Second problem sheet for Simulation Modelling for Computer Science (COMP1216)

January 26, 2022

1 Taylor expansions - 1

Consider the functions $f(x)=\exp (x)$ and $f(x)=\sin (x)$ and develop into a Taylor series around $x=0$. Find an approximation for the function $f(x)=\frac{1}{5+x}$ for $x \gg 1$ up to 3rd order.

2 Taylor expansions - 2

Develop the functions $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=\exp (x+y)$ into a Taylor series around $(x, y)=(0,0)$ up to 2 nd order in x and y. Verify the result for the (multivariate) expansion of g in x and y by comparison to the univariate expansion of $\exp (z)$ in z with $z=x+y$.

3 Numerical differentiation - 1

Estimate the derivative $d f / d x$ of the function $f(x)=\exp (x)$ for $x=0$ using the forward, backward, and central difference schemes discussed in the lecture, using a step width of $h=0.1$ and compare to the true value of the derivative.

4 Numerical differentiation - 2*

In the lecture, finite difference schemes accurate to first and second order in the step size were discussed. Can you find a finite difference scheme which allows to estimate derivatives accurate up to third order in the step size?

5 Numerical integration

Calculate $\int_{0}^{1} f(x) d x$ for the function $f(x)=x$ using the square method and calculate the dependence of numerical errors on the step length h.

- How do numerical errors scale with h ?
- How would this change if you were to approximate the function by trapezoids instead of by rectangles?
- For which class of functions is the square integration scheme exact?
- For which class of functions is integration by trapezoid approximation exact?

