation of the integral because of zero
modes in the quadratic part of the action)

28



3.3 Strong coupling expansion

Expectation values in lattice Yang-Mills theory:

= l/D[U]ﬁe*SE[U]
VA

_ s __B t
SglU]=BY (1 NReTrPD)f 2N§Tr(PD+PD)+const

O

e B =2N/g is a small parameter for large g¢

e evaluate (&) by expanding exp(—S;[U]) in powers of
e strong coupling expansion (high T, f = 1/T)

e evaluate integrals in group space order by order in f3

exp{%zm:Tr(PD +PDT)} =

H{H—%Tr(PD +pg)+0(/32)}

[m]

29

To Show (U, (y)) =0

(Uy(y)) = Z H H du,(x —SE[U]

XEAR U=
with

S5lU] =~ LT + B)

Pick out plaquettes involving U, (y)

L.
U ) '
, contains Tr(--- U, ' (y)Uy () -++)

Uy(y)
Change variables on other links starting/ending at y.

UA(J’) - Uv(J’)Ux(Y)

e makes S; independent of U, (y)
e doesn’'t change measure
e leaves factor [ dU,(y) U,(y) =0

An example of Elitzur’s theorem: all gauge non-invariant
combinations of U’s have vanishing expectation values.

31

Group integration (compact Lie groups)

Consider link variable Uy (x) = U € SU(N)
U is a complex N x N matrix, detU = 1
Write U, i with matrix (colour) indices i, j
i J
— Uij
X X +au
=y!
i J Y
Group integrals:
[av=n
/ AU U;; =0
1
au UijUkl = —Sik‘o‘j,

1
dU U. . —e. . E. .
/ ‘111 ’NJN N ain i

:Nik jl

Area Law

Let & be a Wilson loop, ie a rectangle of size R x T.

_ lTrURxT
N

W(R,T)

Expectation value of W (R, T)

/D[U T [JU

Uue?

(W(R,

B t 2
XI;I{1+2N(PD+PD>+O(13 )}

List the contributions to (W (R, T')) order by order in 3

e Order B°: only group integrals of type

/dUUzO

e Order B: consider all plaquettes
inside W (R, T), so that each of
W (R, T) pairs up with a link in the
opposite direction. This is tiling
the Wilson loop with plaquettes.

LA
CA
CH

30
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Order 3 contributions

1. Each plaquette inside W (R, T) contributes
RT
£ leading to a factor E
2N 2N

2. Each group integration contributes
1 1 (R+1)T+(T+1)R
— leading to a factor <>
N N

3. Each site contributes a factor N

e colour indices of all links meeting at each site must
be the same (group integration plus trace)
e N possibilities to choose the colour at each site

N leadingto a factor NFDT+D)

4. All integrations outside W (R, T) give 1

The total contribution is:
1 B RT /4 \ 2RT+R+T-RT-R-T-1 B RT
v (§) - ()
Therefore
B RT
(W(R,T)) = <2NZ> + higher orders

But RT = A, area of the Wilson loop

3.4 Arealaw and linear confinement

Physical interpretation of area law: consider a static
quark-antiquark pair separated by distance R:

Q(x")
R =T(x,x") = Q(x)U (x,x") Q(x')
Q(x)
Static quarks: propagate only in (Euclidean) time
x = (0,0) y=(0,T)
x' = (R,0) Yy =(R,T)

Correlation function:

C(R,T) (O (y,y)T(x,x)|0)
= YoIr'(y.y)n)(nr(x,x")|0)

n
Y [0 e 5T
n

T—o0

o° o EM®T

E(R): energy of a QQ pair separated by distance R

33
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Exercise

Work out the O(f?) contribution in the strong coupling
expansion of the Wilson loop

leads to

g\ B
(zm) RT(m)
So that

B\ B
(W(R,T)) = <2N2> <1+RT(4N) +O(ﬁ2)>

Still higher orders involve
evaluation of non-planar
graphs

Y

A A A

... but all successive terms
depend on the area RT

Relation of C(R, T') with Wilson loop?

1
1

C(R.T) = (0[QW)U(Y,y)Qy)Qx)U(x,x)Q(x")|0)
~ (Tr{S(x .y U 3)So(y: )U (2, x)})
e Tris over colour and spin

Solution for static quark propagator S:

1+

Se) = Ely-RU(y.x)— e ),y > x,
t

SQ(xlvyl) = VS[SQ(J’/ax/)] Y Yo > %o

Substituting:

C(R,T) ~ (T{UX,y YUY, y)U(y,x)U(x,x)})
x Tr {(ﬂ)z} e Mol
spin 2
o (W(R,T))e e’
So finally:
(W(R,T)) ~ o (E(R)-2mo)T _ o~V(R)T

V(R) is static quark potential, potential of a QQ pair
separated by R



Linear confinement

Use strong coupling expansion for (W (R, T)) to compute
V(R):

