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1 Motivation

1.1 Theoretical
The lattice regularisation of quantum field theories

• is the only known nonperturbative regularisation

• admits controllable, quantitative nonperturbative
calculations

• provides insight into how QFT’s work and enables
study of unsolved problems in QFT’s

1.2 Applications of lattice field theories
• QED: ‘triviality’, fixed point structure, . . .

• Higgs sector of the SM: bounds on Higgs mass,
baryogenesis, . . .

• Quantum gravity

• SUSY

• QCD: hadron spectrum, strong interaction effects in
weak decays, confinement, chiral symmetry breaking,
exotics, finite T and/or density, fundamental
parameters (αs, quark masses)
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Why lattice QCD?
• evaluate non-perturbative strong interaction effects in

physical amplitudes using large scale numerical
simulations: observables found directly from QCD
lagrangian

• long-distance QCD effects in weak processes are
frequently the dominant source of uncertainty in
extracting fundamental quantities from experiment

Example: K –K mixing and BK
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scales where QCD is weak and run by renormalisation
group down to low scales. Left with:
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• C (·): calculable perturbative coefficient (as long as
µ/ΛQCD not too small)

• evaluate matrix element on a lattice with µ ∼ 1/a (a is
lattice spacing)

• match lattice result to continuum at scale µ ∼ 1/a
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CKM matrix and unitarity triangle
(

Vud Vus Vub
Vcd Vcs Vcb
Vt d Vt s Vt b

)

=

(

1−λ2/2 λ Aλ3(ρ − i η)

−λ 1−λ2/2 Aλ2

Aλ3(1−ρ − i η) −Aλ2 1

)

+ O(λ4)

Unitarity: VudV ∗ub +VcdV ∗cb +Vt dV ∗t b = 0

VudV ∗ub = Aλ3(ρ + i η)+ O(λ7)

VcdV ∗cb = −Aλ3 + O(λ7)

Vt dV ∗t b = Aλ3(1−ρ− i η)+ O(λ7)

where ρ = ρ(1−λ2/2) and η = η(1−λ2/2).
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Unitarity triangle

VudV ∗ub +VcdV ∗cb +Vt dV ∗t b = 0

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

sin 2βWA

∆md
∆ms & ∆md

|εK|

|εK|

|Vub/Vcb|

ρ

η

C K M
f i t t e r

Measurement VCKM×other Constraint

b→ u

b→ c

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2

ρ2 + η2

∆Md |Vt d |
2 f 2

B
d

BBd
f (mt ) (1−ρ)2 + η2

∆Md

∆Ms

∣

∣

∣

∣

Vt d

Vt s

∣

∣

∣

∣

2 f 2
Bd

BBd

f 2
Bs

BBs

(1−ρ)2 + η2

εK f (A,η,ρ,BK ) ∝ η(1−ρ)

(CKMfitter Spring 2002: H Höcker et al, hep-ph/0104062;

http://ckmfitter.in2p3.fr/)
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. . . with sin 2β from BaBar and Belle, Standard Model is in
good shape. Errors in the nonperturbative parameters are
now the limiting factor in more precise testing to look for
effects from New Physics.

There is also a rich upcoming experimental programme in
the next few years which will need or test lattice results:

• B-factories: constraining unitarity triangle, rare decays

• Tevatron Run II: ∆MBs
, ∆ΓBs

, b-hadron lifetimes, . . .

• CLEOc: leptonic and semileptonic D decays, masses of
quarkonia, hybrids, glueballs

• LHC: . . .
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2 Basics: Euclidean quantisation
Lattice embedded in d-dimensional Euclidean spacetime

Las

Tat

at

as

as ,at lattice spacings

Las length in spatial dimension(s)

Tat length in temporal dimension

Matter fields live on lattice sites x . Example: scalar field

φ(x) with
x j = nas , n = 0, . . . ,L−1

x0 = mat , m =, . . . ,T−1
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2.1 Lattice as a regulator
Fourier transform of a lattice scalar field in one dimension:
x = na, n = 0, . . . ,L−1, with periodic boundary conditions:

φ̃(p) = a
L−1

∑
n=0

e−ipnaφ(x)

φ(x + La) = φ(x)

• discretisation implies

• φ̃(p) periodic with period 2π/a

• momenta lie in first Brillouin zone

−
π
a

< p ≤
π
a

• have introduced a momentum cutoff;

Λ =
π
a

• spatial periodicity implies momentum p quantised in
units of 2π/La

• gauge invariance and gauge fields, fermions: later

Lattice provides both UV and IR cutoffs. Ultimately want
infinite volume (L,T →∞) and continuum (a → 0) limits.
Most effort devoted to continuum limit.
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2.2 Euclidean quantisation on the lattice
Path integral well-defined in Euclidean space

Minkowski
Wick

rotation
Euclidean

iε prescription avoids poles

Procedure
1. Continuum classical Euclidean field theory

2. Discretisation−→ lattice action

3. Quantisation−→ functional integral
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Step 1
Euclidean fields φ(x) obtained formally from analytic
continuation

t →−ix0, φ(x,t )→ φ(x)

Action:

SE [φ ] =

∫

d4x

{

1

2
(∂µ φ)2 +V (φ)

}

where µ = 0,1,2,3 and

V (φ) =
1

2
m2φ 2 +

λ
4!

φ 4

Minkowski ←→ Euclidean

Lorentz symmetry O(4) symmetry

t 2− x2 invariant (x 0)2 + x2 invariant

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



+

−
−
−








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
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
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Step 2: Discretisation
Introduce a hypercubic lattice ΛE with at = as = a.

ΛE =

{

x ∈ aZ
4
∣

∣

∣

x0

a
= 0, . . . ,T−1;

x1,2,3

a
= 0, . . . ,L−1

}

• L3T lattice sites

• finite volume

• finite number d.o.f.

Lattice action:

SE [φ ] = a4 ∑
x∈ΛE

{

1

2
∇µ φ(x)∇µφ(x)+V (φ)

}

with forward and backward lattice derivatives

∇µ φ(x) ≡
1

a

(

φ(x+aµ̂)− φ(x)
)

∇∗µ φ(x) ≡
1

a

(

φ(x)− φ(x−aµ̂)
)

Lattice Laplacian:

∆φ(x) ≡
3

∑
µ=0

(∇∗µ ∇µ)φ(x)

=
1

a2

3

∑
µ=0

(

φ(x+aµ̂)+ φ(x−aµ̂)− 2φ(x)
)
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Lattice action for a free scalar field:

SE [φ ] = a4 ∑
x∈ΛE

{

−
1

2
φ(x)∆φ(x)+V (φ)

}

Remarks
• Discretisation is not unique. Can use different

definitions for ∇(∗)
µ and/or V (φ) as long as they become

the same in the naive continuum limit, a → 0.

∗ Universality: discretisations fall into classes, each
member of which has the same continuum limit

∗ Improvement: optimise choice of lattice action for
a faster approach to the continuum limit

• O(4) (eventually Lorentz symmetry) is not preserved.
Have cubic symmetry instead; recover O(4) symmetry
as a→ 0.
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Step 3: Quantisation—functional integral

ZE ≡
∫

D [φ ]e−SE [φ ]

D [φ ] is the measure, eg:

D [φ ] = ∏
x∈ΛE

dφ(x)

• finite number of integrations

Correlation functions

〈φ(x1) · · ·φ(xn)〉 ≡
1

ZE

∫

D [φ ]φ(x1) · · ·φ(xn)e−SE [φ ]

• 〈·〉 is shorthand for 〈0|T · |0〉, time-ordered vacuum
expectation value

• well-defined if SE [φ ] > 0

• particle spectrum implicitly determined by correlation
functions

• analytically continue to Minkowski space and get
S-matrix elements (= physics) via LSZ
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2.3 Generating functional
Scalar product on space F of fields φ over ΛE :

(φ1,φ2) = a4 ∑
x∈ΛE

φ1(x)φ2(x)

Action for free scalar field:

SE [φ ] =
1

2
(φ ,K φ), K = −∇∗µ ∇µ +m2

K is a linear operator on F .

