COMP6216

Simulation Modelling for Computer Science

Markus Brede Brede.Markus@gmail.com 32/4033

Me

- Part of the "Complexity" part of the AIC (Agents, Interaction, Complexity) group
- Research interests in
 - (evolutionary) game theory
 - Networks (structure + function)
 - For analyzing data and building models to understand data (twitter networks + ED, language)
 - As abstract models (spatial networks)
 - Models of the banking system, cascading
 - Dynamical Systems on Networks (mostly related to synchronization and evolutionary games)

If you are interested in doing a PhD

- I have a project on modelling cascading failure in the banking system
 - Networks of interconnected banks
 - Adjustable risk taking (game theory)
 - Optimal intervention strategies?
 - Via NGCM CDT http://www.ngcm.soton.ac.uk/
 - More info: https://jobs.soton.ac.uk/Vacancy.aspx?id=12152&forced=1
- Also interested in potential PhD students who want to work on data mining and network analysis related to health (using twitter information)

You?

- I don't really know
 - CS Msc? 3rd year BSC?
 - Spitfire?
 - Other?
- Also:
 - This is a fairly new module and I am not so sure what you already know. Tell me when I am too fast or too slow ...

Requirements

- A bit of maths: mostly differential + integral calculus, Taylor expansions, ...
- Some programming experience
- Will try to find a balance between teaching
 - mathematical treatment
 - numerical implementation
 - general modelling skills
 - ... and have interesting applications.

(Let me know if there is anything you are particularly interested in, I can try to include it)

The Module – COMP6216

- Logistics:
 - 2 lectures per week/1 seminar per week
 - Rooms:
 - Tuesdays 9-10 27/2001/LR1 (Lecture)
 - Tuesdays 3-4pm 58/1009 (Seminar not 1st week!)
 - Thursdays 3pm-4pm 07/3031 (Lecture)
 - Website:http://users.ecs.soton.ac.uk/mb8/sim/sim.html
- Simulation Modelling, three aspects will be covered
 - Modelling
 - Scientific Computing
 - Applications of Simulation Modelling

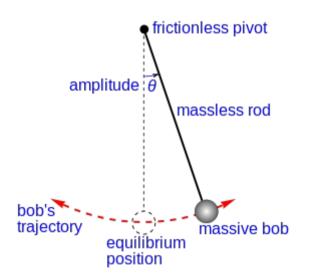
Modelling

- The aim is to understand the role of modelling in science and to learn how to build a (good) model
- Aspects covered:
 - What is science? What is the role of models in science?
 - How to build a model
 - Practical aspects of modelling
 - An introduction to a selection of modelling paradigms

Scientific Computing

- The aim is to understand some important numerical techniques to "solve" models using computers
 - Solving (non-)linear equations
 - Calculating derivatives/integrals
 - Solving ordinary differential equations
 - Agent-based models
 - Networks
 - Potentially: Optimization, Monte Carlo Methods

Applications


- Will have a look at a number of applications from various fields to introduce and apply concepts
 - Some physics ... how cats fall, the dynamics of love affairs, and more boring stuff
 - Population models in biology ... a lot about populations of bacteria
 - Epidemiology ... how diseases spread and zombie apocalypses can be prevented
 - The WWW ... can we understand and model the large scale structure of the internet? Ranking web pages and scientific papers.
- Will also look at some specific modelling platforms

