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The t-test

●This lecture introduces the t-test -- our first real statistical 
test -- and the related t-distribution.

●The t-test is used for such things as:
odetermining the likelihood that a sample comes from a 

population with a specified mean
odeciding whether two samples come from the same 

population or not, i.e., do their means appear to be 
significantly different?

●The t-test is not mysterious; its logic follows on from the 
sampling experiments we discussed last time.



Hypothesis testing

●Before getting into the details of the t-test, we need to place 
it in the wider context of statistical hypothesis testing.

●You may already know the terms "null hypothesis" and 
"alternative hypothesis".

●These terms fit into the pattern of statistical inference we 
discussed right at the start of the module: suppose that the 
world works in a certain way, calculate the chances of seeing 
our data in a world that really did work that way, use the 
result of the calculation to reflect on how much we like our 
original supposition.



Hypothesis testing

●Consider a forensic example: a person 
has died and we're not sure whether it 
was natural causes (Hnull) or poisoning 
(Halternative).

●If we suppose it was natural causes, we 
can ask what the probability is of a 
person of that age, fitness, medical 
history, etc., having their heart stop 
without warning.

●If that probability is very small, we will 
naturally look more favourably on the 
poisoning hypothesis.



Hypothesis testing: investment 
example

●Another example: you inherit some 
money, and you ask a friend who 
knows about the stock market to 
invest it for you.

●One year later, your friend tells you 
all the money is gone.



Hypothesis testing: investment 
example

●How angry are you?  Do you trust your friend?

●The null hypothesis: your friend simply had an unlucky run of 
investments.  It could have happened to anyone.

●The alternative hypothesis: your friend has cheated you.



Hypothesis testing: investment 
example
●What we really want to know is whether your friend has 

cheated you, of course.

●We might express that as "what's the probability that he 
cheated me, given that he's claiming to have lost all the 
money?"  (The Bayesian version of the question.)

●We could also say "he either cheated me or he didn't: which 
one should I believe given that he's claiming to have lost all 
the money?" (The frequentist version of the question.)

●But there may be no direct way to know the answer to those 
questions.



Hypothesis testing: investment 
example
●We could turn the question around and say "He is either 

unlucky (Hnull) or a cheat (Halt).  Under each of those 
hypotheses, what are the chances of seeing a loss of all the 
money?"

●Consider Halt.  Assume he's cheating you; what are the 
chances that he'd report a total loss of the money after one 
year?  This is quite hard to answer: it depends on just how 
sophisticated a cheat he is.

●Consider Hnull.  What are the chances that an honest 
investor would lose the money in the market as it's been 
over the last year?  A more tractable question...



Hypothesis testing: investment 
example
●You could ask some independent experts just how tough the 

market has been that year.

●You could simulate a range of investment strategies using 
historical market data.

●You could look empirically at how many people out of the 
wider population of investors lost all their money over the 
last year.



Hypothesis testing: investment 
example
●Using one or all of these methods, let's say you find that it's 

been a very tough year, and in fact there's a 50% chance of 
an honest investor having lost all their money.

●It's therefore hard to rule out the null hypothesis.  You're 
forced to conclude something like "He may well be honest."

●But let's say you find that it's been a great year, and that only 
1 honest investor in 1000 lost money.

●If you want to hang onto the null hypothesis (honesty) under 
these circumstances, you have to accept that a very unlikely 
thing has happened.



Hypothesis testing: investment 
example
●So because of the small probability of the observed data 

(total loss) given the hypothesis (honesty) you are nudged 
towards the conclusion that the alternative hypothesis 
(cheating) is likely to be true.

●Let's say you're in this situation all the time: you run a hedge 
fund and you have many traders working for you, any of 
whom might decide to cheat you one year.

●You could choose to adopt some threshold for p(total loss 
given assumption of honesty) that means you'll reject the 
honesty assumption.



Hypothesis testing: investment 
example
●Let's say you decide (somewhat arbitrarily) to go with 1% as 

your threshold.  

●If someone loses money, and the probability of an honest 
trader losing their funds is 1% or lower, you conclude that 
the person is not honest.

●This is not a bad decision rule, but note that it can't be 
perfect.  Sometimes an honest person will get extremely 
unlucky and then be unfairly accused by you, and 
sometimes a cheat will steal from you but p(loss | honesty) 
will be above the 1% threshold.



Statistical tests

●In the terms of our investment example, a statistical test is 
just a procedure for calculating p(loss | honesty) or its 
equivalent. 

●The t-test is one such test.

●In general we want to know p (observed data | Hnull).  This is 
all a "p-value" is.

●Because of a throwaway remark by Ronald Fisher, the 
threshold for rejecting Hnull has been set at p ≤ 5% in many 
fields.  There is nothing magical about this value, however.



Logic of the one-sample t-test

●We found in previous lectures that if we take repeated 
samples from a population, even of quite small size, the 
distribution of the means of those samples quickly 
approximates the bell curve of the normal distribution.