Let J(x) be an external field (source) on ΛE , J ∈F , and
define the generating functional W [J ] through,

eW [J ] ≡ 〈e(J ,φ)〉

=
1

ZE

∫

∏
x∈ΛE

dφ(x)e−SE [φ ]e(J ,φ)

Correlation functions found by differentiating w.r.t. J(x):

∂
∂ J(x)

eW [J ] = a4〈φ(x)e(J ,φ)〉

∂ 2

∂ J(x1)∂ J(x2)
eW [J ]

∣

∣

∣

∣

J=0

= (a4)2〈φ(x1)φ(x2)〉
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Lattice propagator
Relation between W [J ] and K :

eW [J ] =
1

ZE

∫

∏
x∈ΛE

dφ(x)e−SE [φ ]e(J ,φ) = e
1
2 (J ,K−1J)

Diagonalise K through Fourier transform:

J̃(p) = a4 ∑
y∈ΛE

e−ip·y J(y ), J(x) =
1

a4L3T
∑

p∈Λ∗
E

eip·x J̃(p)

Λ∗E is the dual lattice (or set of momentum points in the
Brillouin zone):

Λ∗E =

{

p

∣

∣

∣p
0 =

2π
Ta

n0, p1,2,3 =
2π
La

n1,2,3;

n0 = 0, . . . ,T−1, n1,2,3 = 0, . . . ,L−1

}

aL

aL

aT

2π/a

2π/a

2π/a

ΛE Λ∗E
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Propagator (continued)
Find:

(K−1J)(x) = a4 ∑
y∈ΛE

G(x − y )J(y )

G(x−y ) is the Green function for K :

G(x − y ) =
1

a4L3T
∑

p∈Λ∗
E

eip·(x−y)

p̂2 +m2

with

p̂2 =
3

∑
µ=0

p̂µp̂µ , p̂µ =
2

a
sin

(apµ

2

)

eW [J ] = exp

{

1

2
a8 ∑

x ,y∈ΛE

J(x)G(x − y )J(y )

}

Therefore the propagator is:

〈φ(x)φ(y )〉=
1

a8

∂ 2

∂ J(x)∂ J(y )
eW [J ]

∣

∣

∣

∣

J=0

= G(x − y )
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Remarks
• As a→ 0 (and L,T →∞), G(x − y ) becomes the

Euclidean Feynman propagator:

G(x − y )
a→0−→

∫

d4p

(2π)4

eip·(x−y)

p2 +m2

using p̂2 = p2 + O(a2).

• Particle masses defined through poles of the

propagator, here poles of (p̂2 +m2)−1, which is
periodic in each component of p with period 2π/a.

p̂2 =
4

a2

3

∑
µ=0

sin2
(apµ

2

)

Unique mass spectrum inside first Brillouin zone,
pµ ∈ (−π/a,π/a].

18

Free Scalar Two-point Correlator in
Position Space

C (x0) = a3 ∑
x

〈φ(x0,x)φ(0)〉= a3 ∑
x

G(x0,x)

• Create a particle at the origin; propagate it to any
spatial point at time x0

• ∑x · projects onto zero 3-momentum ( ∑x eip·x·would
project on momentum p).

• Can evaluate explicitly for free scalar field (exercise)

C (x0) =
e−m|x0|

2m(1 +m2a2/4)1/2

with ‘physical mass’ (position of pole in propagator for
p = 0) m, satisfying

sinh

(

am

2

)

=
am

2

• Fitting exponential decay of a lattice 2-point function
lets you extract masses. Works more generally, see
later.
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QCD Lore
Confinement:

• gluons confine quarks and antiquarks into colour
singlets

qq qqq

mesons baryons

• gluons confine gluons into glueballs

• no free quarks or gluons as asymptotic states

Lattice QCD: a non-perturbative regulator which preserves
gauge symmetry−→ allows us to study these questions
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3 Nonabelian lattice gauge fields
Perform steps 1–3 for Yang-Mills

Step 1
Classical continuum Euclidean Yang-Mills action

SE [A] = −
1

2g 2
0

∫

d4x Tr
(

Fµν (x)Fµν(x)
)

g0 is the bare gauge coupling

SU (N) gauge fields in R
4 (N colours):

Aµ (x) x ∈ R
4, µ = 0, . . . ,3

Aµ = Aa
µ T a Aµ ∈ su(N) (Lie algebra)

T a a = 1, . . . ,N 2− 1. Generators

Aa
µ real vector field

[T a ,T b] = f abc T c Structure constants f abc

A†
µ = −Aµ (antihermitian)

Dµ = ∂µ + Aµ

Field strength:

Fµν = ∂µ Aν − ∂ν Aµ +[Aµ ,Aν ]

Gauge transformations:

Aµ (x) → g (x)Aµ(x)g−1(x)+ g (x)∂µg−1(x)

Fµν → g (x)Fµν g−1(x)
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Step 2: Discretisation
For the discretised gauge field, Aµ (x), x ∈ ΛE , the
transformation law

Aµ (x)→ g (x)Aµ(x)g−1(x)+ g (x)∇µg−1(x)

is inconsistent with group multiplication for nonabelian
groups (Exercise).

• naive discretisation of classical Y-M action fails

• need a different concept to discretise pure gauge
theory

• use parallel transport on lattice
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3.1 Defining lattice gauge fields

Continuum

x

y

C

Curve C from y to x parametrised
by:

z(t ), 0 ≤ t ≤ 1

z(0) = y, z(1) = x

Parallel transport along C :

{

d

dt
+ ż µ Aµ (z)

}

v(t ) = 0

Solution

v(1) = PO exp

{

−
∫ x

y
dz µ Aµ (z)

}

v(0)

Parallel transporter from y to x along C is,

U C(x ,y ) = PO exp

{

−
∫ x

y
dz µ Aµ (z)

}

Lattice

Choose C ’s connecting neighbouring lattice sites.

x x + aµ̂

U (x ,x + aµ̂) ≡Uµ (x) ∈ SU (N)

U (x + aµ̂ ,x) = U−1(x ,x + aµ̂) = U−1
µ (x)
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Definition

A lattice gauge field is a set of SU (N) matrices Uµ(x),
x ∈ ΛE , µ = 0,1,2,3. Uµ(x) is called a link variable.

Remarks

• Where is the gauge potential Aµ (x)? Can define a
lattice potential Aµ via

Uµ(x) = eaAµ (x)

but this is not unique. If Actm
µ (x) is a given continuum

gauge potential, one can use a link variable to
approximate it for small a:

lim
a→0

1

a

(

Uµ (x)− 1
)

= Actm
µ (x)

• Gauge transformations on the lattice. Let
g (x) ∈ SU (N) for x ∈ ΛE .

Uµ (x)→ g (x)Uµ(x)g−1(x + aµ̂)

By inspection, if C is a closed loop of link variables
then

W (C ) = TrU C(x ,x)

is gauge-invariant. This is called a Wilson loop.

• Approximate locally gauge invariant continuum fields
by gauge invariant combinations of link variables (see
following example . . . ).
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Exercise

Tr
(

F ctm
µν (x)F ctm

µν (x)
)

F ctm
µν is a field strength defined in terms of a given

continuum gauge potential Actm
µ .