B\ )
(W(R,T)) = <W> _ eIn(B/2N*)RT

Write r = Ra, t = Ta
<W(R, T)> _ ea’zln(ﬁ/ZNz)rt _ e—V(r)t

V(r) = —a *In(B/2N*)r = or
e area law implies linearly rising potential V(r)
e need infinite energy to separate Q and Q entirely
e linear confinement
e o is called the string tension

Result suggestive: strong coupling is opposite of
continuum limit. Should supplement result with
numerical studies extrapolated to continuum limit to
confirm. Nonetheless, see a characteristic behaviour of
strong-coupling gauge theories.
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3.5 Plaquette-plaquette correlation
Correlator of two plaquettes at same spatial position,

different times. Smallest linking surfaceisa 1 x 1 tube
joining the plaquettes

h,X 5,X

KR

t

(Tr(Uy) Te(Uy)) ~ e ™
with
m=—4lnp+---

Dynamical mass generation in pure Yang-Mills (glueball
mass)

39

Static quark potential

e Strong coupling expansion yields V(r) ~ or
e Expect to see Coulomb part, V(r) ~ 1/r, for small r

e General functional form of V (r):

e
V(ir) = Vy+or—-
r
c string tension
e ‘charge’

e Determine V(r) via numerical simulation by
‘measuring’ Wilson loops (UKQCD hep-lat/0107021)

e e =r/12in bosonic string model (Liischer 1981):
confirmed numerically (Liischer and Weisz,
hep-lat/0207003)

25 | -
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4 VLattice Fermi fields

Step 1:

Classical continuum Euclidean action for free fermions:
STl = [ a0 (3 + ()

¥, vy Grassmann valued
Recall in Minkowski spacetime: {yM, %}v[ =2guv. Now
define Euclidean Hermitian y-matrices by:

h = YoM

7 iy}

} SO {Vu, W} =28,v, YJ =%

Step 2: discretisation

Wyl = @ X W0 (0 (Va Vi) 4 my) ()

XEAg

= a' '} v(x)Qy(x)

XEAR
where
1 *
Q= E(Vu +Vp)7u +my,

is the ‘naive’ lattice Dirac operator

40



Step 3: Quantisation

z= [ Dig.yle ™

Correlation functions:

*(y)e*SWJV]

— L
WP = 5 [ DT vvY

Add Grassmann sources 7, & to get generating functional

A CA eMQ ')

Diagonalise via Fourier transform:
1
a3T
1

T &BT pg\’*E(iVuﬁu +my)e”*E(p)

Y Qe?*E(p)

PEAL

(Q5)(x)

e have defined p, = sm(apu)
e Qacts by multlphcatlon with iy, p, +my
e now easy to invert...
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Problems with naive discretisation

1. p=p+0(a®)

2. Particle masses are defined through poles of the
propagator. Here, poles of (i +m,)~! for m, < py are
near:

— 1
p=0 or —sin(ap,)=0
a

o satisfied forp, =0,7n/a

e corners of Brillouin zone yield additional poles

e in D = 4 there are 2P = 16 poles and hence a

16-fold degeneracy in the spectrum

This is the fermion doubling problem
In interacting theory, momenta of order x/a can flip
you between different doublers: spurious
‘flavour-changing’ interactions

3. How to deal with fermion doubling?
e ignore it: quarks come in sixteen different flavours x
e staggered fermions (Kogut-Susskind): partial lifting
of degeneracy, 16 — 4.
e Wilson fermions: complete lifting of degeneracy
but explicit chiral symmetry breaking at finite a.

43

1 elPx

Qo)) = Y = &(p)

4713
a*L TpGAE l¢#+m0

. Z 1 Z eip-(x=y) )
= a = y
veap \ @' L*T peny By + Mgy

= a' Y Sp(x-y)E®)

yeAE

Generating functional:

X,yEAR

Wil —eXP{ Y 7(x)Sp(x— y)é(y)}

Two point function:

1 9?

B I AR 1 X3
(v(x)y(y) = P aﬁ(x)aé(y)e ! 7.E=0
= Sp(x—y)
a—0 d4p eip~(x*y) 2
—’ / Gyt iprm, )
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4.1 Wilson fermions

Add extra term to the naive lattice Dirac operator which
formally vanishes as a — 0:

Sylvwl = a*' Y wix >(yp (Vut+Viy) +mg) y(x)

XEAR

7'615

—— L V(O)V,Vuy(x)

2 XEAL

= a Y v [Quv](®)

XEAg

Have defined the Wilson-Dirac operator

1 . ra_,
Qw = EY#(VMJFVH) +my— ?Vﬂvﬂ

where r is the Wilson parameter, r = O(1) (and usually set
to 1)

Qyy acts by multiplication with
—~ ra .,
ip+my+ ?P
Wilson propagator:
1 eip-(x=y)

T K i+ 257

Sw(x=y) =

44



Adding the Wilson term, —(ra/2)y(x)Ay(x), modifies the
dispersion relation:

ra .,
my, _’mo"’?p

Term proportional to the Wilson parameter r vanishes in
the classical continuum limit @ — 0 and we recover the
continuum Euclidean fermion propagator.

