COMMERCIAL UNDER RESTRICTION - DRAFT

COMMERCIAL UNDER RESTRICTION - DRAFT

[image: image1.png]1

innovation

[image: image15.wmf]RDF resource

Narcisse

Thesaurus

Uffizi Web Server

RDF to local

schema map

support:structure:frame:butterfly

"wooden structure to hold frame togther"

support:structure:frame:nbutterflies

number-of(butterfly)

Uffizi

metadata

Uffizi-id

Author

321444

da Vinci

523453

da Vinci

"select images from images i, metadata1 m1,

metadata2 m2,

where m1.author='da Vinci' and

m2.n-farfalle>0

images

m1

upload

m1

analyser

C2RMF Web Server

RDF to local

schema map

C2RMF

metadata

C2RMF-id

Artist

932432

da Vinci

123513

da Vinci

images

m1

m1

"select images from images i, metadata1 m1,

metadata2 m2,

where m1.artist='da Vinci' and

m2.n-npapillons>0

upload

control

control

Artiste Design Discussion Document – Draft 3

Report ARTISTE R01
Paul Allen, IT Innovation Centre

Huub Hillege, NCR

28 July 2000
Contents

11
Introduction

2
Approach
1
3
Goals
1
4
Requirements Summary
2
4.1
User requirements
2
4.1.1
General requirements
2
4.2
Analysis
5
4.3
System requirements
6
5
Scenarios
7
5.1
Overview
7
5.1.1
Scenario 1
7
5.1.2
Scenario 2
7
5.1.3
Scenario 3
7
5.1.4
Scenario 4
8
5.1.5
Scenario 5
8
5.1.6
Scenario 6
8
5.1.7
Scenario 7
8
5.1.8
Scenario 8
8
5.1.9
Scenario 9
9
5.1.10
Scenario 10
9
5.1.11
Scenario 11
9
5.1.12
Scenario 12
9
5.1.13
Scenario 13
9
5.1.14
Scenario 14
9
5.1.15
Scenario 15
9
5.2
Analysis
9
5.2.1
Scenario 1
9
5.2.2
Scenario 2
9
Phase 1
10
5.2.2.2
Phase 2
12
5.2.2.3
Phase 3
12
6
Logical model
14
7
Background databases
16
7.1
C2RMF
16
7.2
NGL
16
7.3
Uffizi
17
7.4
VAM
17
7.5
Narcisse database
17
8
Gaps
17
9
Design
17
9.1
Distributed metadata and query layer
17
9.2
Scenario 1
18
9.3
Scenario 2
18
9.4
Database logical data model design
18
9.4.1
Phase 1
19
9.4.2
Phase 2
19
9.4.3
Phase 3
19
9.5
Other comments on logical data model design
20

1 Introduction

This document is a work-in-progress discussion paper describing the design of the ARTISTE system. It builds on the requirements described in Deliverable D2.1 “Initial User Requirements”.

2 Approach

3 Goals

This section lists the goals of the project. Goals 1 to 13 have been defined in Deliverable D2.1 “Initial User Requirements” and are listed here for clarity – the definitions can be found in the original document. In addition, Goals 14 to 16 are defined in this section; these goals will need to be agreed at consortium level, at the next project management meeting.

Goal
Title

G1
Matching of similar images

G2
Automatic search using synonyms

G3
Search based on the concept of style

G4
Search based on features oriented to the restoration framework

G5
Access information quickly and easily

G6
Search based on colour

G7
Query by low quality images (faxes)

G8
Query by sketch

G9
Query refinement

G10
Joint retrieval by content and by text

G11
Use of publishing products built on the Artiste system

G12
Detail finding

G13
Search using multilingual vocabulary

G14
Respect installation site privacy and security policy

G15
Produce a sustainable system after the end of the project

G16
Be consistent with partners pre-defined technical constraints

Table 1 Artiste Goals

G14 Respect installation site privacy and security policy

The ARTISTE system shall allow content providers to control the access to their images such that ARTISTE is consistent with the sites’ existing policies.

G15 Produce a sustainable system after the end of the project

It is important for all ARTISTE partners that the ARTISTE system does not ‘disappear’ at the end of the project.

G16 Be consistent with partners pre-defined technical constraints

These constraints will be partner-dependent and will affect some of the technical choices made in the latter stages of the design process.

4 Requirements Summary

This section summarises the capability requirements (what the system should do) and the constraint requirements (how the system should do it). For more detail, see Deliverable D2.1.

This document attempts to cover image content analysis functionality that is feasible to implement in the project time-scale. However, this does not constitute a statement that all such image content analysis functionality will be implemented – this is the subject of WP 4 and the output of Task 4.1. In general, this document will consider a fairly wide scope for the image content analysis algorithms (i.e. will probably include more algorithms than can be implemented using available resources, and will include some functionality that is on the “extremely difficult” end of the scale) to ensure that the architecture design is sufficiently flexible and robust.

4.1 User requirements

There are two categories of users for the ARTISTE system:

· Non-commercial users (e.g. conservators, art historians, curators etc.) who wish to use Artiste for scientific study, art research and indexing purposes. These users require a high degree of accuracy in the content analysis algorithms in order to provide accurate image metadata.
· Commercial users (e.g. publishers, image archive staff) who wish to use Artiste for efficient access to images based on a variety of search techniques. These users do not require a high degree of accuracy, provided the system is accurate enough to facilitate their searches.
While these user categories have different overall requirements of Artiste, there are a number of common requirements for all users. Additionally, many of the image content algorithms will be applicable to both category of users, albeit with different input conditions and applications.

4.1.1 General requirements

The ARTISTE system shall:

G1

· R1.1C: Find similar images to a given “input image”. Similarity is defined loosely and will use a variety of techniques based on colour, shape and texture. The results will not necessarily be scientifically “accurate” but will aid the user in image browsing and searching.

· R1.2C: The user shall be able to choose which similarity techniques are being used in a given query.

G2

· R2.1C: Use synonyms when searching for images using keywords (e.g. if the user types “vase” as a keyword, the system will be able to look up “vase” in a thesaurus and use “vase”, “urn” and “pot” as search criteria.

G3

· R3.1C: Use some sort of classifier facility (such as neural networks) to associate “style” etc. with image features. Will use existing metadata to identify the training set.

· R3.2C: Allow users to define their own category to train classification system (in a similar way to the ‘style’ requirement R3.1.

G4

· R4.1N: Be able to store different types of image as source images – i.e.

· Different views of the art object (front, back, side view, cross-sectional view, raking light view etc.)