Consider the plaquette:

Pµν (x) ≡

x

x + aν̂ x + aµ̂ + aν̂

x + aµ̂

Show that

Tr Pµν (x) = Tr
{

Uµ(x)Uν (x+aµ̂)U−1
µ (x+aν̂)U−1

ν (x)
}

a→0
= N +

a4

2
Tr
(

F ctm
µν (x)F ctm

µν (x)
)

+ O(a5)
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3.2 Wilson plaquette action
Return to Step 2: discretise the continuum action:

SE [A] = −
1

2g 2
0

∫

d4x Tr
(

Fµν (x)Fµν(x)
)

Consider

SE [U ] =
1

g 2
0

∑
x∈ΛE

∑
µ,ν

Tr
(

1−Pµν (x)
)

=
1

g 2
0

∑
x∈ΛE

∑
µ,ν

(

−
a4

2
Tr
(

Fµν (x)Fµν(x)
)

+ O(a5)

)

a→0→ −
1

2g 2
0

∫

d4x Tr
(

Fµν (x)Fµν(x)
)

Rewrite as

SE [U ] =
N

g 2
0

∑
x∈ΛE

∑
µ,ν

µ<ν

(

2−
1

N
Tr(Pµν + P †

µν )

)

=
2N

g 2
0

∑
x∈ΛE

∑
µ,ν

µ<ν

(

1−
1

N
Re Tr Pµν (x)

)

= β ∑
2

(

1−
1

N
Re Tr P

2

)

• ∑
2

is sum over all oriented plaquettes

• β ≡
2N

g 2
0

is the lattice coupling

• Last line is the Wilson plaquette action
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SE [U ] =
N

g 2
0

∑
x∈ΛE

∑
µ,ν

µ<ν

(

2−
1

N
Tr(Pµν + P †

µν )

)

=
2N

g 2
0

∑
x∈ΛE

∑
µ,ν

µ<ν

(

1−
1

N
Re Tr Pµν (x)

)

= β ∑
2

(

1−
1

N
Re Tr P

2

)

• ∑
2

is sum over all oriented plaquettes

• no Aµ fields: degrees of freedom are SU (3) matrices

• β ≡
2N

g 2
0

is the lattice coupling

• Last line is the Wilson plaquette action

• not obligatory to use simple plaquette: all traces of
closed Wilson loops are proportional to F ·F as a→ 0,
allowing other choices for lattice gauge action
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Step 3: Quantisation
Define a functional integral:

Z =

∫

D [U ]e−SE [U ] =

∫

∏
x∈ΛE

3

∏
µ=0

dUµ(x)e−SE [U ]

dUµ(x): invariant group measure for compact Lie group,
eg SU (N)

Uµ (x)→U g
µ (x) = g (x)Uµ(x)g−1(x + aµ̂)

dU g
µ (x) = dUµ(x) so that D [U g ] = D [U ]

Measure can be normalised, since SU (N) compact:
∫

SU (N)
dU = 1

Not true for
∫

dAµ , Aµ ∈ su(N)

• Functional integral well-defined: finite number of
variables integrated over compact domain

• No gauge fixing required in lattice gauge theory (in
general: but becomes necessary if you want to do a
perturbative evaluation of the integral because of zero
modes in the quadratic part of the action)
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3.3 Strong coupling expansion
Expectation values in lattice Yang-Mills theory:

〈O〉 =
1

Z

∫

D [U ]Oe−SE [U ]

SE [U ] = β ∑
2

(

1−
1

N
Re Tr P

2

)

=−
β

2N
∑
2

Tr(P
2

+P †
2

)+const

• β = 2N/g 2
0 is a small parameter for large g 2

0

• evaluate 〈O〉 by expanding exp(−SE [U ]) in powers of β
• strong coupling expansion (high T , β = 1/T )

• evaluate integrals in group space order by order in β

exp

{

β
2N

∑
2

Tr(P
2

+ P †
2

)

}

=

∏
2

{

1 +
β

2N
Tr(P

2
+ P †

2
)+ O(β 2)

}
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Group integration (compact Lie groups)
Consider link variable Uµ (x) ≡U ∈ SU (N)

U is a complex N ×N matrix, detU = 1

Write Ui j , with matrix (colour) indices i, j

x x + aµ̂

i

i

j

j

= Ui j

= U−1
i j

Group integrals:

∫

dU = 1

∫

dU Ui j = 0

∫

dU Ui jU
−1

kl =
1

N
δik δ jl

∫

dU Ui1 j1
· · ·UiN jN

=
1

N !
εi1···iN

ε j1··· jN

i

k

j

l

=
1

N
δikδ jl
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To Show 〈Uν (y )〉= 0

〈Uν (y )〉 =
1

Z

∫

∏
x∈ΛE

3

∏
µ=0

dUµ(x)Uν(y )e−SE [U ]

with

SE [U ] = −
β

2N
∑
2

Tr(P
2

+ P †
2

)

Pick out plaquettes involving Uν (y )

U−1
λ (y )

y
Uν (y )

ν̂

λ̂

contains Tr(· · ·U−1
λ (y )Uν(y ) · · ·)

Change variables on other links starting/ending at y .

Uλ(y )→Uν (y )Uλ(y )

• makes SE independent of Uν (y )

• doesn’t change measure

• leaves factor
∫

dUν (y ) Uν (y ) = 0

An example of Elitzur’s theorem: all gauge non-invariant
combinations of U ’s have vanishing expectation values.
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Area Law
Let O be a Wilson loop, ie a rectangle of size R×T .

≡W (R,T ) =
1

N
TrU R×T

Expectation value of W (R,T )

〈W (R,T )〉 =
1

Z

∫

D [U ]
1

N
Tr ∏

U∈C
U

×∏
2

{

1 +
β

2N
(P

2
+ P †

2
)+ O(β 2)

}

List the contributions to 〈W (R,T )〉 order by order in β

• Order β 0: only group integrals of type
∫

dUU = 0

• Order β : consider all plaquettes
inside W (R,T ), so that each link of
W (R,T ) pairs up with a link in the
opposite direction. This is tiling
the Wilson loop with plaquettes.
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Order β contributions

1. Each plaquette inside W (R,T ) contributes

β
2N

leading to a factor

(

β
2N

)RT

2. Each group integration contributes

1

N
leading to a factor

(

1

N

)(R+1)T +(T +1)R

3. Each site contributes a factor N

• colour indices of all links meeting at each site must
be the same (group integration plus trace)

• N possibilities to choose the colour at each site

N leading to a factor N (R+1)(T +1)

4. All integrations outside W (R,T ) give 1

The total contribution is:

1

N

(

β
2N

)RT (
1

N

)2RT +R+T−RT−R−T−1

=

(

β
2N2

)RT

Therefore

〈W (R,T )〉 =
(

β
2N2

)RT

+ higher orders

But RT = A, area of the Wilson loop
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Exercise

Work out the O(β 2) contribution in the strong coupling
expansion of the Wilson loop

leads to
(

β
2N2

)RT

RT

(

β
4N

)

So that

〈W (R,T )〉 =
(

β
2N2

)RT (

1 + RT

( β
4N

)

+ O(β 2)

)

Still higher orders involve
evaluation of non-planar
graphs

. . . but all successive terms
depend on the area RT
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3.4 Area law and linear confinement
Physical interpretation of area law: consider a static
quark-antiquark pair separated by distance R:

R

Q(x ′)

Q(x)

= Γ(x ,x ′) = Q(x)U (x ,x ′)Q(x ′)

Static quarks: propagate only in (Euclidean) time

x ′ = (R,0)

x = (0,0)

y ′ = (R,T )

y = (0,T )

Correlation function:

C (R,T ) = 〈0|Γ†(y,y ′)Γ(x ,x ′)|0〉
= ∑

n

〈0|Γ†(y,y ′)|n〉〈n|Γ(x ,x ′)|0〉

= ∑
n

∣

∣〈0|Γ|n〉
∣

∣

2
e−EnT

T→∞∝ e−E(R)T

E (R): energy of a QQ pair separated by distance R
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Relation of C (R,T ) with Wilson loop?