After adding the Wilson term, mass terms near corners of
BZ are:

Pu mass multiplicity
(0,0,0,0) my 1
(%£,0,0,0) my+2— 4
(£,2,0,0)  my+4— 6
(E,220)  my+6— 4
(G @@a) M+8 1

Choose r = 1: states associated with corners of BZ receive
masses of order 1/a, ie of order the cutoff scale

e these states are removed from the spectrum
e one fermion species survives in the continuum limit
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Explicit form of the Wilson action:

SW[W7 W] = d4 Z {

XEAR

1

S L [W(x) (=) w(x +af)

u
—Y(x+af)(p+r)w(x)]
4r

+(mo+—) W(X)W(X)}

Set r = 1: ‘project out’ components of Dirac spinor
through appearance of %(1 +7,) to lift the degeneracy.

Problem: for m, = 0, S;,/[¥, y] is no longer invariant under
chiral transformations

y(x) — e By(x)
e chiral symmetry is broken explicitly by the
regularisation procedure

* only restored as a — 0: chiral and continuum limits
are bound together for Wilson fermions

* lack of chiral symmetry makes operator mixing
more complicated in lattice case than in continuum

* possible to show that explicit chiral symmetry
breaking by Wilson term appears in chiral Ward
identities and becomes the anomaly term as a — 0
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Wilson fermion dispersion relation for momentum (k, 0,0)
with -7 < ka < 7, ma=0.2and r =0,0.2,0.4,0.6,0.8, 1.

1.2 =
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4.2 Chiral symmetry on the lattice

Consider massless free fermions on the lattice with a
lattice Dirac operator Q = Q(x—y)

Sw.yl=a" Y W(x)Qx—y)v(y)

X,yEAL
Desirable properties of Q:

1. Q(x—y)islocal

2. Q(p) = itupu + Oap?)

3. Q(p) is invertible for p £ 0

4. %Q0+Q% =0

Nielsen-Ninomiya no-go theorem (1981): 1-4 do not hold
simultaneously

— either left with doublers or chiral symmetry is
explicitly broken

Ginsparg-Wilson relation

You can realise exact chiral symmetry on the lattice by
replacing 4 with

¥sQ+ Q¥ = aQyQ

(P Ginsparg and KG Wilson PRD 25 (1982) 2649, M Liischer
hep-1at/9802011, 1998)
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More on N-N conditions

1. Locality Needed for renormalisability and universality
of the continuum limit
Range over which fields are coupled in the action is
infinitely smaller than any physical distance: compare

Q(x,y) YL —yleyl o Ealx-y]

correlation function ~ e~ "x~V|

where y = O(1) and m is a physical mass. As a — 0 the
former is exponentially suppressed with respect to the
latter.

Cannot have long-range (non-universal) couplings in
the action which would compete with the physical
signals arising from universal collective behaviour.

2. Q(p) = iyupu + O(ap®) Want correct continuum limit

3. Q(p) invertible for p # 0 No extra poles at non-zero
momentum: no doublers

4.{Q, v} =0 Chiral symmetry

Wilson fermions give up entirely on chiral symmetry.
Recent breakthrough: modify 4 to get chiral symmetry
without doublers.
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History

e 1982: GW wrote down the relation but no solution was
found in the interacting case—it was forgotten

e 1997

e realised that the Fixed Point Dirac operator of
‘classically perfect’ action satisfies GW

o followed by observation that Dirac operators for
Domain Wall Fermions (Kaplan, Shamir) and overlap
formalism (Neuberger) also satisfy GW

e 1998: Liischer demonstrated the chiral symmetry

Led to an explosion of interest. DWF and overlap already
used in some numerical studies.
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More on the GW relation

¥Q+ Q¥ = aQyQ
or

Q_17/5 + 75Q_1 =ays

Q! is highly non-local, but {Q !, 3} should be local: the
GW relation is highly non-trivial

GW relation is expected to imply ‘physical’ chiral
symmetry on the lattice. Look at Ward identity for
y(x)y(y) with |x — y| along distance, using usual chiral
(75) transformation. Get extra term from variation of the
action:

(v(x)¥(2)(aQy Q) w(2)¥W(y)) ~
(Qil)xz(aQ% Q)Zzl(Qil)zly ~ Y5y

— this is local so negligible at long distances

In fact there’s an exact chiral symmetry (Liischer) (see later)
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Exact chiral symmetry on the lattice

GW relation implies that ¥ Qv is invariant under flavour
singlet chiral transformations:

v - ytiep(l- gQ)w

v - FiEv-SQn
and non-singlet chiral transformations:

v — y+ieTy(l- gQ)w

Vo FiEv- SQuT

where T is an SU(N f) generator
Slightly smeared version of usual chiral transformation.