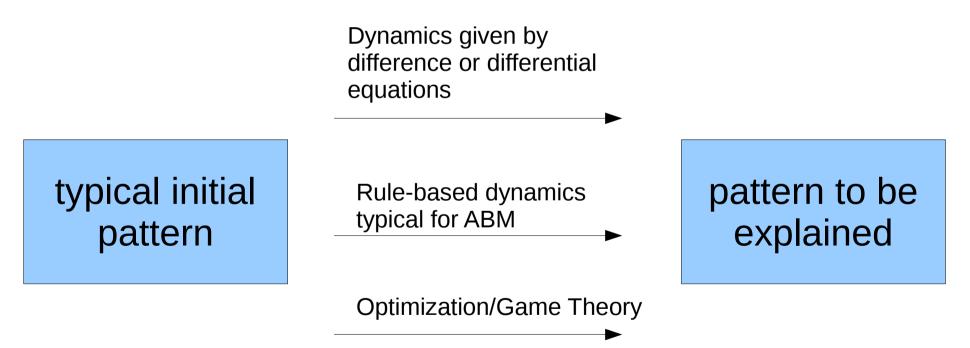
Types of Models

- Statistical Models
 - Start with data, build regression models to fit data and correlation in data
 - Correlation-causation?
 - Only a bit of Monte Carlo covered in this module
- Instead, focus will be on "Dynamical Models"
 - Describe system state, rules for evolution, and investigate outcome of these rules
 - Dominant paradigm in natural science
 - Will focus on this in this module
 - "Evolution rules" often captured by differential equations -> need to learn something about them.

Example

• A pendulum

Statistical Model


Start with series of observations of ,e.g., length of period and length of rod -> fit dependency and conclude T ~ square root of L

"Dynamical Model"

Build model based on Newton's Laws, solve differential equation, conclude T~square root of L as a property of solutions

Typical Situation

• Observe some pattern (in the real world), want to explain how it arose.

Difference/Differential Eq's

- Time in evolution rule can be
 - discrete (-> difference equations, clocked time)
 x_{t+1}=f(x_t,t)
 - or continuous (->differential equations)

dx/dt = f(x,t)

- Thinking about populations, a system can be composed of
 - Many similar entities (somehow well mixed) -> differential equations
 - Heterogeneous entities, possibly not very many -> agent-based models

Examples

- Computer operations -> clocked time, difference equations
- The pendulum -> continuous time -> differential equations
- Population dynamics of a huge herd of cattle -> differential equations
- Dynamics of this class -> Agent-based model
- Disease spread in large populations of humans
 - Depends.
 - Traditionally: differential equations.
 - But some details do matter -> ABM

Plan of the Course

- First part: Lectures on Scientific Computing
 - basic numerical methods,
 - Next week: equation solving (linear + non-linear),
 - Then: Taylor expansions, numerical integration + differentiation, difference equations, ... etc.
- Second part:
 - Introduction to differential equations, some solution and analysis techniques + numerical methods to solve them
 - Intro to Mathematica/Matlab and system dynamics
 - Will connect this to applications

Plan of the Course (cont.)

- Third part:
 - Some modelling "theory" (+maybe role of modelling in science)
 - Agent-based models
 - Introduction to Netlogo and examples
- After that (time permitting):
 - Networks
 - Monte Carlo
 - Optimization

- Two components
 - 30% Select a simulation modelling paper and give a 10 minute talk about it in the second half of the term (will be scheduled after Easter)
 - Describe the aim/purpose of the paper
 - Talk about the background and what the paper contributes to the field
 - Describe methodology and results
 - What matters to get a good mark:
 - Overall quality of the talk (did you speak well, quality of the slides, did you really understand the paper? Address all aspects mentioned above? Answer questions? ...)

- Second component (70%) is implementing a model for one of the given problems, using various techniques to solve the model, and writing a 6 page conference paper documenting your results
- Marks are given for:
 - 10% quality of the report (writing, figures)
 - 40% technical quality (modelling techniques implemented properly, are results discussed and understood properly, see later)
 - 20% an extension of the given problem: Consider the given problem and develop an additional scientific question that makes sense in the given context and explore it adapting your models

- For the second part you can also work on another problem (maybe related to your work/interests), but you need to discuss this with me
- Assessments due:
 - Your talk should be ready in the first week after Easter (April 18), can be scheduled any time after
 - The report is due at the end of the teaching period, May 13, 4pm.