· Different frequency images (e.g. visible light, infra-red, UV, X-ray etc.)

· Images that have been altered external to ARTISTE (e.g. image-enhanced, cropped etc.)

· R4.2N: Be able to identify particular image features associated with the restoration framework (e.g. “butterfly” supports, planks, parqueting, re-painting, craqelure, knots in wooden components, etc.)

· R4.3N: Be able to detect where “damage” has occurred in paintings.

· R4.4N: Classify different categories of damage that can occur to paintings.

· R4.5N: Be able to represent regions of damage within the paintings.

· R4.6N: Associate damage types with CIE colour and substructure.

· R4.7N: Be able to search for regions fo a colour for association with other restoration framework techniques.

G5

· R5.1: Provide user interface features to associate images with other images (e.g. locating an image fragment inside its owner image, superimposing different image representations for cross-reference, allowing the user to select areas within the image etc.). This covers both user input and user output (display) functionality.

· R5.2: Be able to represent the results of some image content queries as metadata terms. This metadata can then be used directly in future searches.

· R5.3: Be accessible to users using a standard Web browser. Base features will have a zero-sized client-footprint (i.e. will not require any plug-ins or client applications). Advanced functionality will only use such techniques if absolutely necessary. If this is the case, these applications will be downloadable and installable using a standard “wizard” approach.

· R5.4: Access multiple collections with a single query.

· R5.5: Include techniques to combine results that come back from different sites, such as ranking etc.

· R5.6: User interface components to locate images within other images. This includes rectangular sub-images and polygon sub-images.

· R5.7: User interface components to superimpose different images and present them to the user.

· R5.8: User interface components to superimpose sub-images and images (i.e. combination of R5.6 and R5.7).

· R5.8: User interface components to allow panning of large images.

· R5.9: User interface components to provide input sketches.

G6

· R6.1C: Allow the user to search for regions of a particular colour. Ideally this will include pantone colours for compatibility with publishing requirements. This search does not require highly accurate calibration between “real” object colour and image colour, as the important factor is the image colour, not the object colour. In addition, near matches between required colour and matched colour are allowable as image colour post-processing can be used on the retrieved image to alter the colour by a small amount.

G7

· R7.1C: At least one image analysis technique must be able to cope with low quality images such as faxes.

G8

· R8.1C: It shall be possible to query using an input sketch. This will include a simple line sketch and a ‘colour blob’ sketch.

G9

· R9.1: Allow the user to provide, and take account of, “relevance feedback” in which the user informs the system which subset of retrieved images best matches their requirements. This information thus informs subsequent searches.

· R9.2: Allow the user to refine their query based on the results of a preceding query.

G10

· R10.1: Retrieve images based on search criteria that use both image metadata and image content;

G11

· R11.1: Allow independent products (such as educational CD-ROMs which are have self-contained images and applications) to obtain added value from the ARTISTE service. The ARTISTE system may not be directly visible to the user of the CD-ROM (e.g. the user interface may be provided entirely by the CD-ROM which then accesses ARTISTE ‘behind-the-scenes’).

G12

· R12.1: Be able to retrieve the image associated with an “image fragment” (i.e. a detail within an unknown image).

G13

· R13.1: Allow the user to search collections in multiple languages (e.g. analyse cracks in Botticelli paintings in the Uffizi, Louvre and National Gallery collections) in a single Artiste query.

G14

· R14.1: Each site must be able to define the access control policy for their content. They should be able to change this policy at any time.

G15

· R15.1: Provide a potentially definitive image database for each participating site that can be used for all applications requiring image access (e.g. e-publishing, scientific analysis etc.)

· R15.2: Be sufficiently robust so that user applications can be implemented in the partners production environments.

· R15.3: Be consistent with incumbent systems.

· R15.4: Be able to associate images with an art object for consistency with collection management systems.

· R15.5: Be able to import data flows from incumbent systems to the Artiste system. The ability to export data from Artiste to the incumbent systems is not a requirement.

· R15.6: Provide the necessary interfaces to enable applications to layer on top of Artiste and incumbent systems and present integrated functionality to the user.

G16

· R16.1: The user components shall be consistent with the partner systems (Windows 95/98/NT and Unix) and shall have low maintenance requirements.

· R16.2: Be ‘compatible’ with all existing content provider databases, running on a variety of hardware platforms, operating systems, database systems and database schemas. Our interpretation of this compatibility is described in Section 4.2
4.2 Analysis

There is a requirement that the Artiste system should support queries that efficiently search the database using both image metadata and image content. In order for this to be efficiently implemented, using the power of the object-relational technology, it is important that the image metadata will is physically located inside the object-relational (TOR) database. However, the content providers each have existing legacy systems implemented using a variety of technologies and using different data schemas. In order to resolve these seemingly conflicting requirements, it is necessary to upload metadata from the legacy systems to the Artiste database using regular, batched snapshots. In other words, the Artiste system is a kind of dependent datamart, and is updated regularly from the legacy systems.

Each Artiste content provider will have ‘globally Artiste-defined data’ (i.e. the images, algorithms etc.) and locally defined data (i.e. their existing metadata). The Artiste system must therefore have a way of mapping the locally defined data to a global representation in order to have cross-collection queries.

4.3 System requirements

The ARTISTE system shall:

G1

· S1.1: The ARTISTE system shall return a measure of the ‘goodness of fit’ of the returned image.

G2

· S2.1: Provide flexible concept-based searching, using the thesaurus to control the scope of the search.

G3

· S3.1: Category classifications will work with image feature vectors as well as with the images themselves.
G4

· S4.1: Store different ‘feature vectors’ as source objects (e.g. may import a Fourier-transform object that has been produced externally).
G5

· S5.1: Metadata terms produced by ARTISTE should be usable immediately in future queries by users at the local site where the metadata is produced.
· S5.2: It shall be possible to make available metadata terms to the global ARTISTE system through a ‘publishing’ process.
· S5.3: The ARTISTE system shall not necessarily support 100% of available Web browsers, but will support the most widely used versions of Netscape and Internet Explorer. Exact versions will be defined later.
· S5.4: Be able to operate in “background” mode whereby a new image content algorithm is run on all images within the database, where appropriate, to produce a complete set of metadata for future use.

Many image processing algorithms are very cpu-intensive. Therefore the following system requirements apply.

· S5.5: It shall be possible to run algorithms as 24-hour batch processes on the entire image database in order to populate pre-produced IFV tables.

· S5.6: It shall be possible to run analysers as 24-hour batch processes on the entire image database in order to populate pre-produced metadata and image-fragment tables.