C (R,T ) = 〈0|Q(y ′)U (y ′,y )Q(y )Q(x)U (x ,x ′)Q(x ′)|0〉
∼

〈

Tr{SQ(x ′,y ′)U (y ′,y )SQ(y,x)U (x ,x ′)}
〉

• Tr is over colour and spin

Solution for static quark propagator SQ :

SQ(y,x) = δ 3(y−x)U (y,x)
1 + γ0

2
e−mQ (y0−x0), y0 > x0

SQ(x ′,y ′) = γ5

[

SQ(y ′,x ′)
]†γ5, y ′0 > x ′0

Substituting:

C (R,T ) ∼
〈

Tr{U (x ′,y ′)U (y ′,y )U (y,x)U (x ,x ′)}
〉

× Tr
spin

{

(

1 + γ0

2

)2
}

e−2mQ T

∝ 〈W (R,T )〉e−2mQ T

So finally:

〈W (R,T )〉 ∼ e−(E(R)−2mQ)T = e−V (R)T

V (R) is static quark potential, potential of a QQ pair
separated by R
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Linear confinement

Use strong coupling expansion for 〈W (R,T )〉 to compute
V (R):

〈W (R,T )〉 =
(

β
2N2

)RT

= eln(β/2N2)RT

Write r = Ra, t = Ta

〈W (R,T )〉 = ea−2 ln(β/2N2)rt = e−V (r)t

V (r) = −a−2 ln(β/2N2)r ≡ σr

• area law implies linearly rising potential V (r)

• need infinite energy to separate Q and Q entirely

• linear confinement

• σ is called the string tension

Result suggestive: strong coupling is opposite of
continuum limit. Should supplement result with
numerical studies extrapolated to continuum limit to
confirm. Nonetheless, see a characteristic behaviour of
strong-coupling gauge theories.
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Static quark potential

• Strong coupling expansion yields V (r) ∼ σr

• Expect to see Coulomb part, V (r) ∼ 1/r , for small r

• General functional form of V (r):

V (r) = V0 + σr −
e

r
σ string tension

e ‘charge’

• Determine V (r) via numerical simulation by
‘measuring’ Wilson loops (UKQCD hep-lat/0107021)

• e = π/12 in bosonic string model (Lüscher 1981):
confirmed numerically (Lüscher and Weisz,

hep-lat/0207003)

0 1 2
r/r0

−2.5

−1.5

−0.5

0.5

1.5

2.5

[V
(r)

−V
(r0

)]*
r0

5.93 Quenched, 623
5.29, c=1.92, k=0.13400
5.26, c=1.95, k=0.13450
5.20, c=2.02, k=0.13500
5.20, c=2.02, k=0.13550
5.20, c=2.02, k=0.13565
 Model
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3.5 Plaquette-plaquette correlation
Correlator of two plaquettes at same spatial position,
different times. Smallest linking surface is a 1× 1 tube
joining the plaquettes

t

t1,x t2,x

〈Tr(U1)Tr(U2)〉 ∼ e−mt

with

m = −4 ln β + · · ·
Dynamical mass generation in pure Yang-Mills (glueball
mass)
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4 Lattice Fermi fields

Step 1:
Classical continuum Euclidean action for free fermions:

S[ψ ,ψ ] =

∫

d4x ψ(x)(γµ∂µ +m0)ψ(x)

ψ , ψ Grassmann valued

Recall in Minkowski spacetime: {γ M
µ , γ M

ν } = 2gµν . Now

define Euclidean Hermitian γ -matrices by:

γ0 = γ M
0

γ j = −iγ M
j

}

so {γµ , γν} = 2δµν , γ †
µ = γµ

Step 2: discretisation

S[ψ ,ψ ] = a4 ∑
x∈ΛE

ψ(x)
(

γµ
1

2
(∇µ + ∇∗µ)+m0

)

ψ(x)

= a4 ∑
x∈ΛE

ψ(x)Qψ(x)

where

Q =
1

2
(∇µ + ∇∗µ)γµ +m0

is the ‘naive’ lattice Dirac operator
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Step 3: Quantisation

Z ≡
∫

D [ψ ,ψ ]e−S[ψ,ψ ]

Correlation functions:

〈ψ(x)ψ(y )〉=
1

Z

∫

D [ψ ,ψ ]ψ(x)ψ(y )e−S[ψ,ψ ]

Add Grassmann sources η , ξ to get generating functional

eW [η,ξ ] =
〈

e(η,ψ)+(ψ,ξ )
〉

= e(η,Q−1ξ )

Diagonalise via Fourier transform:

(Qξ )(x) =
1

a4L3T
∑

p∈Λ∗
E

Qeip·x ξ̃ (p)

=
1

a4L3T
∑

p∈Λ∗
E

(iγµpµ +m0)eip·x ξ̃ (p)

• have defined pµ ≡ 1
a

sin(apµ)

• Q acts by multiplication with iγµpµ +m0

• now easy to invert . . .
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(Q−1ξ )(x) =
1

a4L3T
∑

p∈Λ∗
E

eip·x

i /pµ +m0

ξ̃ (p)

= a4 ∑
y∈ΛE

(

1

a4L3T
∑

p∈Λ∗
E

eip·(x−y)

i /pµ +m0

)

ξ (y )

≡ a4 ∑
y∈ΛE

SF (x−y )ξ (y )

Generating functional:

eW [η,ξ ] = exp

{

a4 ∑
x ,y∈ΛE

η(x)SF (x−y )ξ (y )

}

Two point function:

〈ψ(x)ψ(y )〉 =
1

a8

∂ 2

∂ η(x)∂ ξ (y )
eW [η,ξ ]

∣

∣

∣

∣

η,ξ=0

= SF (x−y )

a→0−→
∫

d4p

(2π)4

eip·(x−y)

i /p +m0

+ O(a2)
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Problems with naive discretisation

1. /p = /p + O(a2)

2. Particle masses are defined through poles of the

propagator. Here, poles of (i /p +m0)
−1 for m0 � pµ are

near:

/p = 0 or
1

a
sin(apµ) = 0

• satisfied for pµ = 0,π/a

• corners of Brillouin zone yield additional poles

• in D = 4 there are 2D = 16 poles and hence a
16-fold degeneracy in the spectrum

This is the fermion doubling problem

In interacting theory, momenta of order π/a can flip
you between different doublers: spurious
‘flavour-changing’ interactions

3. How to deal with fermion doubling?

• ignore it: quarks come in sixteen different flavours X
• staggered fermions (Kogut-Susskind): partial lifting

of degeneracy, 16→ 4.

• Wilson fermions: complete lifting of degeneracy
but explicit chiral symmetry breaking at finite a.
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4.1 Wilson fermions
Add extra term to the naive lattice Dirac operator which
formally vanishes as a→ 0:

SW [ψ ,ψ ] = a4 ∑
x∈ΛE

ψ(x)
(

γµ
1

2
(∇µ+∇∗µ)+m0

)

ψ(x)

−
ra5

2
∑

x∈ΛE

ψ(x)∇∗µ∇µ ψ(x)

= a4 ∑
x∈ΛE

ψ(x)
[

QW ψ
]

(x)

Have defined the Wilson-Dirac operator

QW ≡
1

2
γµ (∇µ+∇∗µ)+m0−

ra

2
∇∗µ ∇µ

where r is the Wilson parameter, r = O(1) (and usually set
to 1)

QW acts by multiplication with

i /p +m0 +
ra

2
p̂2

Wilson propagator:

SW (x−y ) =
1

a4L3T
∑

p∈Λ∗
E

eip·(x−y)

i /p +m0 + ra
2

p̂2
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Adding the Wilson term,−(ra/2)ψ(x)∆ψ(x), modifies the
dispersion relation:

m0 →m0 +
ra

2
p̂2

Term proportional to the Wilson parameter r vanishes in
the classical continuum limit a → 0 and we recover the
continuum Euclidean fermion propagator.

After adding the Wilson term, mass terms near corners of
BZ are:

pµ mass multiplicity

(0,0,0,0) m0 1

( π
a
,0,0,0) m0 + 2

r

a
4

( π
a
, π

a
,0,0) m0 + 4

r

a
6

( π
a
, π

a
, π

a
,0) m0 + 6

r

a
4

( π
a
, π

a
, π

a
, π

a
) m0 + 8

r

a
1

Choose r = 1: states associated with corners of BZ receive
masses of order 1/a, ie of order the cutoff scale

• these states are removed from the spectrum

• one fermion species survives in the continuum limit
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Wilson fermion dispersion relation for momentum (k,0,0)
with−π < ka ≤ π , ma = 0.2 and r = 0,0.2,0.4,0.6,0.8,1.

ka

E a

ππ/20−π/2−π

1.2

1

0.8

0.6

0.4

0.2

0
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Explicit form of the Wilson action:

SW [ψ ,ψ ] = a4 ∑
x∈ΛE

{

1

2a
∑
µ

[

ψ(x)(γµ−r)ψ(x + aµ̂)

−ψ(x + aµ̂)(γµ+r)ψ(x)
]

+
(

m0 +
4r

a

)

ψ(x)ψ(x)

}

Set r = 1: ‘project out’ components of Dirac spinor

through appearance of 1
2
(1± γµ) to lift the degeneracy.