Looks too good? In fact, singlet chiral transformation alters
the measure

oDy, y] = —Tr(%Q) D[V, y]

— gives the correct anomalous Ward identity (just like
Fujikawa in the continuum).

No anomaly in non-singlet case since Tr T = 0
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Anomaly in LGT with GW relation

Expectation value of some fermion operator

)= [ plw.vioe

Apply chiral transformation as change of variable,
remembering that S is invariant:

1 _ _ 1
dy=epr(1-2aQy sy =¢ey(l-2aQ)y

)= [pw.wioe S = [ Do +esore s

with Jacobian factor J = ‘ aa((lz;fg)) ‘
oy 1
ﬁ — 5xy+875(1*5any)
v 1
aw; = 5xy+8(1—5any)75
_1
J = det el -3aQ) 01
0 1+e(1-3aQ)¥
= det(1+eX)det(1+¢Y)

= l+4+etr(X+Y)=1-eatr(%Q)

where X = (1 — %aQ), Y=(1- %aQ)q@) and used
det = exptrin, try; = 0.
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LH and RH chiral fermions
If have chiral symmetry expect to decompose

VQv =V, Qv +V¥_Qy_

It’s really possible:
yv. = Py v, = Py
V. = VP W, = P

where P, = %(1 + ;) as usual and
A 1 .
Pi = 5(1 + ')/5)

% is a ‘smeared’ ¥;:

% = ¥%(l-aQ)
?75775 =1
%BQ = —Q775

‘Left’ and ‘right’ become gauge-dependent ideas
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Combining:

() = %/D[W vl(1 - eatr(Q))(0 +£50)e S
To order &

[ PwvI(50 - autrQ)e* <0

...giving the correct anomalous Ward identity for a global
flavour-singlet axial transformation.

(Note: tr(y; Q) vanishes in the free case, but it’s non-zero in
the presence of gauge fields.)

Neuberger’s operator

An operator Q satisfying the GW relation can be defined as
follows. Let

1 * *
Qy = 5 (yH(V”+Vu) - aV”V”)

be the massless free Wilson-Dirac operator. Neuberger’s
operator is defined (in its simplest form) as:

Qu = (1-Awa'a) )

where
A=1-aQy

Exercise

Show that Q,; satisfies the GW relation
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4.3 Domain Wall Fermions

Dirac fermion in 5 dimensions

Dy = Vuau + %505 — 0(s)

Y5 = —hnrs: u=0,1,23
s: extra spatial coordinate

¢ is a given potential 9(s)
. . M+

representing a domain wall

with height and width set by

ascale M, e.g. s

0(s) = Mtanh(Ms), but

exact form not needed.

1/M
Planewave solutions

Dy x(x,5)=0 with x(x,s) = e u(s)

p = (iE,p) physical 4-momentum

m? = E> —p®> mass of the mode
Allowed m? determined from:
[150s = 0(8)] u(s) = —ivupuu(s)
Multiply on left by iy, p,
[— 92+ V(s)|u(s) = m*u(s)

with V(s) = 35050 (s) + ¢2(s)-
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Summary

e all but one mode have mass m > O(M)
e massless mode: left-handed and bound to domain wall

e atenergies E < M, theory describes a left-handed
fermion in 4-dimensions

Domain Wall Fermions
Mechanism is stable against changes in setup:

e domain wall — Dirichlet boundary condition

e Dirac fields x(x,s) in s > 0 with

Dy =Dy +7y0;— M
satisfying
Dsx(x,5)=0,  P.y(x,8)|s_g=0

e —> massless mode as before

e 5-dim fermion propagator satisfies

DsG(x,51.0)] o 6(x—y)é(s—1)

P, G(x,s;y, t)|s:0 = 0
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[—9Z+V(s)]u(s) = m’u(s)

B=+l  ty(s)
T—//’

N
|s| o0

V(s) = M? leads to eigenvalues with m? > M?

Assume eigenfunctions have
definite chirality since

—9?2 + V(s) commutes with
¥5. Three cases:

1. Continuous spectrum

2. Discrete spectrum
eigenfunctions with m?> < M? decay exponentially —
discrete spectrum. All non-zero masses are of order M
(only scale). No negative masses since

2+ V(s) = (—¥505 + ) (— 105 + 9).
3. Massless modes
(7595 +¢)u(s) =0,

with solutions
§ Pv=v
u(s):exp{ﬁ:/0 ¢(t)dt} v, {yﬂpuvzo

u(s)
Only LH solution is

YuPuu(s) =0

normalisable. Massless
mode bound to the wall | %
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e on the boundary you find:
G(x,0;y,0) =2MP _S(x,y)P,

where S(x,y) is the 4-dimensional propagator of the
operator

D —1/2

M+(D4_M)[1_(D4/M)2]
— D-Dy2M+ )