· S5.7: For combined metadata/image analysis queries it shall be necessary to perform the metadata parts of the query before the image analysis parts. This requires a ‘cost’ estimation of the computing power required for search components so that the database optimiser can work efficiently.

· S5.8: An approximate estimated computing cost should be available to the user before they finally submit a query.

G6

G7

G8

G9

· S9.1: The query refinement may operate directly from the previous result set (if the refined query is a subset of the first query – e.g. the user adds “and black” as a query term) or may re-query the full database (e.g. the user adds “or black” as a query term).

G10

G11

· S11.1: Provide an ARTISTE server API for integration with products that use the ARTISTE service.

G12

G13

5 Scenarios

5.1 Overview

5.1.1 Scenario 1

A researcher at the Uffizi is working on the restoration of the framework of a Leonardo da Vinci painting. They wish to browse the images of all Leonardo da Vinci paintings to get acquainted with them..

The researcher accesses the Artiste system on the Uffizi Web site. They enter a query to express the following: “select all pictures from all Artiste sites where the artist is ‘Leonardo da Vinci’”.

The system returns a number of paintings from the Uffizi and from C2RMF.

5.1.2 Scenario 2

A researcher at the Uffizi is working on the restoration of the framework of a Leonardo da Vinci painting. They suspect that the role of ‘butterfly’ support elements in the paintings is having a significant effect and wish to analyse suitable paintings that contain butterflies.

The researcher accesses the Artiste system on the Uffizi Web site. They enter a query to express the following: “select all pictures from all Artiste sites where the artist is ‘Leonardo da Vinci’ and number-of (butterflies) > 0”.

The system returns a number of paintings from the Uffizi and from C2RMF.

5.1.3 Scenario 3

A publishing company wishes to publish a high-quality image of a particular eighteenth century coin. They believe that the object is owned by the V&A and they possess an old photograph of the coin. They fax the photograph to the V&A picture service and ask them if they can locate the coin.

The picture researcher enters the picture into the Artiste system and asks “what do you have like this?”. The Artiste system searches the VAM collection and uses a number of image match algorithms to retrieve a set of coin-like images. The picture researcher browses through the returned images and finds the desired object.

5.1.4 Scenario 4

A publishing company is putting together a gift book based on images with associated descriptions. The images form the centrepiece of the book (as opposed to simply illustrating the text). They would like a repeated textured image containing black, gold and red colour.

The picture researcher specifies to the Artiste system that they would like an image with repeated textures. The Artiste system offers a “colour chart” containing a list of colours with corresponding checkboxes. The picture researcher clicks on “black”, “gold” and “red” and then “Go”. The Artiste system returns an image of a Pakistan quilt. Without Artiste, this image would have only been easily accessible to those who specifically knew about the image (i.e. Pakistan quilt experts).

5.1.5 Scenario 5

A picture researcher is looking for a green vase for a particular client. The select “green” from the Artiste colour chart and pull up the keywords box. They enter “vase or urn” and click “Go”. The Artiste system then searches the database using the keywords and then applies a colour-matching algorithm to the returned subset. This refined subset is then returned to the user.

5.1.6 Scenario 6

As Scenario 5, but the researcher types only “vase” for the keyword. The Artiste system then uses a thesaurus to get synonyms for “vase” and finds “urn”, “vial” and “pot”. The Artiste system then searches the database as before, using keywords and colour matching to provide the resulting subset.

5.1.7 Scenario 7

A picture researcher is often asked for art nouveau images. While there are some keywords in their image database that describe the images as “art nouveau”, the coverage is patchy. The researcher creates a query to select all the images that contain this keyword, and uses the resulting image set as a training set. The researcher defines a new classifier, which they title “style” and defines a new value for this style titled “art nouveau”. The researcher then clicks on “Create classifier” and the Artiste system then creates the classifier by using the selected “positive” training set, a randomly selected “negative” training set and an appropriate learning algorithm.

The picture researcher is then able to run the new classifier on all images (as a background task) to identify additional art nouveau images. The researcher can directly access this generated metadata in future searches.

5.1.8 Scenario 8

A picture researcher is asked to find images of “rapiers”. Their image database has many images with the keyword “sword”, some of which are rapiers; however, very few are labelled specifically as rapier. The researcher draws a sketch, which defines the characteristics of a rapier handle (consisting of two lines and a curve). They then enter a query to find all images which have the keyword “sword” and resemble the sketch.

The Artiste system knows that retrieving by keyword is quicker than by sketch, and so it first retrieves all images with the keyword “sword” and then performs the sketch comparison. It identifies a number of matches and returns them to the researcher.

5.1.9 Scenario 9

A picture researcher is asked to find tall, thin, oriental images depicting tigers. They do not have sufficient keywords to perform this search. The researcher constructs a query to search for images where the aspect ratio is greater than 3, the style is “oriental” (previously defined, as per Scenario 7) and the image contains regions of “orange”.

5.1.10 Scenario 10

A restorer is working on a particular large painting, and has a number of detailed images that they suspect (but are not sure) come from the painting. The restorer requests the Artiste system to match the detailed images with the ‘master’ painting. The Artiste system responds by displaying the master painting on the screen and overlaying the painting with labelled rectangles depicting the detailed images.

5.1.11 Scenario 11

A member of staff at a museum is given a small piece of a rug, which is believed to be part of a rug in the museum, although the exact rug is unknown. They scan the rug fragment to create a small “detailed image” and request that the system returns a match for this image. The Artiste system searches through the entire database and returns the image of the best match. This identifies the rug from which the fragment came.

5.1.12 Scenario 12

The publishing products one…

5.1.13 Scenario 13

Measurement of restored areas…

5.1.14 Scenario 14

Some crack ones…

5.1.15 Scenario 15

Detail in an engraving

5.2 Analysis

5.2.1 Scenario 1

5.2.2 Scenario 2

This scenario has three phases - each one is denoted by one or more use cases:

· Phase 1: An Artiste “admin user” at C2RMF runs the butterfly analyser on the image database in order to populate the butterfly metadata tables.

· Phase 2: The Artiste “admin user” at C2RMF publishes the butterfly metadata information so that this information is available to the Artiste system.

· Phase 3: The researcher at the Uffizi performs the query as specified in the Scenario.

