System Dynamics

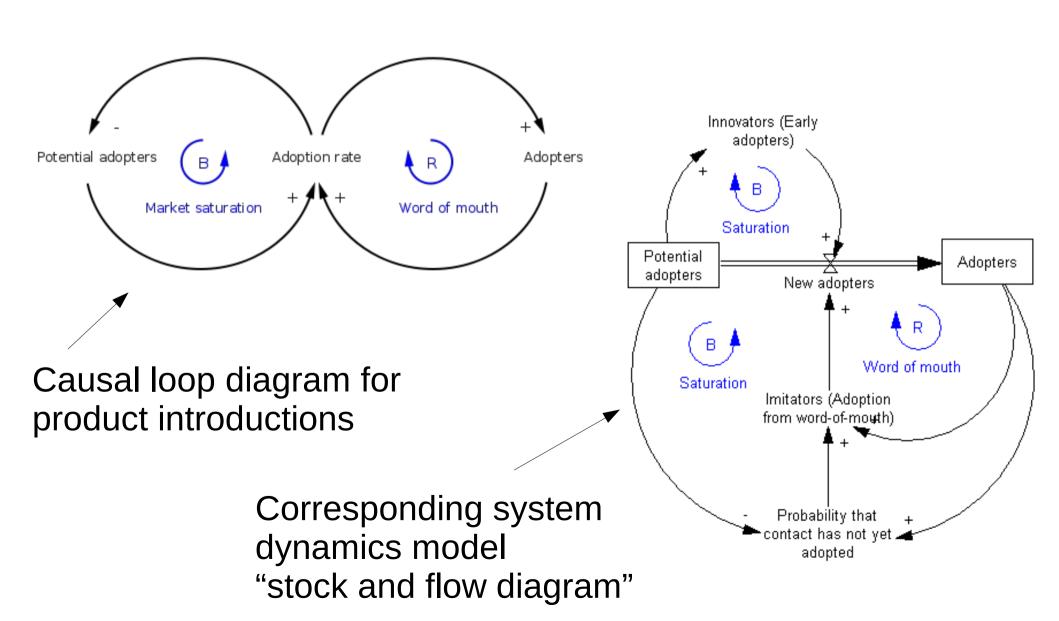
Outline

- History and Motivation
- The System Dynamics Module of Netlogo
- Basic elements of System Dynamics: stocks and flows
- Building System Dynamics Models
 - Exponential growth
 - Logistic growth
 - The dynamics of love affairs
 - Sheep and wolves
- Also want to use this lecture to explore some possible dynamics in higher dimensions

History + Motivation

• So far:

- have talked about a bit of theory of dynamical systems and some basic numerical techniques how to solve them on a computer
- There are various environments in which such these techniques can be used in an automated way, these include:
 - Building your own models using libraries (e.g. the numerical recipes in C or various python libraries)
 - Matlab/Mathematic/Maple
 - The graphical interface of various commercial "system dynamics" packages like Stella or Vensim or the free system dynamics module of Netlogo
- There will be tutorials on Matlab/Mathematica, but in this lecture we want to focus on system dynamics probably the most accessible tool which is
 - widely used in management/business/management studies for analysing industrial processes
 - to some extent in natural resource modelling (Club or Rome and limits to growth study)


History

- 1950s and 60s: Jay Forrester analysed industrial processes like business cycles at GE
- First simulation packages SIMPLE and later DYNAMO
- In the 70s Forrester was invited to help with the system dynamics approach to develop models of global resource constraints -> WORLD1,2
- Nowadays software with GUIs to allow easy access to model development around, the most popular are probably STELLA and VENSIM, see
 - http://en.wikipedia.org/wiki/List_of_system_dynamics_software
 for a larger list of available packages

Motivation

- Why bother?
 - Easy access to model building
 - -> Use it to build your own models if you are not too familiar with differential equations
 - "Graphical language" of feedback loops etc.
 - -> fairly useful to develop conceptional models
 - Fairly widely used in some disciplines
 - -> important to understand the language and be able to translate it
- We'll use it to play around with some models to illustrate some possible dynamics of (systems) of ODEs

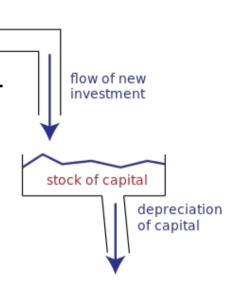
An Example: Dynamics of New Product Introductions