D describes a massless 4-dim fermion, reduces to D,
as M — oo.

e D satisfies a Ginsparg-Wilson relation
D+ D ! Dy.D
¥ ¥ = M ¥

e (Kaplan 1992) The construction also works
* in the presence of gauge fields (no s-dependence)

* and on the lattice: M — 1/a, D, — Q,,, (massless
Wilson-Dirac)

D

1 " -1/2
—(1- (1-aQy)[(1-aQy f(1-aQy)] )
_ Y aatae
= a(l A(ATA)TZ)

where A=1-aQy,

e use a finite 5th-dimension: can have one chirality
exponentially bound to one wall, other chirality on
other wall
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5.1 Fermion action in LQCD

5 Lattice QCD N 13 X
Uyl = Y5 L VOO U (oy(x+a)
Formulate a lattice theory of quarks and gluons. x€Ag 1=0
Tt ] t
Lattice action: + W (x+0)(1+7) Uy u/(x)]
SQCD[U7W7 lll] = SG[U] + SF[U7V7 lll] +W(x) (mO + 4) W(x)}
SslU] Wilson plaquette action Rescal dTh
SplU, v, y] Wilson fermion action escale yrand y by
Define a covariant derivative: y(x) = v2ry(x), V(x) — y(x)v2K
1 . and fix k by requiring (m; +4)2x =1
Duy(x) = —(Uu(x)y(x+a)—y(x)) o o ,
a Lattice action for QCD with Wilson fermions becomes:
1
Dyy(x) = —(y(x)-Ui(x—ai)y(x—ai))
K a K Socp UV, ¥ BZ( f—ReTrPD)

For the Wilson-Dirac operator:

3
1 . ra_, + Z{ KZ [ )(1=7) Uy (x x)y(x+)
E'yu (V“-l-V“) + my — ?V#Vu XeAL u=0

() (1+7) Ul w(x)]

+W(x)'l/(x)}

1 . ra__,
— EYM(D“+D#) +myy — ?D#DM

Set:

r=1

a=1 express all quantities in units of a We have traded parameters: (g, mo) — (B, k), with:

6
=—, = hopping parameter
B P 2o+ 8 (hopping p )
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Introduce the effective gauge action, using
5.2 Effective gauge action dotx — QloEdetX _ Trlogx
Rewrite fermionic piece of LQCD action:
so that
SplU Wyl = Y Vx)[Quv(x) <
xeA, 7= / D[U]e SenlV] S.lU] = S5lU] - Trlog Q[U]
= V(%) Quyw(
x };A - ¥ Quark propagator:
Qyxy is Wilson-Dirac operator in matrix notation (‘quark - _ 1 / DIU1O- e Sl
R A (W) = - | DIUIQ,Ule
3 . - o .
o _ _ Now examine the fermionic contribution to S_;[U] in
Qo = Oy—K X:: Sy,xﬂi(l 1) Un(%) greater detail. Split: ¢
T
+ 8y p (141 Up (1) QU] = Q" — VU]
Functional integral: Q% describes free Wilson fermions:
_ T wle—SclUI=SplU.w.y] o 3
A /D[Ua‘l/7 W]e Q)(¢y> = 5xy Z [ yx+;.t 1 Yp) 6yx u(l—‘r’yﬂ)}
Integrate out fermions: .
Q(Or = S‘(/g) (free Wilson propagator)
— =SclUl
Z= / DlU]e "¢ det QU] while V is the interaction term:
3
_ Vo] = xY [5y4x+ﬁ(1fyﬂ)(uﬂ(x) —1)
Exercise p=o Lt
Show that det Q[U] is real. +6, o (1H%) (UT(J’) - 1)}
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Now write
Q) =Q"Q" Q)= Q" (1- Q" v [w))
The effective gauge action becomes
SelU] = Sg[U] —logdet QU]
= S;lU]—Trlog (1 - Q<0)71V[U]) + const

(o] 1 .

Sglul+ Y. =1 (s viuy)’

j=117

e Trace here is over all quark indices: Dirac, colour, site

e each term is a closed loop of j free quark propagators
and j vertices

e the sum contributes closed quark loops to the effective
action

N | =
W =
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6 Numerical simulations

Return to the problem of computing observables in QCD
(restrict to SU(3) gauge group)

(0) = % / D[U] e SV

3
N I1 HdU#(x)ﬁe*Seff[U]

v XEARu=0

e strong coupling expansions have a small radius of
convergence

e weak coupling expansion is asymptotic
e ...and the two don't overlap

e exact evaluation of (0') or Z on a computer is not
practical (although possible in principle)

e instead use stochastic methods to evaluate (&) or Z

e Monte Carlo integration: evaluate the observable on a
finite number of ‘typical’ field configurations

Field configuration

Assignment of an SU(3) matrix Uy (x) to every link (x, u)
on the lattice:

€ ={Uu(x)|x€Apu=0,1,23}, €={U}
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5.3 The quenched approximation
There is phenomenological evidence that quark loops have
only small effects on hadronic physics.