[image: image3.wmf]Site metadata

Query

Artiste-global-query

+is-a

Local query

+is-a

QueryProcessor

+converts-from

+converts-to

MatchResults

Category

Training Set

Classifier

+output from

+produces output

+input to

+takes as input

AlgorithmOutput

+represented-as

+is-a

Image Capture Data

Image Transformation

SourceImageFragment

x-pos

y-pos

CustomisedAlgorithm

+produces output

+output from

DataCollection

Schema

Analyser

name = e.g. ButterflyFinder

+is-a

+represented-as

AttributeInstance

AtrributeValue

+member-of

+collection-of

Image type

view = e.g. front, back, plan

frequency = e.g. light, IR, UV, X-ray

Image format

name = e.g. TIFF,GIF,JPEG, PYR

Algorithm

name = e.g. Hough transform, Colour histogram

+output from

+produces output

+customised-as

+customises

IFV

+represented-as

+is-a

+produced-by

+produces

Derived Image

+output from

+produces output

Source Image

+applies to

+captured using

+input to

+takes as input

+contains

+belongs to

AlgorithmInput

+takes as input

+input to

+input to

+takes as input

Attribute

+collection-of

+member-of

+produced-by

+produces

+instance-of

+applies-to

Sketch

Image

+applies to

+has

+belongs to

+has

+works on

+relates to

+is-a

+represented-as

QueryItem

+represented-as

+is-a

+is-a

+represented-as

+represented-as

+is-a

QueryLanguage

language = RDF, SQL etc.

GlobalQuery

Query

+represented-as

+is-a

+contains

+applies-to

+written-in

QueryTransfrormation

+takes as input

+input to

DatabaseItem

LocalQuery

+represented-as

+is-a

+produces output

+output from

+contains

5.2.2.1 [image: image4.wmf]RDF resource

Narcisse

Thesaurus

Uffizi Web Server

RDF to local

schema map

support:structure:frame:butterfly

"wooden structure to hold frame togther"

support:structure:frame:nbutterflies

number-of(butterfly)

Uffizi

metadata

Uffizi-id

Author

321444

da Vinci

523453

da Vinci

"select images from images i, metadata1 m1,

metadata2 m2,

where m1.author='da Vinci' and

m2.n-farfalle>0

images

m1

upload

m1

analyser

C2RMF Web Server

RDF to local

schema map

C2RMF

metadata

C2RMF-id

Artist

932432

da Vinci

123513

da Vinci

images

m1

m1

"select images from images i, metadata1 m1,

metadata2 m2,

where m1.artist='da Vinci' and

m2.n-npapillons>0

upload

control

control

Phase 1

Configure analyser

 The user enters the information necessary to instruct the local system to run the butterfly analyser on the relevant images.

1. Choose which analyser to use (e.g. Butterfly analyser)

2. Choose input to analyser (e.g.. a set of images returned by a query)

3. Choose output of analyser - e.g. a new Artiste atttribute (e.g. no-of-butterflies)

Execute analyser.

The system runs the content-based analysis on the relevant images and populates the relevant table with the metadata information.

· [image: image5.wmf]Artiste user

Configure classifier

(from Enter query)

Choose operation

StandardQuery

(from Enter query)

Browse Results

(from Results)

Execute query

(from Execute query)

Train classifier

(from Execute query)

Execute classifier

(from Execute query)

Enter analyser query

(from Enter query)

Execute analyser

(from Execute query)

Artiste Query: Any query that can be executed in the Artiste system. At this level of abstraction the query is independent of query format (SQL, RDF etc.) or query scope.
· Query Executor: A control object that takes any Artiste query, executes it, and returns the results.
· Analyser: An entity object that represents an applied content-based analysis algorithm that the Artiste system can execute.
· Query Transformer: A control object that converts an Artiste query to a SQL query using some Query Transformation Rules.

· Query Transformation Rules: A mapping that can be used to convert one query representation to another query representation
· SQL Query: A SQL query that is suitable for execution against the TOR database.
· SQL Query Executor: A control object that takes a SQL Query, executes it against a Database and returns a Result Set

· Database: An entity object that represents an external database (e.g. TOR)
· Result Set: A set of Artiste ‘objects’ that can be returned from the database (e.g. a collection of images or image attributes)

In this particular example the Result Set will be null as the query is inserting new attribute items rather than retrieving them.

5.2.2.2 Phase 2

The user selects the “npapillons” local Artiste attribute and clicks on “publish to Artiste”. The user must now associate the attribute with a global attribute in a global schema, or must create a new attribute in a global schema that they own.

In this case the user selects the global “Artiste Narcisse” schema, and selects the Artiste attribute “number-of”. This prompts the user for another attribute and the user chooses the Narcisse attribute “butterfly”.

5.2.2.3 Phase 3

[image: image6.wmf]Local attributes

(from Robustness_stuff)

Find local attributes

(from Robustness_stuff)

Find remote attributes

(from Robustness_stuff)

Find remote information

(from Robustness_stuff)

Find attribute list

(from Robustness_stuff)

Find remote sites

(from Robustness_stuff)

Choose new object

(from Robustness_stuff)

Choose attribute/value

(from Robustness_stuff)

Choose retrieve item

(from Robustness_stuff)

Execute query

(from Execute query)

Execute query

(from Robustness_stuff)

Query entry

(from Robustness_stuff)

Choose sites

(from Robustness_stuff)

Standard query
1. User chooses what items they want to retrieve (e.g. images)

2. User chooses which attributes they want to query with

3. The system offers a list of sites that support those attributes

4. The user chooses which sites they wish to query

5. The user executes the query.

[image: image7.wmf]Artiste Query

An Analyser

Query Executor

SQL Query

SQL Query Executor

Database

Result Set

Query Transformer

Query Transformation

Rules

· Query Entry: The user enters the main “query entry” window.

· Choose Attribute Value: The user chooses from a list of available attributes, along with a relation (e.g. equals, greater than, contains etc.) and an attribute value. They may perform this action multiple times to produce complex logical expressions (such as and/or clauses).

· List Attributes: This control entity produces a list of available attributes for the user to select.

· Find Remote Attributes: This control entity produces a list of available attributes that are available at remote Artiste sites, along with the specific sites at which an individual attribute is available.

· Find Local Attributes: This control entity produces a list of available attributes that are available at the local site.

· Choose Artiste Sites: The user selects which Artiste sites they want to query. The user interface will only allow the user to select sites at which their attribute choices are available.

· Find Remote Sites: This control entity contacts some sort of Artiste service to find a list of sites that can respond to a particular query information.

· Choose Retrieval Items: The user chooses what sort of objects they wish to retrieve, including format (e.g.JPEG, TIFF) and type (e.g. standard images, ultra-violet, X-ray, raking light etc.).

· Execute Query: The user executes the query.