The System Dynamics Tool of Netlogo

- I have built the following models in Netlogo (because it is publically available)
 - You can download it from:
 https://ccl.northwestern.edu/netlogo/download.shtml
 - and reimpliment the models and explore them
 - A tutorial on how to use the system dynamics tool of netlogo is available here:
 - http://ccl.northwestern.edu/netlogo/docs/systemdynamics.html
 - Models used in this lecture can be downloaded from http://users.ecs.soton.ac.uk/mb8/sim/sim.html
 - You can also use Netlogo to construct ABMs

Basic Elements

Basic elements of SD are stocks

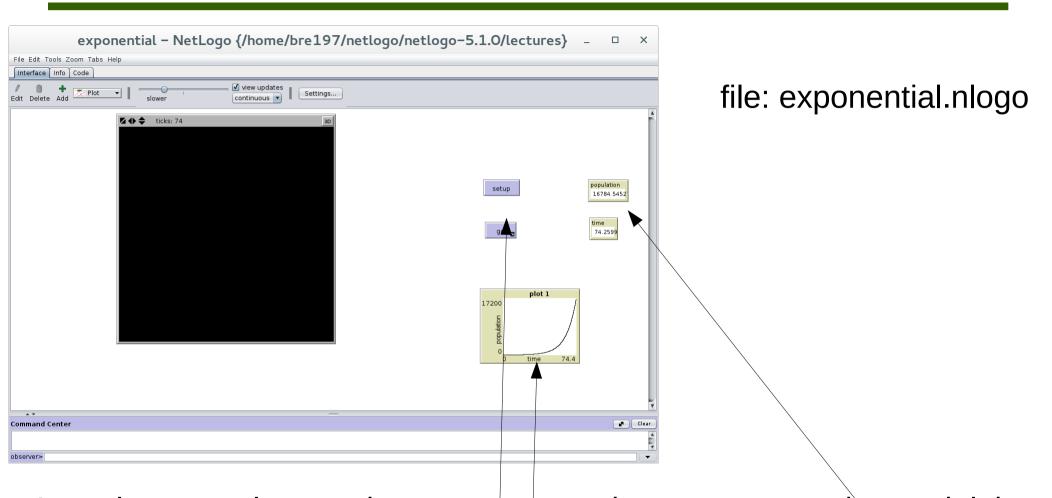

 Collection of stuff, an aggregate. For example: water in a lake, population of sheep, a capital stock ...

And flows:

 Brings things out of or into a stock. (Modelled as a pipe with a faucet which controls how much runs through it). E.g.: water outflow, sheep births/deaths, investments, ...

Additional elements are

- Variables = values used in diagrams, can be equations
- Links = makes values of variables available to other elements of the diagram


Exponential Growth as an Example of Positive Feedback

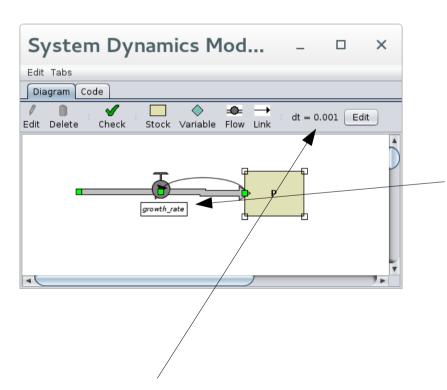
dP/dt = rP

- One stock: population P
- There is only an inflow into P, hence we need one "flow pipe"
- Need links, because flow depends on
 - Population
 - Growth rate constant
- In the respective windows:
 - Rate-of-change: growth-rate_r * population P
 - Growth-rate-r: .1 (change it to expore what happens)

Exponential Growth (2)

- In netlogo we also need to create an environment to run the model, i.e.
 - Various buttons at least a "setup"-button (to initialize) and a "go"button (to start the model)
 - Some monitors/plots to see what is going on, in this case two monitors to plot population/time and one plot to plot the evolution

What about Logistic Growth?

