
Object browsing using the Internet
Imaging Protocol

Kirk Martinez*, Steve Perry^ and John Cupitt+

* Electronics and Computer Science Department, University of Southampton, UK.
^ ANT Ltd, Cambridge, UK.
+Scientific Department, The National Gallery, London, UK.

Abstract

This paper builds on the results from the Viseum project where we built an image
server/client system to allow browsing of very large images. In the follow-on European
ACOHIR project we built systems capable of acquiring colour calibrated high resolution
views of objects from many positions. A Java viewer allows the user to closely examine
objects in a similar way to Quicktime VR but with much higher resolution. The Internet
Imaging Protocol is used to allow the viewer to request 64x64 pel tiles on demand to allow
fast browsing of the objects in a Web browser. The original image data occupy typically
around 200 Mbytes yet we can provide almost instantaneous views with zooming and
acceptable performance across the Internet or a modem. The approach taken in the Java
viewer is modular and easily customised using JavaScript. Caching at both the server and
client provide improved performance. This paper shows how the techniques developed for
large images have been applied and modified to handle high resolution object views.

Keywords

object movies, Java, JavaScript, Internet Imaging Protocol

Introduction

Previous research into high resolution imaging [1, 2] has produced systems capable of
creating very large colorimetric images of works of art. These could be as large as 1.6 GB
each and were colour calibrated. This means that the images can be reproduced
accurately and show fine detail. The problem of how to browse these large 2D images over
the Web was tackled in the Euro-Canadian project Viseum [3, 4]. This designed a
client-server system for displaying the images and investigated the effects of long distance
ATM networking. Since then the European project ACOHIR has worked on imaging 3D
objects and placing high quality views on the Web. This included making systems with high
quality digital cameras and controllable turntables to capture the object views. These are
colour calibrated to CIE Lab but stored compressed as sRGB values. The multiresolution
tiled JPEG in TIFF format from Viseum is still used and the client/server system has been
enhanced to cope with the object data.

The aim of the ACOHIR project was to provide high quality images of 3D objects, in
particular sculptures from the Louvre and Greek museums, furniture and porcelain in Spain

1 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

and archaeological finds used in teaching. These often have fine details such as scratch
marks or engravings. To capture a texture mapped 3D graphics model of an object with a
sufficiently high level of detail would require expensive hardware. It also requires a 3D
processor at the client in order to display the data. The approach used in Apple's Quicktime
VR [5] is to capture images of objects from many views and store them as a movie. For this
reason they are often known as object movies. This is played in a special way so that a
sequence of 30 frames for example is seen as rotating an object and moving it in the
up/down axis is handled by jumping to different 30 frame segments. This approach
provides a very fast interface and the images can be quite detailed for each view compared
to a rough 3D object. High quality images give a much better idea of surface texture which
is very difficault to do with 3D graphics. Companies such as Kadian [6] also produce a wide
range of hardware to help capture objects including turntables with controllable camera
arms to automate the whole process. Companies such as Live Picture [7] make software to
produce and browse object movies and panoramas.

In ACOHIR we wanted to be able to use images of around 3kx2k resolution for each view
so that "zooming" into details was possible. This makes sending a full set of images to the
client impractical: 36 views of 3kx2k three times would make 216 MBytes of raw data which
could be compressed to around 20 MBytes. Transmitting this is impractical on the Internet
compared to our solution which initially only transmits around 25kBytes and only ever send
the areas the user requires. We decided to adapt the technique used before for high
resolution images: to supply images on demand.

Capturing object views

 In ACOHIR new turntables were designed by AIDIMA in Spain, the Louvre used a heavy
turntable capable of handling very large sculptures while Southampton made a low cost
turntable shown in Figure 1 below. Existing hardware can also be used to capture images
which can then be colour calibrated using our software and a MacBeth Colorchecker chart
[8].

Figure 1. The imaging system in Southampton

2 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

We decided to standardise on Kodak professional digital cameras in order to provide an
integrated capture package which worked with a range of their cameras. These range from
the DCS410 to the DCS560, although the camera shown above is a Kontron camera from
the Vasari project. A "consumer" Kodak DC265 has also been tested for a low-cost
solution. The colour calibration is described elsewhere [9, 10]. The colour calibration and
compression of 10kx10k paintings (aprox. 300MB) was always time consuming and in this
project it is still the case: the 216 MByte example cited above is comparable in size.

The use of sRGB

The use of device independent colour has increased considerably, with the general aim of
more consistent colour reproduction across devices. sRGB is a fairly new colour space
which is used in printers and some cameras as it provides a standard RGB. Unlike CIE
colour spaces which we commonly use, sRGB can be displayed well without any
computation, which is a great benefit when unknown systems are used.

