Numerical Solutions of Differential Equations (1)

- Euler method
- Sources of error
 - Truncation
 - Round-off error
- Error balance in numerical integration

Euler Method

- Many differential equations don't have an exact solution or it is very complicated, so finding exact solutions is difficult
- Often useful to be able to solve differential equations numerically
- Idea:
 - remember how we derived the differential equation for exponential growth from the discrete Malthusian model (where we took the limit ∆t -> 0 of a difference equation)
 - In numerical schemes we find difference equations to approximate derivatives ...

Euler Method (2)

• Consider the general initial value problem

$$dy/dt = f(y,t), y(0) = y_0$$

• Recall from definition of derivative:

$$dy/dt = \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t}$$

• An approximation of the derivative is given by

$$dy/dt \approx \frac{y(t + \Delta t) - y(t)}{\Delta t}$$

(for sufficiently "small" Δt)

Euler Method (3)

- We find: $y(t+\Delta t) \approx y(t) + \Delta t f(y,t)$
- If we discretise an interval of time T into N+1 little intervals of length h:

Euler Method (4)

y(t) is the solution of this differential equation

Example: Malthusian Growth

• Remember equation for Malthusian growth

$$dP/dt = rP$$
, $P(0) = P_0$

has the solution:

$$P(t) = P_0 \exp(rt)$$

• What if we apply Euler's method?

 $P_{n+1} = P_n + hrP_n$ t = hn, n = 0, 1, ... $P_0 = P(0)$

• Can rewrite this as:

$$P_{n+1} = (1+hr)P_n = (1+hr)^2 P_{n-1} = \dots = (1+hr)^{n+1} P_0$$

Euler Scheme for Malthusian Growth

- Normally the discrete scheme is solved via computer simulation
- Here we find:

$$P_n = (1+hr)^n P_0$$
$$P^{Euler}(t) = (1+hr)^{t/h} P_0$$

- Compared to: $P(t) = P_0 e^{rt}$
 - I.e. the numerical scheme only becomes exact in the limit of infinitely small step size (show it!)
 - For any finite step size there are deviations, the larger, the larger the step size ...

Euler Scheme for Malthusian Growth

Comparison Euler Method—analytical result for

$$P' = 0.2 P$$
, $P_0 = 50$, $h = 0.1$

Sample C code for an Euler Scheme

#include<stdio.h>

```
float fun(float x,float y)
```

{ float f;

f=x+y;

return f;}

main() {

float a,b,x,y,h,t,k;

printf("\nEnter x0,y0,h,xn: "); scanf("%f%f%f%f",&a,&b,&h,&t,);

```
x=a; y=b; printf("\n x\t y\n");
```

while(x<=t) {

}

```
k=h*fun(x,y); y=y+k; x=x+h;
printf("%0.3f\t%0.3f\n",x,y); }
```

Which diff. eq. does this code integrate?

$$\frac{d}{dt}x = ?$$

Truncation Error of Euler Scheme

- Local error
 - We approximate a derivative by the differential quotient, this is not exact

 $y(t+h) \approx y(t)+hy'$

• Error estimate from Taylor series

$$y(t+h) = y(t) + hy' + \frac{h^2}{2!}y'' + \frac{h^3}{3!}y''' + \dots$$

 i.e. per iteration step the local error is proportional to h²

Truncation Error of Euler Scheme (2)

- Global error:
 - If we integrate for a time t we need t/h steps
 - Per step we accumulate an error proportional to h^2
 - -> overall error is proportional to $h^2 t/h = t h$
- The Euler scheme is a so-called **first order scheme**, which implies
 - Local error scales prop. to step size squared
 - Global error is linear in step size
- Accuracy can be improved by decreasing step length h

Errors in Numerical Calculations

- Truncation error:
 - results from an approximation of an exact mathematical procedure

• E.g.:

$$(1+x)^{\alpha} \approx 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + rest$$

- Round-off error:
 - Results from having numbers with limited significant digits representing exact numbers

Round-off Errors

Floating point representation

Round-off Errors (2)

- Example: floating point representation of 1/27=0.037037037037037...
- Using 4 digits this could be stored as 0.0370*10⁰
- Better: "Normalizing" (i.e. mantissa is limited to 1/b<m<1)
 - 0.3703*10-1
- But still ... we lose accuracy! -> round-off errors

Round-off Errors (3)

- Floating point representation allows to handle very large and very small numbers ...
 - ... but ...
 - More storage required than for integers
 - Longer processing time
 - Round-off error is introduced since the mantissa holds a finite number of digits
 - Round-off error increases with x, e.g. 4 digit mantissa
 - $0.3516*10^4 \rightarrow \Delta x=1$
 - $0.3516*10^{\circ} \rightarrow \Delta x = 0.0001$

Arithmetic Manipulation Errors: +

- Consider computer with 4 digit mantissa
- Add 2.365 and 0.01234

 0.2365*10^1
 +0.1234*10^-1
 match exponents
 0.001234*10^1
 0.237734*10^1
 - Last two digits have been lost! Relative error proportional to magnitude

0.2377*10^1

Arithmetic Manipulation Errors (2)

- Also matter when
 - Adding large and small numbers
 - When subtracting nearly equal numbers
 - When performing a large number of arithmetic manipulations
- Can be minimized by using extended precision (at the cost of run time)
- Total error = Truncation error + Round-off errors

Round-off Errors in Euler Scheme

- Assume machine precision is $\boldsymbol{\epsilon}$
- In step n of Euler scheme rounding off error is $\in y_n$
- In N steps roughly *error* $\sim N \in y_0$ (if all round-off errors are of the same sign)
- More realistically, round-off errors are independent, and thus

round – *off error* ~ $\sqrt{N} \in y_0$

 Techniques to reduce round-off error, e.g. compensated summation -> e.g. Kahan summation

Error Balance for Euler Scheme

2 Sources of Error:

- 1. Truncation Taylor Series
- 2. Round-Off significant Digits

Truncation Error: 2 parts

- 1. Local method application over 1 step
- 2. Global accumulated additive error over multiple applications

Just using smaller step lengths h is not enough!

Summary

- Important points to remember:
 - Idea of the Euler scheme
 - Order of Euler scheme
 - Various sources of numerical error
 - Truncation error
 - Round-off error
 - Trade-offs of errors in numerical integration