●If we're dealing with big sample sizes, the distribution of the 
sample means is as close as makes no difference to being 
the normal distribution.

●But the match is not perfect for small samples though.  This 
is where the t-distribution comes in.



Fictional data exercise

●We can demonstrate the logic of the t-test by working 
through an exercise in sampling from a fictional distribution.

●Let's say we have some kind of IQ measure where the true 
distribution is normal, with a mean of 100 and a standard 
deviation of 10.





Particular sample: size 2, mean = 
97.6



Particular sample: size 6, mean = 
98.9



What is a sample?

●What are we doing when we take a sample of size N and 
calculate the mean?

●We know that there's a "meta-distribution" that describes the 
mean and standard deviations of the sample means.  (Think 
of the green histograms.)

●The mean of this meta-distribution is the original population 
mean, and the standard deviation is the population standard 
deviation divided by the square root of the sample size (i.e., 
the standard error).

●So when we calculate the mean of one sample, we are 
drawing a random variate from this meta-distribution.









Distribution of the sample means

●This distribution of the sample means "tightens up" as the 
sample size gets bigger.  We've seen this before.

●We can characterize this meta-distribution in terms of its 
own mean and standard deviation, although of course we 
need to estimate those from our sample in real situations.

●Calculating the mean of a sample equates to drawing one 
variate from the meta-distribution.

●Therefore we can ask how often we're likely to see extreme 
values of the sample mean, i.e., values that lie in the tails of 
the meta-distribution.



How to calculate the probability of 
extreme sample means?

●If our sample size was big enough, we could use the normal 
distribution to make this calculation.

●We would ask how many standard deviations away from the 
overall mean our particular sample mean was: this is called 
a Z-score if the distribution is normal.

●In our case we're going to calculate basically the same thing 
and call it a t-score because we can't assume normality.



Calculating a t-score

●We want to know how many standard deviations away from 
the overall mean of the sampling distribution our one 
particular sample is.

●Let's flesh out the example: we take our IQ testing scheme 
to a new country, and we want to know whether the people 
here are any smarter or dumber than they were at home.

●This gives us our null and alternative hypotheses.

●The null hypothesis is that there's no difference in the IQ 
scores between the two countries: the mean is 100 in both 
cases. 



Calculating a t-score

●Our alternative hypothesis is simply the converse, that there 
is some difference in IQ scores between the countries.

●Note that we usually don't have a commitment about 
whether the difference, if there is one, will be positive or 
negative.  

●Hnull: that μ = 100.  You also see "H0:μ0 = 100".

●We collect a sample of 6 people, and give them IQ tests.

●They score: 101, 112, 100, 107, 94, 104.



Calculating a t-score

●The mean of the six scores is 103.  This is higher than the 
null hypothesis suggests, but should we get excited?

●The standard deviation of the six scores is 5.66.

●But we don't want the plain SD, we want the sample 
standard deviation (division by N-1) because we're trying to 
estimate the population standard deviation.

●Remember we have to work with what we have.  In this 
case, that's the tiny sample of 6 scores. 



Calculating a t-score

●So the sample standard deviation is 6.20.

●The standard error is going to be 6.20 / sqrt(6), which is 
2.53.

●We now have our best guess at the meta-distribution of the 
sample-of-size-six means: in the absence of any other 
information, we'd say that its mean is 103 and its standard 
deviation is 2.53.

●However, our null hypothesis is that our six numbers come 
from a distribution with a mean of 100, i.e., the same as 
back home.



●We might have helped ourselves to the assumption that the 
standard deviation of IQ scores in this new country is 10, the 
same as at home.  But we're not going to do that: who is to 
say that IQ doesn't have a different spread here?

●So our null hypothesis says: let's imagine that our sample 
mean comes from a distribution of sample means with mean 
of 100 and standard deviation of 2.53. 

●This gives us our t-statistic:

Calculating a t-score



Calculating a t-score

●So a t-score is a lot like a z-score: it's essentially measuring 
the number of standard deviations from an expected mean 
that some measurement is.

●In our case, the t-score is (103 - 100) / 2.53 = 1.18.

●That's not a great distance from the mean: recall the 1.96 
threshold for z-scores that equates to the most extreme 5% 
of the distribution.

●Similarly, it turns out that a t-score of ±1.18, or a more 
extreme value, happens 28.9% of the time (this is our p-
value).  So we're not motivated to reject Hnull.



Linking a t-score to a p-value

●In the old days you would look up a table of critical p-values 
for the t-distribution with an appropriate number of degrees 
of freedom.

●Degrees of freedom come up a lot in statistics.  It's just a 
measure of how many free parameters something has.  For 
one-sample t-tests, the degrees of freedom are N-1, where 
N is the sample size.  This is because to get a particular 
value of t, the last score in the sample is not free to vary.



Linking a t-score to a p-value

●We need to specify whether we're interested in a one-tailed 
or a two-tailed test.  