In the Viseum project we allowed the client to register a colour profile (ICC) with the server
so that it could transform CIE colour spaces specifically for the client's display. This allowed
the images to be kept in a wider colour space such as CIE Lab but placed a small extra
load on the server, as well as adding complexity. This functionality has been kept but now
we also allow sRGB images to be stored at the server. This relies on the user making their
display conform to sRGB which includes an ambient luminance level of around 64 Lux and
a display gamma of 2.2. The server does not need to carry out any computation in this
case.

Storage format

For compressed files we generally use a TIFF format file with multiple images for each
resolution, each tiled to 64x64 and each tile JPEG compressed. This provides quick access
to 64x64 pel tiles at full, half, quarter etc. resolutions, and the JPEG compression is
particularly useful for sending images to the Java viewer. Figure 2 illustrates the format with
multiple images within the file. Most commercial packages only load the first image and few
support JPEG in TIFF although it is supported by the TIFF standard and common libraries.
The compression can also be LZW or ZIP as the tiles can be recompressed at the server
before transmission to the viewer. Although we sometimes refer to these images as a
pyramid there is no inter-resolution compression as used in PhotoCD for example, which is
a true pyramidal coding scheme. The major advantage of using TIFF is that it is an open
standard.

Figure 2 Representation of multiresolution tiled JPEG TIFF file

The Java viewer

3 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

The viewer has been written in Java, as it runs on a number of different platforms, and can
be embedded in Web pages to provide an easy way to present the acquired objects to the
largest possible audience. The applet is highly configurable, and the user interface can be
created either as components of the applet itself, or using HTML on the page in which the
applet is embedded which communicates with the applet using JavaScript. The viewer
reads image tiles from the server and displays them in a window. As the window is typically
considerably smaller than the actual size of the image, the viewer facilitates navigation
around the image, to different resolutions and to different frames in the image sequence. A
cache of tiles is kept at the client to prevent unnecessary requests to the server and to
increase performance. When dealing with a multiframed image, this cache may optionally
be preloaded with low resolution tiles. Thus, when the user changes the current frame
being displayed in that resolution the tile will quickly be retrieved from the cache rather than
the server, and so a smooth turning effect can be achieved.

Figure 3 shows the viewer in use for a typical archaeological object with descriptive text.
The page consists of two Java applets rather than a new applet containing two image
areas with a fixed layout and controls. The small top view has hidden controls and is for
turning the object around. The applets search for all compatible applets and communicate
with each other to update views. When it is released it sends a position update message to
the lower applet which shows the appropriate view. The user controls the viewer in one of
four ways - either by clicking in the viewing window, using keyboard shortcuts, activating
the controls seen at the bottom of the screen, or by activating JavaScript code which
communicates with the viewer. The lower viewer also has its internal controls hidden and
JavaScript is used in text links instead. Clicking and dragging with the left mouse button in
the viewing window allows the user scroll the viewport around the image, and clicking and
dragging with the middle button changes the current frame (Alt is used with single button
mice). For a zoomed out view with the tiles for each frame in the cache, dragging the
middle button results in a smooth rotation of the object. The frame containing the image
views is generated dynamically in the browser using JavaScript, by passing the object
name and other details as parameters to the page. This make it possible to easily generate
a Web page for viewing any object from a database for example, without having to
manually write it. This combination of JavaScript controlling modular applets means the
user interface can easily be tailored for different applications or image types without
modifying any Java code.

4 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

Figure 3. Screendump of viewer

In the text frame on the right of the image, hyperlinks in the text may be used to update the
current view. When the link is activated a piece of JavaScript code instructs the viewing
applets to change to the appropriate location and frame. This enables the person viewing
the document to easily refer to the correct part of the object to which the author is referring.
In the example shown, four of the links may be used to zoom in and show details of the
surface of the pot. Pages containing applets are typically partially created using JavaScript
to enable a number of integration facilities such as personal linking. In this situation the
Web page may contain a link or button which invokes JavaScript to query the applet for it's

5 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

current location. It can then add this to a list on the page created using HTML forms,
entries in which when clicked will update the viewer to the stored location. This can be
useful for temporarily `bookmarking' interesting locations within an object which may be
returned to later.These bookmarks are stored using cookies, and when the user returns to
a page which has been visited previously the bookmarks are reloaded and are again
available for selection. In addition to placing links on the page, the author of the document
can also define a set of initial bookmarks to be present in the list. This is achieved by
creating a special links file for the page which the server is aware of. Whenever a page is
requested the server checks for the existence of a links file, and if present encodes the
information within into a cookie which is then sent to the browser and presented in the
bookmarks list by the JavaScript that is used when creating the page.