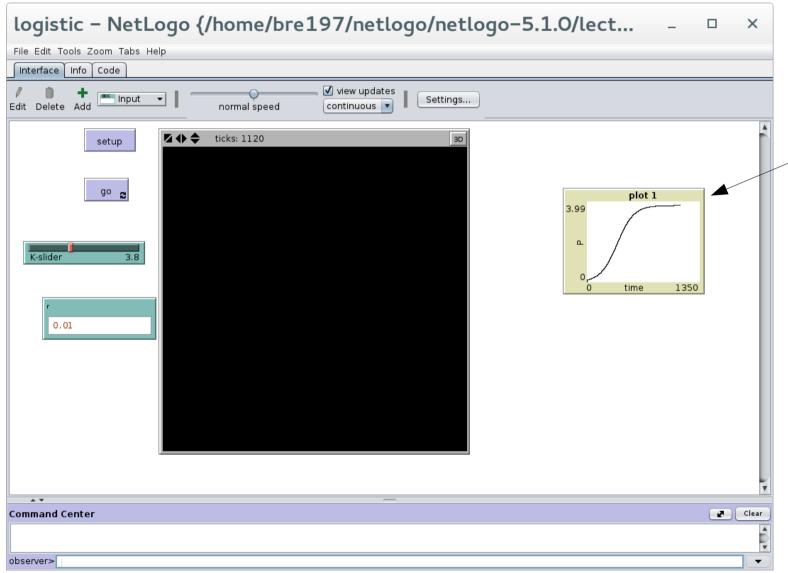

$$dP/dt = rP(1-P/K)$$

How does the stocks and flow diagram look like?

What about Logistic Growth?

$$dP/dt = rP(1-P/K)$$

How does the stocks and flow diagram look like?


Also note the small choice of dt

-> essentially same as before

... but the content of the growth_rate pipe has changed and now reads

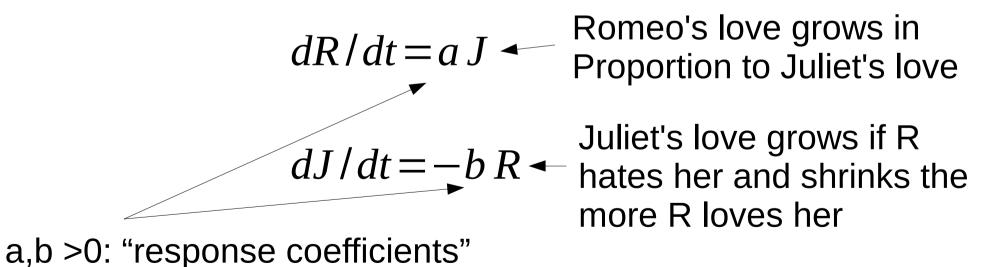
Flow		
Name	growth_rate	
Expression		
r*F	* (1 - P / K-slider)	
	OK Cancel	

And a Somewhat Fancier Interface

Logistic growth

file: logistic.nlogo – download and play with K and r if you like

The Dynamics of Love Affairs

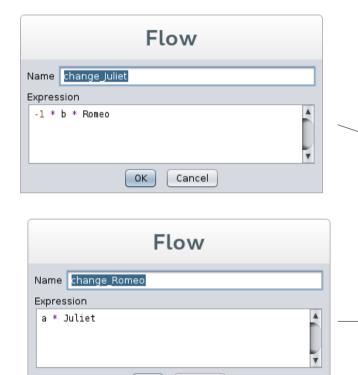

- Consider Romeo and Juliet and let
 - R(t) be Romeo's love/hate for Juliet (convention being that R<0 is hate, R>0 is love)
 - J(t) be Juliet's love/hate for Romeo
- Consider the following scenario
 - Romeo is in love with Juliet
 - Juliet is "fickle": the more Romeo loves her, the more she wants to run away and hide
 - When Romeo backs off, Juliet starts to find him attractive again
 - Romeo: mirrors Juliets love, loves her when she loves him and grows cold when she hates him
 - How is this going to end? Can we model it?

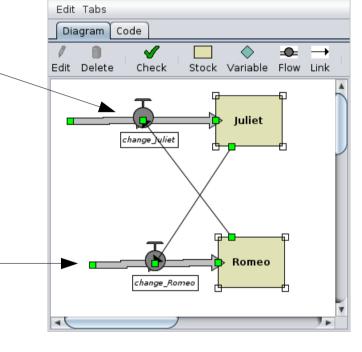
The Dynamics of Love Affairs (2)

- More on this in
 - Strogatz, S.H. (1988), Love affairs and differential equations, Math. Magazine 61, 35.
- Of course we will use differential equations to solve this problem and then simulate the dynamcis using system dynamics ...
- Equations?

The Dynamics of Love Affairs (2)

- Of course we will use differential equations to solve this problem and then simulate the dynamcis using system dynamics ...
- Equations:

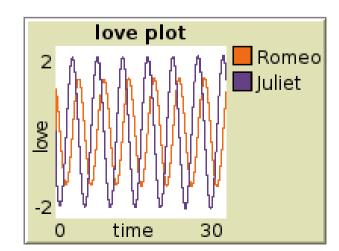



How is this going to end ...