[image: image8.wmf]StandardQuery

(from Enter query)

Formulate RDF query

RDF Query Executor

RDF Query

Execute query

Similar to execute analyser as defined previously but will return a result set (a set of thumbnail images).

· Execute Query: The user executes the query.

· Formulate RDF Query: The system uses all the input parameters supplied by the user to construct an RDF query.

· RDF Query: This entity object represents a query in RDF format.

Browse results

The user browses the thumbnail images that the system returns and selects a number of relevant images. They then retrieve the full scale images.

6 Logical model

A logical model is shown in
Figure 7
.

· Image: Any image in the Artiste system. This object has a high level of abstraction and is independent of image format, image type and image origin (captured or derived).

· Art Object: Represents a ‘real-world’ art object such as a painting or a sculpture. One art object may have many associated images. The Artiste system will not contain any further information about Art Objects as this is outside the scope of the system.

· Source Image: An image that is ‘input’ to the Artiste system – i.e. it has been scanned, photographed or enhanced using external systems.

· Derived Image: An image that has been produced by the Artiste system using an image processing routine on an Artiste Image.
· Source Image Fragment: A Source Image that is part of a larger Image.

· Image Transformation: A process that has been used to convert an Image to a Derived Image. A collection of these transformations forms an ‘audit trail’ for the Derived Image.
· Image Format: The format of the image, such as JPEG, TIFF etc.

· Image Type: The type of image, such as front-view, side-view, infra-red, x-ray, raking light etc.

· Image Capture Data: Information about how the source image was captured – for example how it was photographed, when and by whom.

· Image Feature Vector (IFV): An image processing algorithm works on an image to produce an Image Feature Vector (IFV). Generically, this is a point, or set of points in a multi-dimensional space. The number and description of the dimensions is dependent on the particular algorithm to which the IFV relates.

· Algorithm: An image processing routine such as a Hough transform or colour histogram algorithm.

· Customised Algorithm: An Algorithm where some of the input parameters have been constrained (e.g. a ‘butterfly matcher’ may be a Hough transform whose match image is constrained to be a standard ‘butterfly’ image).

· Match Results: The results of an image-to-image comparison, such as the output of a number of Hough transforms.

· Analyser: A constrained algorithm that can work on, and produce, Artiste metadata attributes.

· Attribute: Any Artiste metadata term, such as “number of butterflies”, “percentage restored”, “painter” or “crack pattern type” .

· Attribute Value: An allowable value for an Attribute.
· Classifier: An algorithm that can classify images according to various criteria, using an appropriate learning algorithm (such as a neural network).

· Training Set: A set of images and corresponding Attribute and Attribute Value, suitable for training a Classifier. (e.g. a set of images for which “style” is “art nouveau”).

· Query Item: Any Artiste ‘object’ that can be used in the selection criteria of a Query. This could be an attribute, image, sketch or other object.

· Schema: A collection of Attributes.

· Metabase: A collection of Attribute values.
· Query: Any query in the Artiste system. This object has a high level of abstraction and is independent of query format or query scope.

· Local Query: A query that is suitable for executing on a single site. The Local Query may contain site-specific fields.

· Global Query: A query that is suitable for executing against any Artiste site. The Global Query must only refer to attributes that are in globally published Schemas.
· Query Transformation: A process that can convert a Global Query to a Local Query.
· Result Set: A set of Artiste ‘objects’ that is returned from a Query.
· [image: image9.wmf]Artiste user

Choose operation

Enter analyser query

(from Enter query)

Execute analyser

(from Execute query)

Query Language. The language with which the Query is implemented.

Figure 7 Logical model

7 Background databases

7.1 C2RMF

Significant restoration database, with a close correlation to the Narcisse thesaurus which C2RMF were influential in creating.

7.2 NGL

?

7.3 Uffizi

Z39.50 compatible database containing standard Dublin-Core information (e.g. Title, author etc.)

Little restoration information.

7.4 VAM

See Technical note Artiste T01 Issue 2.

7.5 Narcisse database

8 Gaps

9 Design

The “Description of Work” (DOW) document describes an outline of the envisaged final architecture of Artiste, with two “migration” architectures to be implemented in the prototypes produced in the project. This document will concentrate on the final architecture as this represents the ultimate goal for a sustainable system. However, it is likely that the architectures that will be actually implemented in the project will be the corresponding “migration” architectures.

The final architecture from the DOW is repeated in Figure 8 for clarity.

[image: image2.wmf]Common

Metadata

Schema

Object-relational

UDM

Presentation Layer

Art DB

UDM

Authored

Links

(Replicated)

Authored

Links

(Replicated)

Gallery 1

Gallery 2

Meta

data

Presentation Layer

Distributed Query

and Metadata Layer

Common

reference

information

Web Server

Web Server

Browser

Object-relational

UDM

Art DB

UDM

Meta

data

Distributed Query

and Metadata Layer

Third-party

background server

Figure 8 Envisaged final architecture from DOW

9.1 Distributed metadata and query layer

A Z39-50 server (target) will be implemented in order to serve library-standard (i.e. Dublin-Core, bib1 attribute) data regarding to images.

RDF will be used to serve a global search capability using standard metadata.

9.2 Scenario 1

Scenario 1 illustrates how Z39-50 can be used to locate Artiste images.

9.3 Scenario 2

Scenario 2 illustrates the role of the distributed query and metadata layer and how it converts a global RDF-driven Artiste query into different local SQL-driven queries.

[image: image10.wmf]Artiste user

Choose operation

StandardQuery

(from Enter query)

Execute query

(from Execute query)

Browse Results

(from Results)

9.4 Database logical data model design

A first draft of the high level database entities is shown in Appendix A.

This section maps the robustness analysis of Scenario 2 to the proposed database entities in order to verify the design. We use ‘pseudo-SQL’ to show how specific values are inserted into the entities (which are mapped on to virtual tables).

Scenario phases (repeated from Section 5.2.2)

· Phase 1: An Artiste “admin user” at C2RMF runs the butterfly analyser on the image database in order to populate the butterfly metadata tables.

· Phase 2: The Artiste “admin user” at C2RMF publishes the butterfly metadata information so that this information is available to the Artiste system.

· Phase 3: The researcher at the Uffizi performs the query as specified in the Scenario.

9.4.1 Phase 1

Configure Analyser. The user defines a new attribute, which results in a new row in the element table.
insert into element (id_Element, id_Language, it_Type_Value)

values (“npapillons”, “french”, “int”);

Execute Analyser: The user runs the analyser, which results in a number of new rows in the element_obj_obj table.

We have added a specific table to hold the images, “image” which is referred to in the object_storage table. This is necessary because it is not practical to store the actual images in the object table (otherwise the object table would need to have one column for each possible object type).