IIP server

Our image server uses the Internet Imaging Protocol (IIP) [11] which provides a framework
for CGI calls to request parts of images and details about the image such as its resolution.
We added extensions to handle directories with object images. Each view of the object is
usually stored as a multiresolution JPEG tiled TIFF image, although other or no
compression can be used. The client requests get_image_resolutions and then
get_num_images to initialise. It can then request JFIF tiles, using JTL requests from the
appropriate TIFF file. The server is capable of handling other formats but the efficiency will
be very low if it is not tiled or multiresolution. It can decompress tiles from the source file
and recompress them to JFIF, which means the user could request a higher compression
or other processing. The server is written in C and runs as a permanently resident fastCGI
process. It has been tested under Solaris, Linux and Irix. On a SUN e450 the server load is
usually under 1% per user. The load on the client always seems higher, with a 450 MHz
Pentium II, running NT, being loaded to around 80% decompressing and displaying
images.

The other more advanced server is written in Java. It is completely self contained, and acts
as a combined Web and IIP server, and is therefore capable of serving not only the high
resolution images, but also the HTML documents in which the applets are embedded.
Alternatively, the Java server may simply be used as a set of servlets running under any
servlet capable Web server. This flexibility provides a convenient single step solution to the
problem of serving images in a cross-platform environment.

The Java server uses dynamically loaded code to enable a variety of image types to be
handled. JPEG images may be served using pure Java code, although this is rather slow
due to the lack of tiling in the images, and the fact that decompression, tiling, and
recompression must be done in Java. For optimal performance tiled TIFF images are
usually used, and the server uses dynamically loaded native libraries for handling the JPEG
and TIFF image files. These libraries are themselves extremely portable and run under a
number of platforms, including Linux, Solaris, Irix, and Windows 95/98/NT. Although
marginally slower than the native C server, in practice the Java server is more advanced for
a number of reasons. It is highly cross platform, and will run on any system possessing a
Java virtual machine. Additionally, the only native code that needs to be ported are the
image handling libraries rather than the whole server itself, as is the case with the C server.
The use of Java also provides a convenient mechanism for accessing the underlying
threading capabilites of the host platform, thereby giving considerably enhanced multiuser
performance when running on a multiprocessor system. One side benefit of the standalone
Java server has been that it is easier to upgrade and maintain as Apache does not need to
be restarted, as is the case with the C version.

6 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

Caching strategies

The effective use of caching has a significant effect on the system's performance. When
IIP is tunneled through HTTP each image tile is flagged as not cacheable to prevent them
from flooding the browser cache or intermediate proxy servers. A separate cache in the
Java client maintains recently used tiles using a simple scoring algorithm. This also
reduces the possibility of a potentially slow disc access. The scoring causes the cache to
retain low resolution tiles in preference to higher resolution ones, especially because they
can be used for the object overview. The table below shows the improvements from
increasing cache size and from better cache scoring for a typical user session. Typical
usage was recorded and then results were calculated for the same session with different
cache strategies.

Cache size
(tiles)

Tiles Downloaded - Naive MRU
cache

Tiles Downloaded - Cache with improved
scoring

200 2270 2130
400 1992 1920
800 1745 1697

Prefetching commonly visited areas while the viewer is quiet can improve performance at
the cost of higher network use. The server can maintain statistics of tile usage in each
image and provide hints to the client at start-up which are used to prefetch later. Figure 4
shows an image with the most visited areas marked to illustrate this idea, for example in
this case most people visit the mirror in the background at high resolution.

Low res Mid res High res Original

Figure 4 showing statistics of image use

An IIP extension allows the viewer to get a list of tiles to preload during quiet periods. This
is made easier by the threaded nature of the cache filling code, which can be interrupted to
provide better response. The server stores tile usage statistics to generate the cache hints.
If the user looks at the low resolution image and the controls for a while before doing
anything then most of the popular tiles for an image such as the one in Figure 4 can be
preloaded. This has the effect of an instant response if the user follows a typical browsing
pattern but places a heavier load on the viewer's caching system and network if they do
not. This is more complex for objects due to the large number of images involved but the
principle is the same. However the heavy preloading of the small images for the icon applet
place a heavy load on the client already, so any further prefetching will have to take place
in other quiet periods.