Problem: for m0 = 0, SW [ψ ,ψ ] is no longer invariant under
chiral transformations

ψ(x)→ eiaγ5 ψ(x)

• chiral symmetry is broken explicitly by the
regularisation procedure

∗ only restored as a→ 0: chiral and continuum limits
are bound together for Wilson fermions

∗ lack of chiral symmetry makes operator mixing
more complicated in lattice case than in continuum

∗ possible to show that explicit chiral symmetry
breaking by Wilson term appears in chiral Ward
identities and becomes the anomaly term as a→ 0
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4.2 Chiral symmetry on the lattice
Consider massless free fermions on the lattice with a
lattice Dirac operator Q = Q(x−y )

S[ψ ,ψ ] = a4 ∑
x ,y∈ΛE

ψ(x)Q(x−y)ψ(y )

Desirable properties of Q:

1. Q(x−y ) is local

2. Q̃(p) = iγµpµ + O(ap2)

3. Q̃(p) is invertible for p 6= 0

4. γ5Q + Qγ5 = 0

Nielsen-Ninomiya no-go theorem (1981): 1–4 do not hold
simultaneously

−→ either left with doublers or chiral symmetry is
explicitly broken

Ginsparg-Wilson relation

You can realise exact chiral symmetry on the lattice by
replacing 4 with

γ5Q + Qγ5 = aQγ5Q

(P Ginsparg and KG Wilson PRD 25 (1982) 2649, M Lüscher

hep-lat/9802011, 1998)
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More on N-N conditions

1. Locality Needed for renormalisability and universality
of the continuum limit

Range over which fields are coupled in the action is
infinitely smaller than any physical distance: compare

Q(x ,y )
|x−y |�1∼ e−γ |x−y | = e−

γ
a a|x−y |

correlation function ∼ e−ma|x−y |

where γ = O(1) and m is a physical mass. As a→ 0 the
former is exponentially suppressed with respect to the
latter.

Cannot have long-range (non-universal) couplings in
the action which would compete with the physical
signals arising from universal collective behaviour.

2. Q̃(p) = iγµpµ + O(ap2) Want correct continuum limit

3. Q̃(p) invertible for p 6= 0 No extra poles at non-zero
momentum: no doublers

4. {Q, γ5} = 0 Chiral symmetry

Wilson fermions give up entirely on chiral symmetry.
Recent breakthrough: modify 4 to get chiral symmetry
without doublers.
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More on the GW relation

γ5Q + Qγ5 = aQγ5Q

or

Q−1γ5 + γ5Q−1 = aγ5

Q−1 is highly non-local, but {Q−1, γ5} should be local: the
GW relation is highly non-trivial

GW relation is expected to imply ‘physical’ chiral
symmetry on the lattice. Look at Ward identity for
ψ(x)ψ(y ) with |x − y | a long distance, using usual chiral
(γ5) transformation. Get extra term from variation of the
action:

〈ψ(x)ψ(z)(aQγ5Q)
zz ′ψ(z)ψ(y )〉 ∼

(Q−1)xz (aQγ5Q)
zz ′(Q−1)

z ′y ∼ aγ5xy

→ this is local so negligible at long distances

In fact there’s an exact chiral symmetry (Lüscher) (see later)
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History

• 1982: GW wrote down the relation but no solution was
found in the interacting case—it was forgotten

• 1997

• realised that the Fixed Point Dirac operator of
‘classically perfect’ action satisfies GW

• followed by observation that Dirac operators for
Domain Wall Fermions (Kaplan, Shamir) and overlap
formalism (Neuberger) also satisfy GW

• 1998: Lüscher demonstrated the chiral symmetry

Led to an explosion of interest. DWF and overlap already
used in some numerical studies.
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Exact chiral symmetry on the lattice

GW relation implies that ψQψ is invariant under flavour
singlet chiral transformations:

ψ → ψ + iεγ5(1−
a

2
Q)ψ

ψ → ψ + iεψ(1−
a

2
Q)γ5

and non-singlet chiral transformations:

ψ → ψ + iεT γ5(1−
a

2
Q)ψ

ψ → ψ + iεψ(1−
a

2
Q)γ5T

where T is an SU (N f ) generator

Slightly smeared version of usual chiral transformation.

Looks too good? In fact, singlet chiral transformation alters
the measure

δ D [ψ,ψ ] = −Tr(γ5Q)D [ψ,ψ ]

→ gives the correct anomalous Ward identity (just like
Fujikawa in the continuum).

No anomaly in non-singlet case since Tr T = 0
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Anomaly in LGT with GW relation

Expectation value of some fermion operator

〈O〉 =
1

Z

∫

D [ψ ,ψ ]Oe−S

Apply chiral transformation as change of variable,
remembering that S is invariant:

δ ψ = εγ5(1−
1

2
aQ)ψ δ ψ = εψ(1−

1

2
aQ)γ5

〈O〉 =
1

Z

∫

D [ψ ′,ψ ′]O ′e−S =
1

Z

∫

D [ψ ,ψ ]J(O + εδO)e−S

with Jacobian factor J =

∣

∣

∣

∂ (ψ ′,ψ ′)
∂ (ψ ,ψ)

∣

∣

∣.

∂ ψ ′x
∂ ψy

= δxy + εγ5(1−
1

2
aQxy )

∂ ψ ′x
∂ ψy

= δxy + ε(1−
1

2
aQxy )γ5

J = det

(

1 + εγ5(1− 1
2

aQ) 0

0 1 + ε(1− 1
2

aQ)γ5

)

= det(1 + εX )det(1 + εY )

= 1 + ε tr(X +Y ) = 1− εa tr(γ5Q)

where X = γ5(1− 1
2

aQ), Y = (1− 1
2

aQ)γ5) and used

det = exp tr ln, tr γ5 = 0.
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Combining:

〈O〉 =
1

Z

∫

D [ψ ,ψ ]
(

1− εa tr(γ5Q)
)

(O + εδO)e−S

To order ε
∫

D [ψ ,ψ ]
(

δO −a tr(γ5Q)
)

e−S = 0

. . . giving the correct anomalous Ward identity for a global
flavour-singlet axial transformation.

(Note: tr(γ5Q) vanishes in the free case, but it’s non-zero in
the presence of gauge fields.)
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LH and RH chiral fermions

If have chiral symmetry expect to decompose

ψQψ = ψ+Qψ+ + ψ−Qψ−

It’s really possible:

ψ− = P̂−ψ ψ+ = P̂+ψ
ψ− = ψP+ ψ+ = ψP−

where P± = 1
2
(1± γ5) as usual and

P̂± =
1

2
(1± γ̂5)

γ̂5 is a ‘smeared’ γ5:

γ̂5 = γ5(1−aQ)

γ̂5γ̂5 = 1

γ5Q = −Q γ̂5

‘Left’ and ‘right’ become gauge-dependent ideas
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Neuberger’s operator

An operator Q satisfying the GW relation can be defined as
follows. Let

QW =
1

2

(

γµ(∇µ+∇∗µ)−a∇∗µ∇µ
)

be the massless free Wilson-Dirac operator. Neuberger’s
operator is defined (in its simplest form) as:

QN =
1

a

(

1−A(A†A)−1/2
)

where

A = 1−aQW

Exercise

Show that QN satisfies the GW relation
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4.3 Domain Wall Fermions

Dirac fermion in 5 dimensions

D5 = γµ ∂µ + γ5∂s − φ(s)

γ5 = −γ0γ1γ2γ3, µ = 0,1,2,3

s: extra spatial coordinate

φ is a given potential
representing a domain wall
with height and width set by
a scale M , e.g.
φ(s) = M tanh(M s), but
exact form not needed.

s

φ(s)
M

1/M

Planewave solutions

D5χ(x , s) = 0 with χ(x , s) = eip·x u(s)

p = (iE ,p) physical 4-momentum

m2 = E 2−p2 mass of the mode

Allowed m2 determined from:
[

γ5∂s − φ(s)
]

u(s) = −iγµpµu(s)

Multiply on left by iγµpµ
[

− ∂ 2
s +V (s)

]

u(s) = m2u(s)

with V (s) = γ5∂sφ(s)+ φ 2(s).
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[

− ∂ 2
s +V (s)

]

u(s) = m2u(s)

Assume eigenfunctions have
definite chirality since

−∂ 2
s +V (s) commutes with

γ5. Three cases:
s

V (s)γ5 = +1

γ5 = −1

1. Continuous spectrum

V (s)
|s|→∞−→ M 2 leads to eigenvalues with m2 ≥M 2

2. Discrete spectrum

eigenfunctions with m2 < M 2 decay exponentially−→
discrete spectrum. All non-zero masses are of order M
(only scale). No negative masses since

−∂ 2
s +V (s) = (−γ5∂s + φ)†(−γ5∂s + φ).