We have added a specific table to hold the analysers, “analysers” for the same reason.

The system must first execute three short queries in order to discover that the images are held in the “image” table, the analysers are held in the “analyser” table and that the relevant UDM to count the number of butterflies is called “comptepapillons”. The system can then use this additional information to construct the main query, which looks like this:

insert into element_obj_obj (id_element, id_child_obj, id_mother_obj, id_type_o_o_relation, value_element)

select e.id_element, a.id_object, i.id_object, t.id_type_o_o_relation, i.image.comptepapillons()

from element e, analysers a, image i, type_o_o_relation t, object o, type_object to

where e.id_element = “npapillons”

and a.name = “comptepapillons”

and i.id_object = o.id_object

and o.id_type_object = to.id_type_object

and to.id_type_object = “infra-red image”

and t.type_o_o_relation = “analyser”;

9.4.2 Phase 2

9.4.3 Phase 3

On the C2RMF site, the query produced in the “Execute query” use-case may look as follows:

Select i.image.thumbnail()

from images i, element_obj_obj el1, element_obj_obj el2, element_values v

where id_element = “npapillons”

and el1.value_element_int > 5

and el1.id_mother_object = i.id_object

and el2.id_element = “auteur”

and el2.id_element_value = v.id_element_value

and v.value = “Leonardo da Vinci”;

This query introduces an extra table “element_values” which contains allowable string values for elements. The table has two keys:

· A primary key: id_element_value, which contains a unique identifier for the value; and

· A foreign key: value which contains the actual value (e.g. “Leonardo da Vinci” is an allowable painter).

On the Uffizi site, the same query may look slightly different, as follows:

Select i.image.thumbnail()

from images i, element_obj_obj el1, element_obj_obj el2, element_values v

where id_element = “nfarfalle”

and el1.value_element_int > 5

and el1.id_mother_object = i.id_object

and el2.id_element = “pintori”

and el2.id_element_value = v.id_element_value

and v.value = “Leonardo da Vinci”;

9.5 Other comments on logical data model design

The logical data model design contains an entity “element_synonyms” to avoid homonyms across the Artiste partners. This is an important issue and must be addressed. However, we are adopting a different approach. Synonyms will not be held in the individual site databases – instead, the site-specific elements (attributes) will be mapped on to global attributes held in globally published thesauri. These globally published thesauri will define synonyms as appropriate in order to avoid the homonym problem. At the local level, there may exist homonyms between the different partners – this is not an issue at the local level. The entity “element_synonyms” is therefore not required.

The proposed structure is very generic, and allows for significant flexibility and therefore stability, of the database with evolving applications. However, for many operations, this results in complex queries involving many joins. This may cause performance problems and this will need to be tracked throughout the design and implementation.

A. Appendix A Logical data model

A.1 Artiste_USERDATA_SUBJECT AREA
[image: image11.wmf]Is Mother of

Is Child of

Has defined

Has Range of

Has menbers of

Has members

Is described as

Has metadata elements

Is used with object

Defines relationship

Has members

Is Mother of

Is Child of

DATE : July 14, 2000

AUTHOR : Huub Hillege

VERSION : 0.1

SUBJECT : USERDATA

ELEMENT_SYNONYM

Id_Mother_Syno (FK)

Id_Child_Syno (FK)

LANGUAGE

Id_Language

TYPE_VALUE

Id_Type_Value

VALUE_RANGE_ELEMENT

Id_Element (FK)

Range_Begin

Range_End

TYPE_FORMAT

Id_Type_Format

OBJECT_STORAGE

Id_Obj_Storage

Id_Type_Format (FK)

ELEMENT_O BJ_OBJ

Id_Element (FK)

Id_Child_Obj (FK)

Id_Mother_Obj (FK)

Id_Type_O_O_Relation (FK)

Value_Element

ELEMENT

Id_Element

Id_Language (FK)

Id_Type_Value (FK)

TYPE_O_O_RELATION

Id_Type_O_O_Relation

TYPE_OBJECT

Id_Type_Object

OBJECT_OBJECT

Id_Mother_Obj (FK)

Id_Child_Obj (FK)

Id_Type_O_O_Relation (FK)

OBJECT

Id_Object

Id_Type_Object (FK)

Id_Obj_Storage (FK)

A.2 Artiste_SOURCEDATA_SUBJECT AREA

[image: image12.wmf]Has multiple

Has multiple

Has multiple

Is reponsable for

Has registered

Consists of

Has

Valid for

Has workers of

Fulfills

Have

Valid for

Valid for

Has personal

Belongs to file

Relates to source

Contains attributes

Has originator Synonym

ADDRESS_FORMAT

Id_Address_Format

DATE : July 14, 2000

AUTHOR : Huub Hillege

VERSION : 0.1

SUBJECT : SOURCEDATA

COUNTRY

Id_Country

TYPE_ADDRESS

Id_Type_Address

TYPE_ORGANISATION_ROLE

Id_Organisation_Role

ORGANISATION_ADDRESS

Id_Address (FK)

Id_Organisation (FK)

Id_Type_Address (FK)

ORGANISATION

Id_Organisation

Id_Location (FK)

ORGANISATION_ROLE

Id_Person (FK)

Id_Organisation_Role (FK)

Id_Organisation (FK)

Id_Artiste_User (FK)

ROLE_ADDRESS

Id_Person (FK)

Id_Address (FK)

Id_Organisation (FK)

Id_Organisation_Role (FK)

ADDRESS

Id_Address

Id_Address_Format (FK)

Id_Country (FK)

PERSON_ADDRESS

Id_Person (FK)

Id_Address (FK)

Id_Type_Address (FK)

PERSON

Id_Person

FILE_ATTRIBUTE

Id_File (FK)

Id_Object (FK)

Id_Attribute (FK)

ELEMENT

Id_Element

Id_Language (FK)

Id_Type_Value (FK)

OBJECT

Id_Object

Id_Type_Object (FK)

Id_Obj_Storage (FK)

SOURCE_ATTRIBUTE

Id_Attribute

Id_Element (FK)

Type_Attribute

Length_Attribute

Mask_Attribute

Description_Attribute

Name_Attribute

IMPORT_EXPORT_FILE

Id_File

Id_Person (FK)

Id_Organisation_Role (FK)

Id_Organisation (FK)