System Dynamics of Love

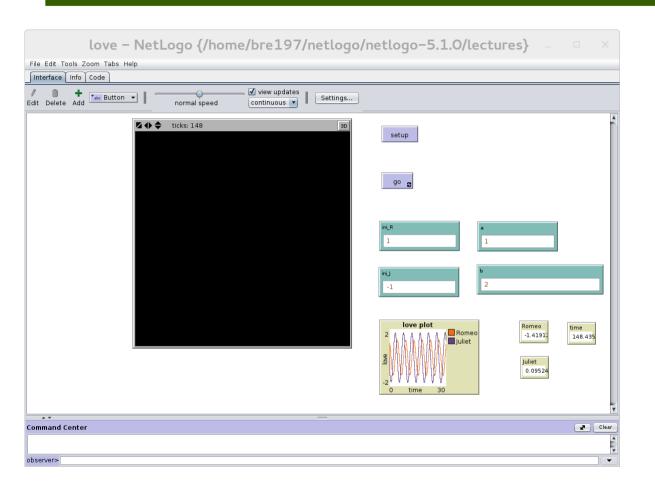
$$dJ/dt = -bR$$

dR/dt = aJ



System Dy...

Result for


$$R_0 = 1, J_0 = -1$$

 $a = 1, b = 2$

OK

Cancel

The System Dynamics of Love (2)

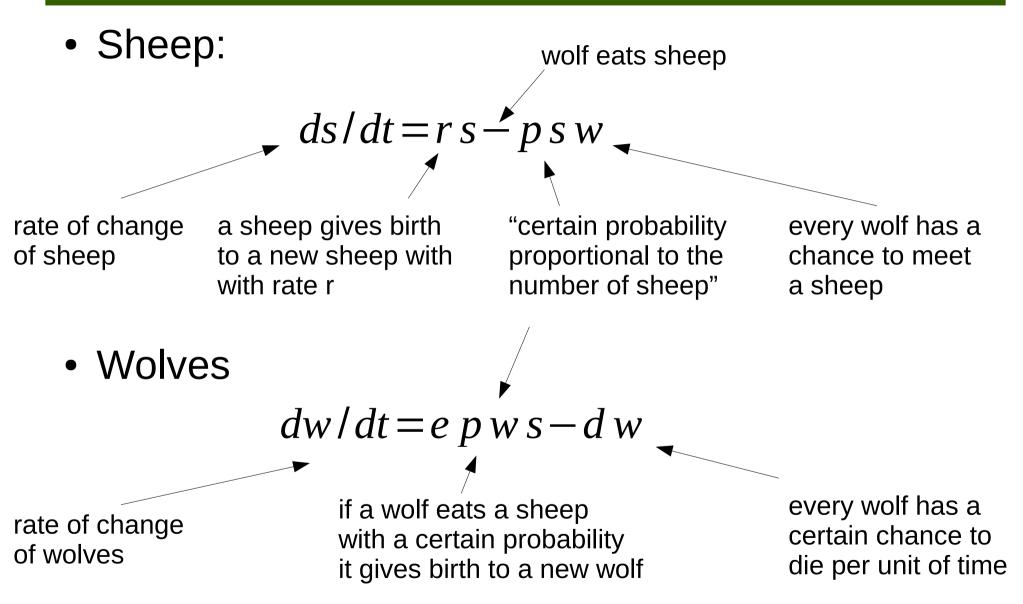
file: love.nlogo

- What happens if one changes a and b or the initial conditions for J and R?
- How would you have to modify the model if R's (and J's) love would also depend on their own state?
- Play with it and explore ...

Lessons from the Dynamics of Love Affairs

- We investigated a 2d system and found a new type of behaviour: oscillations.
 - When you explore the model you will realize that the structure of these oscillations depends on:
 - The parameters a and b of the model -> frequency
 - The initial conditions -> amplitudes
 - This is typical of linear oscillations, we will briefly revisit this later
- In 2d systems we can find other types of oscillations whose shape only depends on the structure of the equations -> Limit cycles

Wolves and Sheep


- Consider the following system composed of wolves (w) and sheep (s)
- At each time the following processes happen:
 - With a certain probability a sheep gives birth to a new sheep
 - With a certain probability a wolf dies
 - With a certain probability proportional to the number of sheep each wolf "meets" a sheep
 - With probability 1-p this encounter is friendly and both go their ways
 - With probability p the wolf eats the sheep. Upon eating the sheep with probability e the wolf will use the extra calories to give birth to a new wolf