Zweig’s (OZI) rule: ¢ — 37 is suppressed relative to
0 — K"K~

N e
d \
S u S u
N | - 20
S d S u
d -4
u’ s Kt
7L'+

This motivates the quenched approximation which
corresponds to setting

detQU] =1, e  S[U] = Sy[U]

e det Q[U] = 1 corresponds to setting x = 0 for internal
quarks (in loops)

k=0 & mg=oo
— infinitely heavy quarks in loops contributing to the

effective gluon interaction

e quenching is an enormous simplification for
numerical simulations:

cost of full QCD

> 10000
cost of quenched QCD
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6.1 Monte Carlo integration

Integrand is strongly peaked around configurations 4 with
large values of

W(fg) = e*Seff[W] = e*Seff[U]

W(%) : Boltzmann factor or statistical
) weight of configuration &

Monte Carlo procedure

e generate a sample or ensemble of gauge field
configurations, €}, i = 1,..., N, with statistical

»Vefg?
weights W (%)
e sample comprises predominantly configurations with
large W (%))
e importance sampling: design an algorithm which
generates a configuration ¢ with likelihood W (%)

e common algorithms

e Metropolis

e heat bath (for SU(N) gauge theory, scalar field
theories, spin systems)

e cluster algorithms (Swendsen-Wang, Wolff) (for
spin systems, O(NN) models, not gauge theories)

e hybrid Monte Carlo (HMC) or multiboson
algorithms (for QCD with dynamical fermions)
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e quenched QCD: use W(%) = e %al?] = 56Ul g5
probability measure

o ‘full’ QCD: use W (%) = det Q[U]e %!V] as measure

o det Q[U] is real but not positive definite

o use det(Q'Q)e 56, corresponding to two flavours of
dynamical quark
e hard to simulate odd numbers of fermions

e evaluate observables on each configuration in the
ensemble, 0[€],i=1,... giving N,
‘measurements’

cfg cfg

e sample average of observable

Neg
_ 1
0=-—Y 0l%]
cfg i=1
e expectation value
(O)= lim O
N —oo

e results from Monte Carlo integration have statistical

errore 1/, /Negg
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Numerical calculation of 2pt correlator
Let
P(x) = v(x)5¥(x)
Pf(x) = Y, (0) iy (x)

1,2 label distinct quark flavours: limits the contractions
appearing; different choices of 1,2 let you study m, my, . ..
The correlator:

Ce(£) = Y.(0|T P(£,x)P"(0)[0)

X

Z (O]TY, (x)¥5 Yo (X)W, (0) 15y (0)]0)
_Z I_/\IdU eff Tr(YSQZ [ }x0Y5Q171[U]0x)

:Z<Tr (75Q51[U]x075Qf1[U]0x)>
2
:; LX.Ys 1 7/5.0

Sample average

cf

= NL ; ; (y5 W (x 0)755Wl(0 x))

where S% ( ¥, x) is propagator for quark type j from x to y
on the lth conﬁguratlon G,
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6.2 Hadronic correlation functions

Recall spectral decomposition of two-point function:

(A(x)B(y)) = X (0|A(0.x)[n)e”

n.pn

(En=Ey)(%30) (| B(0,y)|0)

Now consider the pion two-point function:

Ce(t) = Y (0| P(2,x)PT(0)[0)

X

e P(x) =y(x)y;w(x) is an interpolating operator
between the pion state and the vacuum. P = —P

e Yx projects onto zero momentum: states |7) at rest

e states |n) in sum have same quantum numbers as
pion, JP=0"

(0|P(0 n._,|PT(0)|0 .
Gt - Y (0] P( ><(7S_o\ (0)] >e,M,<L>t
m 2M}
Z| lpin)| oMt
w  2M(™

e For large Euclidean times ¢ the state with the lowest
mass dominates, call it M,

70

Calculating propagators
® Sy (X.¥)gp,y has site, spin and colour indices and
depends on the gauge field and the quark mass (k)

e on a given configuration the propagator for quark type
J (with mass fixed by « 7 solves

C;
QZXSWJ(xJ’) = by

suppressing colour and spin indices
e impractical to solve for the whole matrix: instead, fix
y=0
QS (.0 = 3,
* solve matrix equation Q- X = b for vector X
* repeat for each configuration i
— gives propagator from 0 to any x

e correlation function also contains Sy, (0, x).