A.3 Artiste_ACCESSDATA_SUBJECT AREA
[image: image13.wmf]Has function at

User may access

Is applied to

Has access by

Has workers of

Fulfills

ARTISTE_USER

Id_Artiste_User

DATE : July 14, 2000

AUTHOR : Huub Hillege

VERSION : 0.1

SUBJECT : ACCESSDATA

ACCESS_GRANT

Id_Element (FK)

Id_Child_Obj (FK)

Id_Mother_Obj (FK)

Id_Type_O_O_Relation (FK)

Id_Type_Access (FK)

Id_Artiste_User (FK)

Date_Start_Access

Date_End_Access

TYPE_ACCESS

Id_Type_Access

ORGANISATION

Id_Organisation

Id_Location (FK)

ORGANISATION_ROLE

Id_Person (FK)

Id_Organisation_Role (FK)

Id_Organisation (FK)

Id_Artiste_User (FK)

PERSON

Id_Person

ELEMENT_O BJ_OBJ

Id_Element (FK)

Id_Child_Obj (FK)

Id_Mother_Obj (FK)

Id_Type_O_O_Relation (FK)

Value_Element

A.4 Logical data model description

INTRODUCTION

The final physical implementation of the database will be done with TOR (Teradata Object Relational and optional with Teradata for non-object data-types.
From an architecture point of view it will be an Object Relational Implementation.

The actual logical (in the draft Design document of Workpack) model is of an higher abstraction level then one would like to have when doing the final Physical DB design for TOR/Teradata.

The Logical Datamodel will be made according the E/R Methodology IDEF1X (Integration DEFinition for Information Modeling) and will enforce a model in 3NF (third Normal Form) which is the accepted starting point for a Physical DB design step.
The model will be put in ERwin datamodel tool which is one of the most common tools used in the Database industry

Erwin has support for almost every well known DBMS, including Teradata. So once the LDM has been defined in Erwin one could easily generate SQL CREATE TABLE statements for Teradata. At this moment Erwin doesn’t support TOR, but the transformation of the generated SQL could be easily changed for dedicated TOR syntax.

The LDM will be independent of the used DBMS (DataBaseManagementSystem) that will mean parts of the datastructure could be implemented by the actual functions of the used DBMS. The decisions will be made during the Physical Design activity.

LDM DESIGN GOALS

-
The LDM should be independent of the final used DBMS, Application development tools and/or used program languages. Also it should be independent of the type of objects (main focus now are images of paintings) about which information is described in the LDM.

-
Try to make a model of which the structure is as stable as possible which means that if the information demand changes, the model should be adaptive of just adding some instances in certain entity-types instead of the need of changing the structure in the LDM.

-
The LDM should integrate also data structures that are needed regarding Privacy aspects for individual users as well as data structures needed for management of applications, DBMS. The owner of the data should be recognized

-
The LDM should show the relation to the external sources from which Artiste has received the data.
It is not the intention to design structures of how the external sources are organized, structured by themselves. It is outside the scope of the LDM.
The LDM should provide in formation of the type of the data, the owner and on which site (=member of the Artiste Consortium) the original is located.

-
The LDM should use a naming convention for Entity-types which should have the same semantics for each partner of the consortium. If existing names will lead to confusion across the countries, then new names and care full made descriptions should be defined.

-
The LDM should facilitate synonyms across different languages

MAIN SUBJECT AREA’S

The grouping of the entity-types in the model could be according the following major subject areas:

USERDATA
Data structures for storing data like pictures of the art-objects and related properties and the data that is needed to describe it

APPLICATION DATA
Data structures to describe all components of the application and data that is needed to let the application work properly

SECURITY DATA
Data structures that are needed to enforce access rules for individual users

SOURCE DATA
Data structures that describe the link to – and the properties of the external sources where the stored data has been taken from.

Up front there has been taken a decision that specific entity-types will be defined as part of a subject area. If there is chosen that an entity-type will be part of two subject areas it will be mentioned separately.

MAJOR ENTITY_TYPES PER SUBJECT AREA:

USERDATA ENTITY-TYPES:

-
ELEMENT
The entity-type ELEMENT describes the smallest parts (data-items) of information related to the content of the Artiste database. To avoid homonyms across the partners of Artiste, ELEMENT's will be newly defined names. Via ELEMENT_SYNONYM entity-type the original names and other synonyms will be defined.
Attributes, extracted from the physical sources and imported into the Artiste datamodel, will be transformed to ELEMENT's and carefully described.
Also the ELEMENT fulfills a metadata role.
The Attribute names from the sources (were Metadata) will become now just data as value for the Id_Element

Examples of Elements:
. Color
. Shape
. Paint technique
. Inventory
. Date_Purchased
. Name of painting
. Painter
. Date_Birth painter
. Support
. Inscription
. Theme
. Dimensions HxL
. Feature
. etc. etc.
etc. anything that is describing-, defining,- operational data about an object.

-
ELEMENT_OBJ_OBJ
This entity-type describes which ELEMENT's are related to an individual Object. An OBJECT is always part of a structure. (See OBJECT_OBJECT entity-type)

-
ELEMENT_SYNONYM
This entity-type describes the synonyms that are known and used be the different partners of Artiste and the Language in which the individual ELEMENT is named.

-
LANGUAGE
This entity-type describes the used languages and the short codes that are used inside Artiste. The language entity-type fulfills a look-up role.

-
OBJECT
The OBJECT entity-type describes objects that will be a comprehensive related amount of properties that will be treated as a single item.
An object could be anything, like an image of a painting, an algorithm, a peace of code like XML, RDF, SQL etc. Also it could be a part of an application, a copy of a selected peace of an image, a method (UDF, SDF) with which an object could be stored or collected from TOR, etc. etc..
Groups of objects, having common properties on a higher abstraction level, could be defined with the TYPE_OBJECT entity-type.

-
OBJECT_OBJECT
In this entity-type the relationship between two objects are defined.
It is called the logical object structure. If an object is on its own, still there is an instance for this entity-type. It has a relationship to itself.

Examples:
A selection part of an image that will be stored as a separate object will be related to the original where the copy was taken of.
An application has a main module and all kind of subroutines related to it.
An image could have an UDF related to it that is used to present the object to the asking client.
A relationship between an image and a defined thumbnail out of it.

-
OBJECT_STORAGE
This entity-type describes the properties where the object is physically stored.
Objects are stored physically in different formats. The formats are defined in TYPE_FORMAT.

-
TYPE_FORMAT
This entity-type describes the physical formats in which the object has been stored.

Examples:
MPEG image,
DICOM
Text
Bin executable program
PDF
JPEG
Word document
etc., etc.

-
TYPE_O_O_RELATION
Occurrences of this entity-type describes the relationship between the Mother- and the Child object.

