
  

Numerical Solutions of Differential 
Equations (1)

● Euler method
● Sources of error

● Truncation
● Round-off error

● Error balance in numerical integration



  

Euler Method

● Many differential equations don't have an exact 
solution or it is very complicated, so finding 
exact solutions is difficult

● Often useful to be able to solve differential 
equations numerically

● Idea: 
● remember how we derived the differential equation 

for exponential growth from the discrete Malthusian 
model (where we took the limit Dt -> 0 of a 
difference equation)

● In numerical schemes we find difference equations 
to approximate derivatives ...



  

Euler Method (2)

● Consider the general initial value problem

● Recall from definition of derivative:

● An approximation of the derivative is given by

(for sufficiently “small” Dt)

dy /dt=f ( y , t) , y (0)= y0

dy /dt=limD t→ 0

y (t+D t )− y (t)
D t

dy /dt≈
y (t+D t)− y (t)

D t



  

Euler Method (3)
● Putting all together ...

● We find:
● If we discretise an interval of time T into N+1 

little intervals of length h:

f ( y , t)=dy /dt≈
y (t+D t )− y (t)

D t

Differential
equation

Approximation of
derivative

y ( t+D t)≈ y ( t)+D t f ( y , t)
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Euler Method (4)



  

Example: Malthusian Growth

● Remember equation for Malthusian growth

has the solution:

● What if we apply Euler's method?

● Can rewrite this as:

dP /dt=rP , P(0)=P0

P(t )=P0 exp(r t )

Pn+1=Pn+hrPn

P0=P(0)

t=hn ,n=0,1,...

Pn+1=(1+hr )Pn=(1+hr )2 Pn−1=...=(1+hr )n+1 P0



  

Euler Scheme for Malthusian 
Growth

● Normally the discrete scheme is solved via 
computer simulation

● Here we find:

● Compared to:
● I.e. the numerical scheme only becomes exact in 

the limit  of infinitely small step size (show it!)
● For any finite step size there are deviations, the 

larger, the larger the step size ...

Pn=(1+hr )nP0

PEuler (t )=(1+hr )t /hP0

P(t )=P0 e
rt



  

Euler Scheme for Malthusian 
Growth

Comparison Euler Method—analytical result for

P '=0.2 P ,P0=50,h=0.1



  

Sample C code for an Euler 
Scheme

#include<stdio.h>

float fun(float x,float y)

{  float f;    

  f=x+y;    

return f;}

main() {   

 float a,b,x,y,h,t,k;    

printf("\nEnter x0,y0,h,xn: ");    scanf("%f%f%f%f",&a,&b,&h,&t,);    

x=a;    y=b;    printf("\n  x\t  y\n");    

while(x<=t)    {       

        k=h*fun(x,y);        y=y+k;        x=x+h;        

        printf("%0.3f\t%0.3f\n",x,y);    }

}

}

Which diff. eq. does this
code integrate?

d
dt

x=?



  

Truncation Error of Euler Scheme

● Local error
● We approximate a derivative by the differential 

quotient, this is not exact 

● Error estimate from Taylor series

● i.e. per iteration step the local error is proportional 
to h2

y ( t+h)≈ y (t)+h y '

y ( t+h)= y ( t)+h y '+
h2

2 !
y ' '+

h3

3 !
y ' ' '+...



  

Truncation Error of Euler Scheme (2)

● Global error:
● If we integrate for a time t we need t/h steps
● Per step we accumulate an error proportional to h2

● -> overall error is proportional to h2 t/h = t h

● The Euler scheme is a so-called first order 
scheme, which implies
● Local error scales prop. to step size squared
● Global error is linear in step size

● Accuracy can be improved by decreasing step 
length h



  

Errors in Numerical Calculations

● Truncation error: 
● results from an approximation of an exact 

mathematical procedure
● E.g.: 

● Round-off error:
● Results from having numbers with limited significant 

digits representing exact numbers

(1+x )α≈1+α x+
α(α−1)

2 !
x2+

α(α−1)(α−2)

3!
x3+rest



  

Round-off Errors

● Floating point representation

N=mbe

Mantissa 
fractional part

exponent

Base of number system (10)



  

Round-off Errors (2)

● Example: floating point representation of

1/27=0.037037037037037...
● Using 4 digits this could be stored as

0.0370*100

● Better: “Normalizing” (i.e. mantissa is limited to 
1/b<m<1)

0.3703*10-1

● But still ... we lose accuracy! -> round-off errors



  

Round-off Errors (3)

● Floating point representation allows to handle 
very large and very small numbers ...

... but ...
● More storage required than for integers
● Longer processing time
● Round-off error is introduced since the mantissa 

holds a finite number of digits
● Round-off error increases with x, e.g. 4 digit 

mantissa
– 0.3516*104 -> Dx=1

– 0.3516*100 -> Dx=0.0001



  

Arithmetic Manipulation Errors: +

● Consider computer with 4 digit mantissa
● Add 2.365 and 0.01234

  0.2365*10^1                         0.2365*10^1

+0.1234*10^-1                        0.001234*10^1match exponents

0.237734*10^1
Chop to fit
floating point
representation

0.2377*10^1

Last two digits have been lost!
Relative error proportional to magnitude



  

Arithmetic Manipulation Errors (2)

● Also matter when
● Adding large and small numbers
● When subtracting nearly equal numbers
● When performing a large number of arithmetic 

manipulations 

● Can be minimized by using extended precision 
(at the cost of run time)

● Total error = Truncation error + Round-off errors



  

Round-off Errors in Euler Scheme

● Assume machine precision is e

● In step n of Euler scheme rounding off error is
● In N steps roughly                         (if all round-off

errors are of the same sign)
● More realistically, round-off errors are 

independent, and thus

● Techniques to reduce round-off error, e.g. 
compensated summation -> e.g. Kahan 
summation

ϵ yn

error∼N ϵ y0

round−off error∼√N ϵ y0



  

Error Balance for Euler Scheme

Just using smaller step lengths h is not enough!



  

Summary

● Important points to remember:
● Idea of the Euler scheme
● Order of Euler scheme
● Various sources of numerical error – 

– Truncation error
– Round-off error

● Trade-offs of errors in numerical integration
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