Conclusions and future work

7 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

A new way of serving and browsing images of 3D objects has been successfully produced.
This is a logical high-quality step up from object movies as used in Quicktime-VR. Any
number of views can be taken at any resolution to provide higher detail views of objects
than has been available so far on the Web. In practice the system is usable over modems
and long distances on the internet. The initial load of the image area only involves around
25 kBytes and on a 56 kbaud modem the first screen fills in around 6 seconds. The Java
code load of 50 kB is actually more time consuming but only happens once. On our
100Mbit Lan the pot image show above is loaded with its Java in 10s with the small view
completing in a further 7s. The low load on the server is significant as it means the system
could cope with many users, which is an important consideration with new types of service
such as this. A demonstration server can be found in:
http://www.ecs.soton.ac.uk/~km/

A small tool will eventually be included in the viewer to shift the user's display gamma to
closer to 2.2. At the moment we rely on external third party programs. The viewer will
continually gain small improvements such as more controls, hyperlinks and painting interim
tiles calculated from low resolution tiles in the cache while the replacement high resolution
tile is being downloaded. The caching should be user configurable, as not everyone would
want their network loaded by prefetches. It will also become more sophisticated, for
example prioritising cached tiles from lower resolutions rather than a simple least recently
used algorithm. The release of JPEG2000 will provide interesting improvements due to its
inherently multiresolution nature (it uses wavelet compression) but probably issues of
support in Java once again. When hyperlink areas are included on the images these will
optionally come from a linkbase rather than simply coded in the applet's parameters at
startup.

Acknowledgements

Thanks to Nick Lamb for his work on the prefetching. The partners of ACOHIR: ATC,
Cobax, AIDIMA, Barco, ENST, Lladro, LRMF, Vasari Ltd, The National Gallery, Aristotle
University of Thessaloniki, The Christian and Byzantine Museum in Athens, Museum of
Cycladic Art. ACOHIR was funded by the European Commission's ESPRIT programme.
Thanks also to the IIP community for many helpful discussions.

References

[1] K. Martinez, J. Cupitt, D. Saunders, "High resolution colorimetric imaging of paintings",
Proc. SPIE, Vol. 1901, Jan 1993, pp 25-36.

[2] J. Cupitt, K. Martinez, and D. Saunders, "A Methodology for Art Reproduction in Colour:
the MARC project", Computers and the History of Art Journal, vol. 6, No. 2, 1996, pp 1-20.

[3] K. Martinez, J, Cupitt, S. Perry, "High resolution colorimetric image browsing on the
Web", Computer Networks and ISDN Systems, 30, pp 399-405, 1998 - online

[4] Viseum project: www.InfoWin.org/ACTS/RUS/PROJECTS/ac238.htm and
www.ecs.soton.ac.uk/~km/projs/viseum

[5] Quicktime VR: www.apple.com/quicktime/.

[6] Kadian: www.kadian.com

[7] Live Picture: www.livepicture.com/

8 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

[8] Gretag: www.gretagmacbeth.org

[9] Internet Imaging Protocol, Hewlett Packard, Live Picture and Eastman Kodak, 1997 -
available from www.digitalimaging.org

[10] D. Saunders, J. Cupitt, R. Pillay and K. Martinez, “Maintaining colour accuracy in
images transferred across the Internet”, in Colour Imaging: Vision and Technology, Eds
L.W. MacDonald and M.R. Luo, John Wiley, pp 215-231, 1999.

[11] M. Stokes, M. Anderson, S. Chandrasekar, R. Motta, A Standard Default Color Space
for the Internet, 1996 - www.color.org/sRGB.html

Vitae

Dr Kirk Martinez gained a BSc in Physics from the University of Reading
and a PhD in Image Processing at the University of Essex. He has
worked on several European projects such as VASARI, MARC and
Viseum. His research interests include high resolution colorimetric
imaging, parallel image processing, Web multimedia. He is Director of
the Centre for Digital Libraries Research at the University of
Southampton. km@ecs.soton.ac.uk.

Dr. Stephen Perry obtained a Bsc. in Computer Science and a PhD. in
image and multimedia from the University of Southampton, and
subsequently worked on a number of European projects including
VISEUM and ACOHIR. He is currently working for ANT Ltd. on their
embedded Web browser, Fresco. stephen@ant.co.uk

Dr John Cupitt: since completing his PhD in Theoretical Computer
Science at the University of Kent, he has worked in the Scientific
Department of the National Gallery London on the European
Community-funded VASARI, MARC and VISEUM projects. He has
published papers on camera calibration, image processing I/O systems,
user-interface design, the measurement of colour change in paintings and
infrared imaging of paintings. john.cupitt@ng-london.org.uk

9 of 9 2/29/00 12:36 PM

Object browsing using the Internet Imaging file:///C|/TEMP/km/122.html