Some Suggestions for Papers for Part I of the Assessment

- M. Nowak & R. May, "Evolutionary games and spatial chaos" (1992), Nature 359, 826.
- R. Cont & J.-P. Bouchaud, "Herd behaviour and aggregate fluctuations in financial markets" (2000), Macroeconomic Dynamics 4, 170.
- P. M. Todd et al., "Aggregate age-at-marriage patterns from individual mate search-heuristics" (2005), Demography 42, 559.
- N. Kashtan & U. Alon, "Spontaneous evolution of modularity and network motifs" (2005), PNAS 102, 13773.
- P. M. Allen & J. M. McGlade, "Modelling complex human systems: A fisheries example" (1987), European Journal of Operational Research 30, 147.
- A. Tero et al., "Rules for biologically inspired adaptive network design" (2010), Science 327, 439.

- G. Ichinose et. al., "Adaptive long-range migration promotes cooperation under tempting conditions" (2013), Scientific Reports 3, 2509.
- F. Simini et al., "A universal model for mobility and migration patterns" (2012), Nature 484, 96.
- S. Motesharrei et al., "Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies" (2014), Ecological Economics 101, 90.
- H. Berestycki et al. "Travelling Wave Solutions in a Reaction-Diffusion Model for Criminal Activity" (2014), Multiscale Modelling and Simulation 11, 1097.
- M. Bedau & N. H. Packard, "Evolution of evolvability via adaptation of mutation rates" (2003), BioSystems 69, 143.
- I. D. Couzin et al., "Uninformed individuals promote consensus in animal groups" (2011), Science 334, 1578.
- B. J. Dermody et al., "The evolutionary pathway to obligate scavenging in gyps vultures" (2011), PloS ONE 6, e24635.

Paper Suggestions

- Or basically any (at least moderately complex) modelling paper you like.
 - If in doubt, ask me, and I'll let you know if I think it is suitable.

Part II Assessment

- I will give you a problem
- You are supposed to:
 - Develop a differential equation based model -7.5%
 - Explore analytical techniques to solve it (and if possible do so, if not, explain the difficulties) 7.5%
 - Numerically integrate the equations using your own implementation of a solution method and compare to the analytical results -- 10%
 - Implement an agent-based model that addresses the same problem and compare its results to the above two results – 15%

Part II Assessment

- What should be in the report?
 - An description of the problem
 - Documentation of the analytical approach (such that I can follow every step and understand its logic)
 - Documentation of the application of the numerical integration methods (source code of the "essential bit" of your solver, choices and parameters you made for the solver and a brief explanation why, documentation and discussion of the comparisons you carried out)
 - Details of the ABM how you implemented it and discussion of results and comparisons
 - Extension: Convince me it is interesting! Then document and discuss in detail what you did and document results in such a way that I can reproduce them.

Part II Assessment

• Also: upload the code for any numerical stuff you have done.

Part II Assessment: Group Dynamics of Hard Workers and Lazy Workers

- Consider the following situation:
 - A population of students is working on group projects. Students can follow two strategies (S): work hard for the project or free-ride.
 - In every course, groups of size n are formed at random. Students use the strategy determined at the beginning of the course (see below).
 - Total group effort is determined by the composition of the group. In a group with h hard workers and I=n-h lazy workers total group effort is e=h*H+I*L (H and L being the effort put in by hard/lazy workers)
 - When group projects are marked, every student gets the same mark. The lecturer determines this mark as m=e/n (i.e. the larger this number the better the mark)
 - At the end of the semester students rethink their strategies. They do this, by selecting another student at random and comparing a measure based on marks and effort, m-a*S (where a is a parameter and S=H or S=L depending on strategy). If that student got a measure, they will follow his strategy in the next semester.
 - Students study forever (i.e. take an infinite number of courses)

Problem (cont.)

• Q's:

- Assuming we start with equal numbers of hard working and lazy workers, what is the composition of the group
 - After 4 years (i.e. 8 courses) if H=1 and L=0 and a=0.5.
 - in the long run (after an "infinite" number of years)?
 - How quickly is this equilibrium state reached?
- How do the following parameters influence results:
 - Initial composition of the group
 - Group size (n)
 - Cost of effort a
 - Contribution of hard workers to group effort (i.e. H and L)

• Will use some of the seminar spots after Easter to answer questions/help with this part of the assessment of required