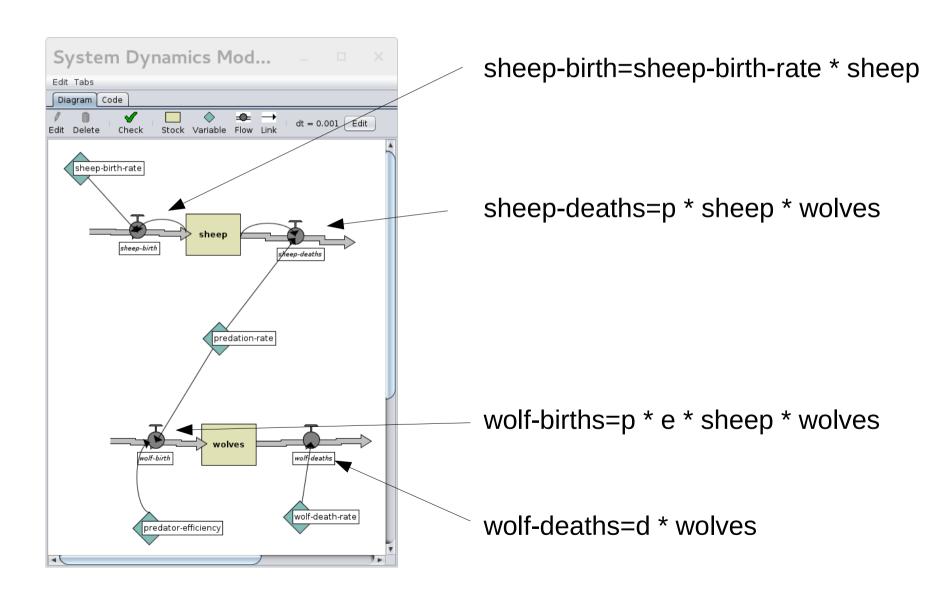
Wolves and Sheep

• Q's:

- Can wolves and sheep co-exist?
- Can we understand the dynamics of the population of sheep and wolves over time?
- To explore this it is convenient to write down a system of differential equations that describes the process from the previous slide
 - Let's not worry about averages and just assume populations are large and well-mixed
- Equations?
 - As with Romeo an Juliet we have two variables, s, and w

Equations of Wolves and Sheep

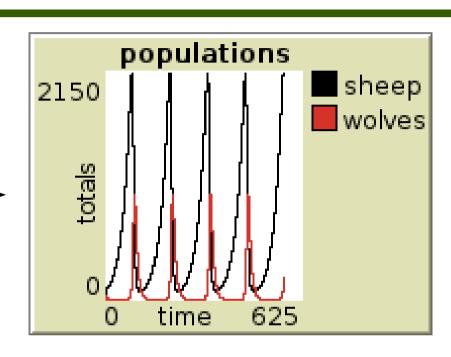
 Parameters: r, p, e, d ... what is their interpretation? Do we need all of them?


Equations of Wolves and Sheep (2)

 What is the main difference between the equations of wolves and sheep and those of love between Romeo and Juliet?

Equations of Wolves and Sheep (2)

- What is the main difference between the equations of wolves and sheep and those of love between Romeo and Juliet?
 - Equations of R + J are linear can treat them analytically (later)
 - Equations of W + S are non-linear analytical treatment much harder (and near impossible if we have many equations)
- Let's solve them numerically with system dynamics to see what is going on ...
 - any ideas?

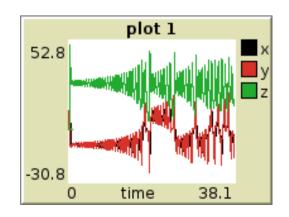

A System Dynamics Model of Wolves and Sheep

Results

file: sheep.nlogo

Example dynamics — for r=0.04, p=0.0003, e=0.8, d=0.15, and initial conditions s=100, w=30

- Also in this example we find oscillations
- However, frequency and shape are independent of initial conditions -> this is a self-sustaining oscillation also called a "limit cycle"


The Lorenz System

 To see what other kinds of dynamics are possible if we increase the dimension and consider 3d systems, have a look at the Lorenz system originally proposed as equations describing the dynamics of atmospheric convection

$$dx/dt = \sigma(y-x)$$

$$dy/dt = x(\rho-z)-y$$

$$dz/dt = xy-\beta z$$

lorenz.nlogo

Summary

- System dynamics gives an easy-to-use graphical interface to implement systems of ODEs in intuitive language
- Also provides a neat link to graphical output, good tool for model development and problem scoping
- Commercial packages like Stella or Vensim work in a very similar way, but provide some enhanced functionality, e.g. delays, better GUI, etc.
- Word of warning:
 - Integrators in most of these packages are fairly unsophisticated (netlogo only uses Euler!), so artifacts due to numerical instabilities are an issue!