* since Q = 75 Q*yS, then S, = 7551;/75
x* — get Sy,/(0, x) from Sy, (x,0)
— have all propagators needed

e now just evaluate the trace with y;’s using propagators
evaluated on each gauge configuration
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e On afinite lattice with T—-t
periodic temporal Teestttttee
boundary conditions . *e,
C;(t) is symmetric for . Oe
t—T—t ... Ry
®ececsecc’
t
Gelt) T [ (olpim (e Mt 4 e M)
2M;

= ML|(0|P\n)|2e*M"T/2cosh (Mn(T/2 1))

T

e Obtain M, and the matrix element Z = (0| P|x) o f; by
fitting C; (¢) to the above cosh formula

1
0.01F e, :
Cx (1) [ ..°‘. i
1074 .
107+ Tt

0 5 10 15 20 25 30

t

Example: Quenched, § = 6, xk = 0.1337, 323 x 64 lattice.
has aMy = 0.3609713, Z = 0.155373). (D Lin,
APE data)
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¢ By choosing appropriate interpolating operators for:

vector mesons p,K*,0,...
octet baryons N, AE, ...
decuplet baryons A, X%, E*,Q

one can extract the hadron spectrum from fits to the
correlation functions

75

Effective mass plot

Plot

Ge(t)+ VRO —CE(T/2) | verer

eff _
My (1) = In Celt+1)+/CE(t+1) - CA(T/2) | "

T T T
0.60 I b
Quenched B = 6.0, k = 0.1337

0.50 | b
» I
é a M, =0.3609+0.0012-0.0013
s I Z, =0.1553+0.0039-0.0041
2 040 I b
€ I

ITrr=szTz= =TT II:IT‘II
0.30 | J
—— fitted curve
0.20 L L L
0 10 20 30

(D Lin, APE data)

— Myt

Simpler: if T — oo, then C;(t) «< e and plot

In (Gy(£)/Ca(t+1)) ~ My

Differs only at right hand end of above plot
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6.3 Elimination of bare parameters

Hadron masses obtained from correlation functions
depend implicitly on the input bare parameters,  and «.
Moreover, you determine dimensionless quantities, like
aM; and have to fix a afterwards.

Eliminate bare parameters by matching lattice hadron
masses to experiment.

Can study quark mass dependence of hadrons on the
lattice by computing aM, , for several values of « at fixed
B. From leading order chiral perturbation theory:
M: = B(my+my)
M12<i = B(my+my)
M, = A+C(my+my)
My. = A+C(my+my)
— information on quark mass dependence resides in
parameters A, Band C
Motivates ansatz for quark mass dependence of lattice
data:
2
(aMpg) (aB)(amql + aqu)
aMy = (aA)+C(amg +amy,)

C
— (dA)+ @(EMPS)Z
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To first approximation, assume m,, = m; = 0, so that one
expects M? = 0 (in real life: M2 = 0.018 GeV? compared to
M} = 0.59GeV?).

Compute aM, by plotting aM,, versus (aMPS)2 and
extrapolating to (dMPS)2 =0.

0.4 \
¢
¢
aMy, t
0.35 - + + + B
| | | | |
0.3 0 0.02 0.04 0.06 0.08

2
(aMpg)
Example: Quenched, f = 6.2 (UKQCD PRD 62 054506,2000)

Then use experimental value to ‘calibrate’ lattice spacing:

al— Mpphys
(aM,)

latt

e fix all other masses in terms of M,

e have traded a hadronic quantity, M,, for a bare
parameter, 3

e could use other physical (dimensionful) quantities,
such as f;, tofixa
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Light hadron spectrum in quenched LQCD

1.8 | |
1.6 | X
= o
14 | g= |
T e g E
> 1.2 | ¢ ~i ! ) |
8 N # ]
IS K ;
10 | P : |
_—
os | 5 §§ e Kinput 1
o ¢ input
ol K experiment i
: ol
@
0.4

Errors shown are statistical and sum of statistical and
systematic.

(CP-PACS collaboration hep-lat/0206009)

79

To compute masses of strange hadrons, one has to
determine the value of x which corresponds to the strange
quark mass: K

Fix x; at the point where

(aMpg)® Mg,  (494MeV)? 04116
(aM,)? ~ M? ~ (7T70MeV)?
Use similar procedure for x, k;
Summary
parameter fixed through
Ku = Ky (aMpg)? =0
a aMy, = aM, at k = K

Ks (aMpg)?/(aM,)? = 0.4116

My, M, and My are used to eliminate j, «, k. This is
called a hadronic renormalisation scheme. The
dependence of lattice estimates on § and k has been
eliminated by matching to the observed hadron spectrum.
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6.4 Systematic errors

Lattice computations are truly first principles. Errors can
be systematically reduced.

alL

We want

al>1fm and a'> Aqcp

Computer power limits the number of lattice points which
can be used and hence the precision of the calculation.
Typically, full QCD simulations use about 24 points in each
spatial direction (O(50) in quenched simulations) so
compromises have to be made.