3. Massless modes

(−γ5∂s + φ)u(s) = 0, γµpµu(s) = 0

with solutions

u(s) = exp

{

±
∫ s

0
φ(t )dt

}

v,
{

P±v = v
γµpµv = 0

Only LH solution is
normalisable. Massless
mode bound to the wall s

u(s)
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Summary

• all but one mode have mass m ≥ O(M )

• massless mode: left-handed and bound to domain wall

• at energies E �M , theory describes a left-handed
fermion in 4-dimensions

Domain Wall Fermions

Mechanism is stable against changes in setup:

• domain wall−→Dirichlet boundary condition

• Dirac fields χ(x , s) in s ≥ 0 with

D5 = D4 + γ5∂s −M

satisfying

D5χ(x , s) = 0, P+χ(x , s)|s=0 = 0

• −→massless mode as before

• 5-dim fermion propagator satisfies

D5G(x , s; y,t )
∣

∣

s,t≥0
= δ (x − y )δ (s− t )

P+G(x , s; y,t )
∣

∣

s=0
= 0
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• on the boundary you find:

G(x ,0; y,0) = 2M P−S(x ,y )P+

where S(x ,y ) is the 4-dimensional propagator of the
operator

D ≡ M +(D4−M )
[

1− (D4/M )2
]−1/2

= D4(1−D4/2M + · · ·)

D describes a massless 4-dim fermion, reduces to D4

as M →∞.

• D satisfies a Ginsparg-Wilson relation

γ5D + Dγ5 =
1

M
Dγ5D

• (Kaplan 1992) The construction also works

∗ in the presence of gauge fields (no s-dependence)

∗ and on the lattice: M → 1/a, D4 → QW (massless
Wilson-Dirac)

D =
1

a

(

1− (1−aQW )
[

(1−aQW )†(1−aQW )
]−1/2

)

=
1

a

(

1−A(A†A)−1/2
)

where A = 1−aQW

• use a finite 5th-dimension: can have one chirality
exponentially bound to one wall, other chirality on
other wall
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5 Lattice QCD
Formulate a lattice theory of quarks and gluons.

Lattice action:

SQC D [U ,ψ ,ψ ] = SG [U ]+ SF [U ,ψ,ψ ]

SG [U ] Wilson plaquette action

SF [U ,ψ,ψ ] Wilson fermion action

Define a covariant derivative:

Dµ ψ(x) =
1

a

(

Uµ (x)ψ(x + aµ̂)−ψ(x)
)

D∗µ ψ(x) =
1

a

(

ψ(x)−U †
µ (x −aµ̂)ψ(x −aµ̂)

)

For the Wilson-Dirac operator:

1

2
γµ(∇µ+∇∗µ)+m0−

ra

2
∇∗µ ∇µ

→
1

2
γµ (Dµ+D∗µ )+m0−

ra

2
D∗µ Dµ

Set:
r = 1

a = 1 express all quantities in units of a

61

5.1 Fermion action in LQCD

SF [U ,ψ,ψ ] = ∑
x∈ΛE

{

−
1

2

3

∑
µ=0

[

ψ(x)(1−γµ)Uµ(x)ψ(x+µ̂)

+ ψ(x+µ̂)(1+γµ )U †
µ ψ(x)

]

+ ψ(x)
(

m0 + 4
)

ψ(x)

}

Rescale ψ and ψ by

ψ(x)→
√

2κ ψ(x), ψ(x)→ ψ(x)
√

2κ

and fix κ by requiring (m0 + 4)2κ = 1

Lattice action for QCD with Wilson fermions becomes:

SQCD[U ,ψ,ψ ] = β ∑
2

(

1−
1

3
Re Tr P

2

)

+ ∑
x∈ΛE

{

−κ
3

∑
µ=0

[

ψ(x)(1−γµ)Uµ(x)ψ(x+µ̂)

+ ψ(x+µ̂)(1+γµ )U †
µ ψ(x)

]

+ ψ(x)ψ(x)

}

We have traded parameters: (g0,m0) 7→ (β ,κ), with:

β =
6

g 2
0

, κ =
1

2m0 + 8
(hopping parameter)
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5.2 Effective gauge action
Rewrite fermionic piece of LQCD action:

SF [U ,ψ,ψ ] = ∑
x∈ΛE

ψ(x)[QW ψ ](x)

≡ ∑
x ,y∈ΛE

ψ(x)Qxy ψ(y )

Qxy is Wilson-Dirac operator in matrix notation (‘quark
matrix’)

Qxy = δxy −κ
3

∑
µ=0

δ
y,x+µ̂(1−γµ)Uµ(x)

+ δ
y,x−µ̂(1+γµ )U †

µ (x)

Functional integral:

Z =

∫

D [U ,ψ,ψ ]e−SG [U ]−SF [U ,ψ,ψ ]

Integrate out fermions:

Z =

∫

D [U ]e−SG [U ] det Q[U ]

Exercise

Show that det Q[U ] is real.
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Introduce the effective gauge action, using

det X = elog det X = eTr log X

so that

Z =

∫

D [U ]e−Seff[U ], Seff[U ] ≡ SG [U ]−Tr log Q[U ]

Quark propagator:

〈ψ(y )ψ(x)〉 =
1

Z

∫

D [U ]Q−1
y x [U ]e−Seff[U ]

Now examine the fermionic contribution to Seff[U ] in
greater detail. Split:

Q[U ] = Q(0)−V [U ]

Q(0) describes free Wilson fermions:

Q(0)
xy = δxy −κ

3

∑
µ=0

[

δ
y,x+µ̂(1−γµ)+ δ

y,x−µ̂(1+γµ)
]

Q(0)−1 ≡ S(0)
W

(free Wilson propagator)

while V is the interaction term:

Vxy [U ] = κ
3

∑
µ=0

[

δ
y,x+µ̂(1−γµ)

(

Uµ (x)− 1
)

+ δ
y,x−µ̂(1+γµ )

(

U †
µ (y )− 1

)

]
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Now write

Q[U ] = Q(0)Q(0)−1
Q[U ] = Q(0)

(

1−Q(0)−1
V [U ]

)

The effective gauge action becomes

Seff[U ] = SG [U ]− log det Q[U ]

= SG [U ]−Tr log
(

1−Q(0)−1
V [U ]

)

+ const

= SG [U ]+
∞
∑
j=1

1

j
Tr
(

S(0)
W

V [U ]
) j

• Trace here is over all quark indices: Dirac, colour, site

• each term is a closed loop of j free quark propagators
and j vertices

• the sum contributes closed quark loops to the effective
action

+
1

2
+

1

3
+ · · ·
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5.3 The quenched approximation
There is phenomenological evidence that quark loops have
only small effects on hadronic physics.