●A two-tailed test is the default option.  This means that we 
have no strong commitment on whether the sample mean is 
likely to be higher or lower than the mean specified in the 
null hypothesis.  Thus we include both extreme tails of the 
distribution when figuring out our p-value.

●If for some reason we only cared about evidence for an 
alternative hypothesis that the mean score was (e.g.) higher, 
we could use a one-tailed test and look at only one side of 
the t-distribution in figuring out p. 



Linking a t-score to a p-value

●In Python, use from scipy import stats and then 
stats.ttest_1samp(IQscores, 100).

●In R, t.test(IQscores, mu=100).

●Or we could do it "empirically" through simulating the 
sampling process...

http://www.scipy.org/doc/api_docs/SciPy.stats.stats.html#ttest_1samp
http://www.statmethods.net/stats/ttest.html








The t-distribution



The t-distribution summarized

●With modest sample sizes, we need to make a correction for 
the fact that our distribution of sample means is not actually 
normal.

●The t-distribution achieves this.  It's really a family of 
distributions, one for each sample size.

●It has a lower peak and fatter tails than the normal 
distribution (especially so for really small sample sizes, such 
as 2) to capture the fact that small samples will produce 
extremely inaccurate estimates more often.



Some history and a gratuitous link 
to beer
●The t-test is also known as "Student's t-test".  Why?



Some history and a gratuitous link 
to beer

●It was devised by William Sealy Gosset, a chemist working 
for the Guinness brewery in Dublin.

●Gosset devised the t-test as a way of cheaply monitoring the 
quality of batches of beer by taking small samples from 
those batches. 

●Gosset published the test in 1908, but was forced to use a 
pseudonym ("Student") by Guiness, who regarded their use 
of statistics as a trade secret.



Other kinds of t-tests

●The one-sample t-test is what we've covered so far.

●The one-sample test can be used to deal with simple 
experimental designs in which we measure something 
before and after an intervention.  For example, does drug X 
lower blood pressure, or does diet Y lead to weight loss?

●For each case in the study, we subtract the "before" score 
from the "after" score to get a difference.

●We can then examine the null hypothesis that the mean of 
the differences is zero, i.e., that the intervention makes no 
difference. 



The two-sample t-test

●The two-sample t-test is an extension of the same idea.

●It is used to test the null hypothesis that two different 
samples in an experiment are drawn from the same 
population, i.e., that they have the same mean.

●For example, does drug A work any better or worse than 
drug B in reducing blood pressure?  Do men and women 
systematically differ on their IQ scores?



The two-sample t-test

●There are some mathematical complications based on 
whether or not the sample sizes are the same and whether 
or not we can assume equal variances across the two 
samples.

●However: in practice you're unlikely to do many two-sample 
t-tests.  You are more likely to use an analysis of variance 
(ANOVA) or a regression.



Type-I and type-II errors

Statistical test 
finds something, 

Hnull rejected

Statistical test is 
negative, can't reject Hnull

There's an 
effect in 
the real 
world

A hit; you've 
found something

Missed a
real effect, 
type II error

There is in 
fact no 
effect

False alarm,
type I error

Correct to remain 
sceptical of Halt



Type-I and type-II errors

●The key idea in statistics is to calculate p ( data | Hnull ) and 
then reject Hnull if this p-value is very low. 

●But what counts as "very low"?  What's the right threshold is 
for rejecting Hnull?

●There's no right answer.  Thresholds of 0.05 and 0.01 have 
been adopted in some quarters.

●It really depends on what the consequences of different kinds 
of errors might be.



Type-I and type-II errors

●By setting your p-value threshold for rejecting Hnull, also 
known as an "alpha level", you can directly control your type-I 
error rate.

●How much does it bother you to believe that something is 
true when it isn't?  (This is a type-I error.)

●If you're in the business of building aircraft navigation 
systems, you probably want to make sure you don't fall into 
this kind of error, and so you'll set you alpha level very low, 
perhaps 0.0001. 



Type-I and type-II errors

●The difficulty is that by adopting a very conservative type-I 
error rate, you necessarily increase your type-II error rate.

●So you may now miss some things are actually true, e.g., you 
dismiss the idea of adopting a new part that could have 
slightly improved the performance of your system.

●If you are in the venture capital business, perhaps you're OK 
with making lots of type-I errors (backing companies that 
won't do well) but want to make sure you don't miss out on 
the chance to buy into the next Google.  So you'd use a 
generous alpha level (p < 0.1) to minimize your type-II error 
rate.



Additional material

●A great video lecture on thinking critically about p-values 
(Geoff Cumming, LaTrobe University).

●An argument that simulation allows us to determine p-values 
empirically and that we shouldn't be obsessed with choosing 
the right statistical test (Allen Downey).

●The Python code for the graphs and simulations in this 
lecture.

http://www.youtube.com/watch?v=ez4DgdurRPg#!
http://allendowney.blogspot.com/2011/05/there-is-only-one-test.html
http://users.ecs.soton.ac.uk/jn2/teaching/tTest.py
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