Example:
. IFV
Child object is Image Feature Vector of Mother object
. BUFLY
Child object is butterfly of Mother object
. UDF
Child is UDF for Mother object
. ANALY
Child objects is Analyzer for Mother object
. QUSQL
Child object is Query executed on Mother object. Query is in SQL
. QURDF
Child object is Query executed on Mother object. Query is in RDF
. QRESU
Child object is result of Mother object that is a query.
. QCOMP
Child object is a query (component) derived from Mother object is a
 query
. ORIGI
Id_Child_Obj and Id_Mother_Obj are identical, the object is an original copy put in the model
. SIDEV
Child object is a side view of the mother object
. CROSV
Child object is a cross view of mother object

etc., etc.

-
TYPE_OBJECT
This entity-type describes the major grouping of the objects.

Example:
. IMAGE
Images of all kind of formats
. APPLI
Application object or an object that is part of an application.
. QUERY
A query in whatever language written or a part of a query
. ALGOR
Algorithm performing special functions for special objects
. UDM
User defined method for TOR
. LINK
Object defines a direct link to another site
. GENEL
Object wen activated will generate new ELEMENT's and / or

-
TYPE_VALUE
This entity-type describes the major value types used for element's

Example
VARCH
Variable number of characters
DATE
Date values with yyyymmdd format
DECIM
Decimal format (18,5)
etc.

-
VALUE_RANGE_ELEMENT
The occurrences of this entity-type will show the range values that could be present for a certain ELEMENT occurrence.

Example:
Id_Element

Range_Begin

Range_End
Feature

Crack

null
Feature

Vertical planks
null
Feature

Craquelure

null
Feature

Repaints

null
Temp_Celcius
10

40

etc.,
 etc.

APPLICATION DATA ENTITY-TYPES:

In my first draft I had the following entity-types:

APPLICATION,
TYPE_APPLICATION,
APLICATION_APPLICATION,
TYPE_ AP_AP_ RELATION
It was discovered that the same relationships to ELEMENT, and OBJECT_STORAGE were needed.

I decided to put those together with OBJECT and made the definition more broad (not only images of paintings ed.).

Now the model is more simple and the relationship between the individual Images (OBJECT) and related algorithm's used with this, as well as all kind of copy's, selections made could be easily related to the original object.

SOURCEDATA ENTITY-TYPES:

-
ADDRESS
Address definition. Id_Address, system logical assigned will be referenced in the entity-types

-
ADDRESS_FORMAT
Address format definition.

Example could be:
EMAIL
E-mail address
TELEP
Telephone address
INTER
Internet address
POSTA
Postal address

FORM1
Special format 1 used in specific country
etc.

-
COUNTRY
Country look-up information

-
ELEMENT
see definition in USERDATA

-
FILE_ATTRIBUTE
Definition of all physical attributes that are part of an import/export file

-
IMPORT_EXPORT_FILE
Description of which physical file the data is loaded in the Artiste DB

-
OBJECT
see definition in USERDATA

-
ORGANISATION
All business units, foundation, legal entities that are no individual are define here.

For the moment (14-7-2000) no detailed organisation structures were needed to define.

-
ORGANISATION_ADDRESS
Address registered for that Orgainsation

-
ORGANISATION_ROLE
The role an individual full fills inside a specific organisation

-
PERSON
Each individual that should have access to the system and/or has relationship with the Artiste project

-
PERSON_ADDRESS
Addresses for an individual

-
ROLE_ADDRESS
Addresses for a PERSON in its role inside an ORGANISATION

-
TYPE_ADDRESS
To establish different addresses for an ORGANISATION and/or PERSON

Example could be:
BILLI
Billing address
VISIT
Visiting address
POBOX
Postal box address
VACAT
Vacation address
DELIV
Delivering goods address
HOME
Home address
etc.

-
TYPE_ORGANISATION_ROLE
Function the employee fulfills inside the organisation
Example:
GENER
General manager
DIRMA
Director Marketing etc.

ACCESSDATA ENTITY-TYPES:

At this moment no specific security demands are clear, so there is chosen for a basic one.
Each instance of an ELEMENT related to an individual object could have granted access for an individual user.

-
ARTISTE_USER
Users as defined in the Artiste DB

-
ACCESS_GRANT
The granted accessrights to an individual user to related ELEMENT and OBJECT

-
ELEMENT_O BJ_OBJ
see definition in USERDATA

-
ORGANISATION
see definition in USERDATA

-
ORGANISATION_ROLE
see definition in USERDATA

-
PERSON
see definition in USERDATA

-
TYPE_ACCESS
The type of access that could be granted

Example:
READE
Only reading Element instances without objects
INSEL
Only writing Element instances without objects
DELEL
Only deleting Element instances without objects
OBREA
Only reading objects
OBDEL
Only deleting objects
OBINS
Only inserting objects
etc.

�

� EMBED Visio.Drawing.5 ���

�

Figure � SEQ Figure * ARABIC �1� Overall use-case diagram

�

Figure � SEQ Figure * ARABIC �5� Robustness diagram for enter standard query

�

Figure � SEQ Figure * ARABIC �3� Robustness diagram for Execute analyser

�

Figure � SEQ Figure * ARABIC �6� Robustness diagram for Execute Query

�

Figure � SEQ Figure * ARABIC �2� Phase 1 Use-case diagram

�

Figure � SEQ Figure * ARABIC �4� Phase 3 Use Case diagram

�

�

�

ARTISTE R01
© IT Innovation Centre, 2000

ARTISTE R01
© IT Innovation Centre, 2000

[image: image14.png]

_996044063.doc
[image: image1.png]1

innovation

_1022356309.vsd
RDF resource
Narcisse
Thesaurus�

Uffizi Web Server�

RDF to local schema map�

support:structure:frame:butterfly
"wooden structure to hold frame togther"�

support:structure:frame:nbutterflies
number-of(butterfly)�

�

Uffizi metadata�

Uffizi-id�

Author�

321444�

da Vinci�

523453�

da Vinci�

�

upload�

"select images from images i, metadata1 m1, metadata2 m2,
where m1.author='da Vinci' and
m2.n-farfalle>0�

C2RMF Web Server�

images�

m1�

m1�

analyser�

RDF to local schema map�

�

C2RMF metadata�

C2RMF-id�

Artist�

932432�

da Vinci�

123513�

da Vinci�

images�

m1�

m1�

"select images from images i, metadata1 m1, metadata2 m2,
where m1.artist='da Vinci' and
m2.n-npapillons>0�

�

upload�

control�

control�

_990915246.vsd