Zweig’s (OZI) rule: φ → 3π is suppressed relative to
φ → K +K−

φ π−

π 0

π+

s

s

d

d
u

d

d
u

φ

K−

K +

s

s

s

u

u

s

This motivates the quenched approximation which
corresponds to setting

det Q[U ] = 1, ie Seff[U ] = SG [U ]

• det Q[U ] = 1 corresponds to setting κ = 0 for internal
quarks (in loops)

κ = 0 ⇔ mq = ∞
−→ infinitely heavy quarks in loops contributing to the
effective gluon interaction

• quenching is an enormous simplification for
numerical simulations:

cost of full QCD

cost of quenched QCD
> 10 000
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6 Numerical simulations
Return to the problem of computing observables in QCD
(restrict to SU (3) gauge group)

〈O〉 =
1

Z

∫

D [U ]Oe−Seff[U ]

=
1

Z

∫

∏
x∈ΛE

3

∏
µ=0

dUµ(x)Oe−Seff[U ]

• strong coupling expansions have a small radius of
convergence

• weak coupling expansion is asymptotic

• . . . and the two don’t overlap

• exact evaluation of 〈O〉 or Z on a computer is not
practical (although possible in principle)

• instead use stochastic methods to evaluate 〈O〉 or Z

• Monte Carlo integration: evaluate the observable on a
finite number of ‘typical’ field configurations

Field configuration

Assignment of an SU (3) matrix Uµ (x) to every link (x , µ)
on the lattice:

C =
{

Uµ(x)
∣

∣x ∈ ΛE , µ = 0,1,2,3
}

, C = {U}
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6.1 Monte Carlo integration
Integrand is strongly peaked around configurations C with
large values of

W (C ) ≡ e−S
eff

[C ] = e−S
eff

[U ]

W (C ) :
Boltzmann factor or statistical
weight of configuration C

Monte Carlo procedure

• generate a sample or ensemble of gauge field
configurations, Ci , i = 1, . . . ,Ncfg, with statistical

weights W (Ci)

• sample comprises predominantly configurations with
large W (Ci)

• importance sampling: design an algorithm which
generates a configuration C with likelihood W (C )

• common algorithms

• Metropolis

• heat bath (for SU (N) gauge theory, scalar field
theories, spin systems)

• cluster algorithms (Swendsen-Wang, Wolff) (for
spin systems, O(N) models, not gauge theories)

• hybrid Monte Carlo (HMC) or multiboson
algorithms (for QCD with dynamical fermions)
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• quenched QCD: use W (C ) = e−SG [C ] = e−SG [U ] as
probability measure

• ‘full’ QCD: use W (C ) = det Q[U ]e−SG [U ] as measure

• det Q[U ] is real but not positive definite

• use det(Q†Q)e−SG , corresponding to two flavours of
dynamical quark

• hard to simulate odd numbers of fermions

• evaluate observables on each configuration in the
ensemble, O [Ci ], i = 1, . . . ,Ncfg, giving Ncfg

‘measurements’

• sample average of observable

O =
1

Ncfg

Ncfg

∑
i=1

O [Ci ]

• expectation value

〈O〉 = lim
Ncfg→∞

O

• results from Monte Carlo integration have statistical
error ∝ 1/

√

Ncfg
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6.2 Hadronic correlation functions
Recall spectral decomposition of two-point function:

〈A(x)B(y )〉= ∑
n,pn

〈0|A(0,x)|n〉e−(En−E0)(x0−y0)〈n|B(0,y)|0〉

Now consider the pion two-point function:

Cπ (t ) ≡∑
x

〈0|P(t ,x)P †(0)|0〉

• P(x) = ψ(x)γ5ψ(x) is an interpolating operator

between the pion state and the vacuum. P † = −P

• ∑x projects onto zero momentum: states |n〉 at rest

• states |n〉 in sum have same quantum numbers as

pion, J P = 0−

Cπ (t ) = ∑
n

〈0|P(0)|np=0〉〈np=0|P †(0)|0〉
2M (π)

n

e−M (π)
n t

= ∑
n

∣

∣〈0|P |n〉
∣

∣

2

2M (π)
n

e−M (π)
n t

• For large Euclidean times t the state with the lowest
mass dominates, call it Mπ
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Numerical calculation of 2pt correlator

Let

P (x) = ψ1(x)γ5ψ2(x)

P †(x) = −ψ2(x)γ5ψ1(x)

1,2 label distinct quark flavours: limits the contractions
appearing; different choices of 1,2 let you study mπ ,mK , . . .
The correlator:

Cπ (t ) =∑
x

〈0|T P(t ,x)P †(0)|0〉

=∑
x

−〈0|T ψ1(x)γ5ψ2(x)ψ2(0)γ5ψ1(0)|0〉

=∑
x

1

Z

∫

∏
x∈ΛE

µ=0,...,3

dUµ(x)e−S
eff

[U ] Tr
(

γ5Q−1
2 [U ]x0γ5Q−1

1 [U ]0x

)

=∑
x

〈

Tr
(

γ5Q−1
2 [U ]x0γ5Q−1

1 [U ]0x

)〉

=∑
x

t ,x 0

2
1

γ5 γ5

Sample average

Cπ (t ) =
1

Ncfg

Ncfg

∑
i=1

∑
x

Tr
(

γ5SCi
W,2

(x ,0)γ5SCi
W,1

(0,x)
)

where SCi
W, j

(y,x) is propagator for quark type j from x to y

on the ith configuration Ci .

71

Calculating propagators

• SW (x ,y )ab,µν has site, spin and colour indices and

depends on the gauge field and the quark mass (κ)

• on a given configuration the propagator for quark type
j (with mass fixed by κ j ) solves

QCi
zx SCi

W, j
(x ,y ) = δx ,y

suppressing colour and spin indices

• impractical to solve for the whole matrix: instead, fix
y = 0:

QCi
zx SCi

W, j
(x ,0) = δx ,0

∗ solve matrix equation Q ·X = b for vector X

∗ repeat for each configuration i

−→ gives propagator from 0 to any x

• correlation function also contains SW (0,x).

∗ since Q = γ5Q†γ5, then SW = γ5S†
W γ5

∗ −→ get SW (0,x) from SW (x ,0)

−→ have all propagators needed

• now just evaluate the trace with γ5’s using propagators
evaluated on each gauge configuration
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• On a finite lattice with
periodic temporal
boundary conditions
Cπ (t ) is symmetric for
t → T − t

0

t

T − t

Cπ (t )
0�t�T→

1

2Mπ

∣

∣〈0|P |π〉
∣

∣

2
(e−Mπ t + e−Mπ (T−t ))

=
1

Mπ

∣

∣〈0|P |π〉
∣

∣

2
e−Mπ T /2 cosh

(

Mπ (T /2− t )
)

• Obtain Mπ and the matrix element Z = 〈0|P |π〉 ∝ fπ by
fitting Cπ (t ) to the above cosh formula

t

Cπ (t )

302520151050

1

0.01

10−4

10−6

Example: Quenched, β = 6, κ = 0.1337, 323× 64 lattice.

Fitted curve has aMπ = 0.3609+12
−13, Z = 0.1553+39

−41. (D Lin,

APE data)
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Effective mass plot

Plot

M eff
π (t ) = ln

[

Cπ (t )+
√

C 2
π (t )−C 2

π (T /2)

Cπ (t +1)+
√

C 2
π (t +1)−C 2

π (T /2)

]

0�t�T≈ Mπ

0 10 20 30
t

0.20

0.30

0.40

0.50

0.60

m
es

on
 m

as
s

fitted curve

Quenched β = 6.0, κ = 0.1337

a MP = 0.3609+0.0012−0.0013
ZP = 0.1553+0.0039−0.0041

(D Lin, APE data)

Simpler: if T →∞, then Cπ (t ) ∝ e−Mπ t and plot

ln
(

Cπ (t )/Cπ (t +1)
)

≈Mπ

Differs only at right hand end of above plot
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• By choosing appropriate interpolating operators for:

vector mesons ρ,K ∗,φ , . . .

octet baryons N ,Σ,Λ,Ξ, . . .

decuplet baryons ∆,Σ∗,Ξ∗,Ω

one can extract the hadron spectrum from fits to the
correlation functions
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6.3 Elimination of bare parameters
Hadron masses obtained from correlation functions
depend implicitly on the input bare parameters, β and κ .
Moreover, you determine dimensionless quantities, like
aMπ and have to fix a afterwards.

Eliminate bare parameters by matching lattice hadron
masses to experiment.

Can study quark mass dependence of hadrons on the
lattice by computing aMhad for several values of κ at fixed
β . From leading order chiral perturbation theory:

M 2
π = B(mu +md)

M 2
K± = B(mu +ms)

Mρ = A +C (mu +md)

MK ∗ = A +C (mu +ms)

−→ information on quark mass dependence resides in
parameters A, B and C

Motivates ansatz for quark mass dependence of lattice
data:

(aMPS)
2 = (aB)(amq1

+ amq2
)

aMV = (aA)+C (amq1
+ amq2

)

= (aA)+
C

(aB)
(aMPS)

2
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To first approximation, assume mu = md = 0, so that one

expects M 2
π = 0 (in real life: M 2

π = 0.018 GeV2 compared to

M 2
ρ = 0.59 GeV2).