Statistical errors Functional integral is evaluated by
importance sampling. Statistical error estimated from
fluctuations of computed quantities within different
clusters of configurations
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Discretisation errors Current simulations typically have
a~0.05t00.1fm

Errors with Wilson fermions are O(aAqcp), O(amy)
and can be particularly severe in heavy quark physics,
although we are helped by:

e guidance from heavy quark symmetry

o use of discretised effective theories

Efforts to reduce discretisation errors:

e Use several lattice spacings a and extrapolate a — 0
e Improvement (Symanzik) Adjust the discretisation
so that errors are formally reduced. Simple eg:

7o = TEFOZTE o
compared to
o JErO—fxma) oo

2a

Relatively easy to reduce errors from O(a) to
O(asa). Also possible, though more involved, to use
nonperturbative improvement to get to O(a?).

e Perfect actions: apply renormalisation group to
continuum action to construct (classical) action
with no discretisation errors. Truncations are
necessary in practice: not used in large-scale QCD
simulations to date
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6.5 Continuum Limit
Consider calculating a physical mass My
. . Dependence of bare coupling g,
o la.ttlce gives on cutoff a
dimensionless 5
m= M@ B(g) = _”ai% ;
o M, should not = P& —Prigo+
depend on a (at least e findg,—0asa—0
as a — 0), hence m e calculate B(g,) in lattice PT
depends on gy(a): %
aM g ;
Do _ P
da P
m+ B(g,) (9_ =0 e ...or nonperturbatively
8o (ALPHA)
Solve to find
—1 m
m=Cexp| — . 100MeV 50 MeV 5MeV
28, gg (lattice
mass)
with a different C for
each physical mass:
finding C is the hard
part (where all the ! 2

‘physics’ lies).
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Finite volume effects Pion is light (pseudo Goldstone
boson of chiral symmetry breaking): it can propagate
over large distances. Simulations are performed with
heavier pions (ie using quarks around the strange
mass) and results are extrapolated to the chiral limit.

Typically impose myal > 4

Quenching Repeated evaluation of fermion determinant
to generate unquenched gauge configurations very
expensive. More and more simulations now use
dynamical quarks, although typically have two flavours
of degenerate sea-quarks a bit below the strange mass.

Renormalisation Need to relate bare lattice operators to
standard renormalised ones (eg MS): introduces
uncertainties.
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e lattice mass vanishes in the continuum limit

x corresponding correlation length £ = 1/m diverges
(in lattice units)
* continuum limit is a critical point

x once & > a the system ‘forgets’ the fine details of
the original lattice — universality

e mass ratios should be pure numbers, independent of

8y a:

Mphys i

* Ay, Says how ‘strong’ the strong interaction is

= CiAlatt

* it's strongly-dependent on the details of
regularisation: Ag</Ay,, = 28.8 for SU(3) YM
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Scaling

e calibrate a from m,, fz, o, ...
o further calculations yield mass ratios m;/m;
o if close enough to ctm limit, m,/my, is constant as

B/

e this is scaling

Asymptotic Scaling

e PTin g should work for large enough 8 = 2N/g¢
e observe scaling according to the -function (1-loop)

-1
ot (55

e this is asymptotic scaling
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Perturbative renormalisation

Calculate matrix element of quark bilinear & between, say,
the same quark states and fix Z,, by demanding agreement
(2, is a property of & so use any convenient states).

L NBAA
AL AAR AR o

latt

s
Zﬁ:1+a(yln(p,a)+c)+-~-
For axial current with pa =1
Z,=1-1582¢
A= Cun F

15.8 is a large coefficient...

o a5/ala ~ 2.7: ¢} is a poor expansion parameter

e related to tadpoles: extra vertices in lattice PT from
expanding exp (aA,l (x))

e turn to nonperturbative renormalisation. ..
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6.6 Renormalisation of Lattice Operators
Typically (ignoring operator mixing):
O™ (1) = Z5(na.g) 0™ (a)
o ifa!> Aqcp and p > Aqgcp can use PT to relate

e Z, depends on short-distance physics

e IR physics common to matrix elements of "™t

Example: axial vector current in Wilson LQCD

A = () s v (x)

Use this in a 2-point correlation function:

Y (0T A% (x, 1) A% (0)0)

X

+
large r>0 | (m(p=0) ‘A}Jan (0)|0)
B 2my

cr) =

} 2

oMt

But
AR =Z,AM and  (z(p=0)|AF"T(0)|0) = frma

so that
J Z,|(x At 0) |

V3
My

...youneed Z, to get the physical f.
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Nonperturbative renormalisation

Impose a physical condition to fix Z,

e Example 1: local Wilson vector current

Vi =v(x)nw(x)

not conserved — Z;, # 1

Possible to define a conserved lattice vector current
Vuc, which has Z = 1. Hence, fix Z;, using

(m(p)|V,(0)|7(p))
(2(p) [V (0) |7 (p))
e Example 2: Use Ward Identities to relate Z’s of different

operators. For example, impose continuum axial
current WID

Zy =

(9uA,O) = 2m(PO)

with ¢  arbitrary operator
m  renormalised quark mass
P pseudoscalar density
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