Compute aMρ by plotting aMV versus (aMPS)
2 and

extrapolating to (aMPS)
2 = 0.

(aMPS)
2

aMV

0.080.060.040.020

0.4

0.35

0.3

Example: Quenched, β = 6.2 (UKQCD PRD 62 054506,2000)

Then use experimental value to ‘calibrate’ lattice spacing:

a−1 =
Mρ,phys

(aMρ)latt

• fix all other masses in terms of Mρ

• have traded a hadronic quantity, Mρ , for a bare
parameter, β
• could use other physical (dimensionful) quantities,

such as fπ , to fix a
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To compute masses of strange hadrons, one has to
determine the value of κ which corresponds to the strange
quark mass: κs

Fix κs at the point where

(aMPS)
2

(aMρ)2
=

M 2
K±

M 2
ρ

=
(494 MeV)2

(770 MeV)2
= 0.4116

Use similar procedure for κc , κb

Summary

parameter fixed through

κu = κd (aMPS)
2 = 0

a aMV = aMρ at κ = κu

κs (aMPS)
2/(aMρ)2 = 0.4116

...
...

Mπ , Mρ and MK are used to eliminate β , κu , κd . This is
called a hadronic renormalisation scheme. The
dependence of lattice estimates on β and κ has been
eliminated by matching to the observed hadron spectrum.
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Light hadron spectrum in quenched LQCD

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

m
 (G

eV
)

K input
φ input
experimentK

K*

φ
N

Λ
Σ

Ξ

∆

Σ*

Ξ*

Ω

Errors shown are statistical and sum of statistical and
systematic.

(CP-PACS collaboration hep-lat/0206009)
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6.4 Systematic errors
Lattice computations are truly first principles. Errors can
be systematically reduced.

a aL

We want

aL� 1 fm and a−1 � ΛQCD

Computer power limits the number of lattice points which
can be used and hence the precision of the calculation.
Typically, full QCD simulations use about 24 points in each
spatial direction (O(50) in quenched simulations) so
compromises have to be made.

Statistical errors Functional integral is evaluated by
importance sampling. Statistical error estimated from
fluctuations of computed quantities within different
clusters of configurations
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Discretisation errors Current simulations typically have

a ∼ 0.05 to 0.1 fm

Errors with Wilson fermions are O(aΛQCD), O(amq)

and can be particularly severe in heavy quark physics,
although we are helped by:

• guidance from heavy quark symmetry

• use of discretised effective theories

Efforts to reduce discretisation errors:

• Use several lattice spacings a and extrapolate a → 0

• Improvement (Symanzik) Adjust the discretisation
so that errors are formally reduced. Simple eg:

f ′(x) =
f (x+a)− f (x)

a
+ O(a)

compared to

f ′(x) =
f (x+a)− f (x−a)

2a
+ O(a2)

Relatively easy to reduce errors from O(a) to
O(αsa). Also possible, though more involved, to use

nonperturbative improvement to get to O(a2).

• Perfect actions: apply renormalisation group to
continuum action to construct (classical) action
with no discretisation errors. Truncations are
necessary in practice: not used in large-scale QCD
simulations to date
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Finite volume effects Pion is light (pseudo Goldstone
boson of chiral symmetry breaking): it can propagate
over large distances. Simulations are performed with
heavier pions (ie using quarks around the strange
mass) and results are extrapolated to the chiral limit.

Typically impose mπ aL > 4

Quenching Repeated evaluation of fermion determinant
to generate unquenched gauge configurations very
expensive. More and more simulations now use
dynamical quarks, although typically have two flavours
of degenerate sea-quarks a bit below the strange mass.

Renormalisation Need to relate bare lattice operators to

standard renormalised ones (eg MS): introduces
uncertainties.
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6.5 Continuum Limit
Consider calculating a physical mass Mphys

• lattice gives
dimensionless
m = Mphysa

• Mphys should not

depend on a (at least
as a→ 0), hence m
depends on g0(a):

dMphys

da
= 0

m + B(g0)
∂m

∂ g0

= 0

Dependence of bare coupling g0
on cutoff a

B(g0) = −a
∂ g0

∂ a

= −β0g 3
0 −β1g 5

0 + · · ·

• find g0 → 0 as a→ 0

• calculate B(g0) in lattice PT

• . . . or nonperturbatively

(ALPHA)

Solve to find

m = C exp

(

−1

2β0g 2
0

)

with a different C for
each physical mass:
finding C is the hard
part (where all the
‘physics’ lies).

g 2
0

m
(lattice

mass)

100 MeV 50 MeV 5 MeV
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• lattice mass vanishes in the continuum limit

∗ corresponding correlation length ξ = 1/m diverges
(in lattice units)

∗ continuum limit is a critical point

∗ once ξ � a the system ‘forgets’ the fine details of
the original lattice−→ universality

• mass ratios should be pure numbers, independent of
g0, a:

Mphysi
= CiΛlatt

∗ Λlatt says how ‘strong’ the strong interaction is

∗ it’s strongly-dependent on the details of
regularisation: Λ

MS
/Λlatt = 28.8 for SU (3) YM
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Scaling

• calibrate a from mρ , fπ , σ , . . .
• further calculations yield mass ratios mi/m0

• if close enough to ctm limit, mi/m0 is constant as
β ↗
• this is scaling

Asymptotic Scaling

• PT in g 2
0 should work for large enough β = 2N/g 2

0

• observe scaling according to the β -function (1-loop)

Mphysa ∝ exp

( −1

2β0g 2
0

)

• this is asymptotic scaling
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6.6 Renormalisation of Lattice Operators
Typically (ignoring operator mixing):

O
ren(µ) = Z

O
(µa,g )O latt(a)

• if a−1 � ΛQCD and µ � ΛQCD can use PT to relate

• Z
O

depends on short-distance physics

• IR physics common to matrix elements of O ren,latt

Example: axial vector current in Wilson LQCD

Alatt
µ = ψ(x)γµ γ5ψ(x)

Use this in a 2-point correlation function:

C (t ) = ∑
x

〈0|T Alatt
0 (x,t )Alatt

0

†
(0)|0〉

large t >0
=

∣

∣〈π(p = 0)|Alatt
0

†
(0)|0〉

∣

∣

2

2mπ
e−mπ t

But

Aren
µ = ZAAlatt

µ and 〈π(p = 0)|Aren
0

†
(0)|0〉 = fπmπ

so that

fπ =
ZA

∣

∣〈π |Alatt
0

†|0〉
∣

∣

mπ

. . . you need ZA to get the physical fπ .
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Perturbative renormalisation

Calculate matrix element of quark bilinear O between, say,
the same quark states and fix Z

O
by demanding agreement

(Z
O

is a property of O so use any convenient states).

Z
O

=

∣

∣

∣

∣

ctm
∣

∣

∣

∣

∣

∣

latt

Z
O

= 1 +
αs

4π

(

γ ln(µa)+ c
)

+ · · ·

For axial current with µa = 1

ZA = 1− 15.8
αs

4π
CF

15.8 is a large coefficient. . .

• αMS
s /α latt

s ≈ 2.7: α latt
s is a poor expansion parameter

• related to tadpoles: extra vertices in lattice PT from

expanding exp
(

aAµ (x)
)

• turn to nonperturbative renormalisation. . .
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Nonperturbative renormalisation

Impose a physical condition to fix Z
O

• Example 1: local Wilson vector current

Vµ = ψ(x)γµψ(x)

not conserved−→ ZV 6= 1

Possible to define a conserved lattice vector current
V C

µ , which has Z = 1. Hence, fix ZV using

ZV =
〈π(p)|V C

µ (0)|π(p)〉
〈π(p)|Vµ(0)|π(p)〉

• Example 2: Use Ward Identities to relate Z ’s of different
operators. For example, impose continuum axial
current WID

〈∂µ AµO〉 = 2m〈PO〉

with O arbitrary operator

m renormalised quark mass

P pseudoscalar density
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