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Assumption of normal error term 

• In all of the techniques we've covered so far, 

there has been a background assumption 

that the noise in the data generating process 

was normally distributed. 

• Taking ANOVA as an example, we assume 

that each group has a characteristic mean 

value and that a normal random variate is 

added to that mean to get the actual data 

point. 



Normality assumption in ANOVA 



Normality assumption: Regression 



A reasonable assumption? 

• Often the normal-error-term assumption is a 

safe one: the truth is close enough that our 

inferential logic works well. 

• But sometimes it is obvious that the data 

generating process could not have been 

some systematic effect plus a normal error 

term. 



Distribution of X across 2 groups 

• Values in group A and B are clearly being 

generated by two very different -- and non-

normal -- processes. 



Distribution of X across 2 groups 

• If we were trying to test for a difference 

between the means of samples A and B, we 

can't really trust the answer we'd get from a 

2-sample t-test. 

• We need some statistical tests that don't 

make the normally-distributed-errors 

assumption. 



Non-parametric statistics 

• The term "non-parametric" refers to 

statistical tools that do not assume normality 

in the error term of the generation process. 

• There are non-parametric equivalents for 

most of the techniques we've discussed. 

• Why not use them all the time?  The 

mathematics are trickier, and we lose some 

power by dropping the normality assumption. 



The chi-squared test 

• This is a versatile non-parametric test. 

• Goodness of Fit: whether a sample fits an 

expected distribution (of arbitrary shape). 

• Test for Independence: are paired 

observations on two categorical variables 

independent. 

• Variable X: Gender [Male,Female] 

• Variable Y: Voting Preference [Lab,Con,Lib] 

• Does gender affect voting preference? 



Chi-squared test: Goodness of Fit 

• Consider throwing a die many times to see 

whether or not it's fair. 

• We get a frequency distribution. 

• We expect this to be a uniform distribution: 

an equal number of 1s, 2s, 3s, etc. 



Chi-squared test: Goodness of Fit 

• Most of the time we won't get a perfectly 

uniform distribution though. 

• How far away from uniform would the results 

have to be before we would suspect the die 

was not fair? 

• How might we measure deviation from the 

expected values? 



Sample of 300 throws 

1 48 

2 52 

3 56 

44 35 

5 61 

6 48 



Difference from what was 

expected? 

Obs. Exp.  O - E (O-E)^2 

1 48 50 -2 4 

2 52 50 2 4 

3 56 50 6 36 

4 35 50 -15 225 

5 61 50 11 121 

6 48 50 -2 4 



Difference from what was 

expected? 

• We're "expecting" to see each number 50 

times. 

• We can tally up how far from the expected 

value each observation is. 

• We then try squaring those values to deal 

with negative numbers. 

• We're on our way to some measure of 

deviation from the expected values. 



Scaling our measure 

• The particular size of these numbers 

depends on our sample size: if we'd thrown 

the dice 30 times or 3000 times we'd have 

different numbers. 

• We scale the "observed minus expected, 

squared" term somewhat by dividing through 

by the expected value. 



Scaling our measure 

Obs. (O-E)^2 (O-E)^2 / E 

1 48 4 0.08 

2 52 4 0.08 

3 56 36 0.72 

4 35 225 4.5 

5 61 121 2.42 

6 48 4 0.08 



The chi-squared test 

• The final step is to sum the (O-E)^2 / E 

terms. 

• The total value is the chi-squared statistic.  

In our example this number is 7.88. 

• But what distribution should we expect this 

to have?  How do we translate this number 

to a p-value?  

• Chi-squared distribution… (hint is in the 

name) 



The chi-squared distribution 



Repeated sampling experiment 

• Let's generate 500 samples of 300 die 

throws, and calculate the chi-squared 

statistic each time. 

• That should give us an idea of how often 

extreme deviations from uniformity (and thus 

large values on the chi-squared statistic) 

come up by chance. 



Repeated sampling experiment 



Repeated sampling experiment 

• In practice, a p-value of 0.05 (i.e., the top-

most 5% of the distribution) equates to a chi-

squared statistic of around 10. 

• The exact value is 11.07. 

• For p = 0.01, the critical chi-squared value is 

15.09. 

• Our observed value of 7.88 is not unusual.  



How is the chi-squared statistic 

distributed? 

• Imagine that we were doing the same kind of 

test not with die-rolling but with coin tossing. 

• If we toss a fair coin 100 times, clearly the 

expected values for heads and tails are 50 

each. 

• In reality we'll get combinations like 48/52, 

53/47, 45/55, etc. 

• What's the probability distribution of getting 

different numbers of heads? 



The binomial distribution 

• The binomial distribution describes the 

number of heads we expect to get from 

throwing a coin multiple times. 

• The binomial describes the outcome of 

multiple Bernoulli trials,  

• Bernoulli trial is any situation where there's a 

probability p of one outcome and 1-p for the 

other. 

• What does it look like? 



Binomial ≈ normal distribution 

• n=6 

• k=#heads 

• As n gets 

larger, the 

binomial 

approximates 

the normal 

distribution 

very closely. 



From binomial to chi-squared 

• So if the number of heads we get in multiple 

coin tosses is binomially distributed... 

• And the binomial is approximately normal... 

• As the number of trials (n) increases… 

• Then the chi-squared procedure of squaring 

the differences from the expected value, 

then dividing by the expected value, will give 

us what? 



Difference from what was 

expected? 

Obs. Exp.  O - E (O-E)^2 

H 48 50 -2 4 

T 52 50 2 4 

Normally Distributed 



From binomial to chi-squared 

• Each term in our chi-squared procedure is 

taking an approximately normally distributed 

value and squaring it.  

• The chi-squared distribution is in fact the 

sum of K squared-standard-normal deviates 

(K is the degrees of freedom of the test). 

• Ironic that we've returned to the normal 

distribution in an effort to avoid assuming it 

was present. 



Degrees of freedom? 

• If we toss a coin 100 times, it's easy to see 

how many degrees of freedom there are: if 

there are 53 heads, there must be 47 tails.  

Thus there's 1 degree of freedom for the chi-

squared test here. 

• Similarly with the die: once we know how 

many 1s, 2s, 3s, 4s, and 5s, the number of 

6s is determined.  So there are 5 degrees of 

freedom. 



The chi-squared distribution 



Another use of chi-squared tests 

• We've seen how to use the test to look at 

whether a one-dimensional distribution fits 

its expected values reasonably closely. 

• What about two-dimensional distributions? 

• When we have pairs of observations, like our 

gender and voting data set. 



Recap: when to use which test? 

• If we have a continuous outcome measure, 

and a binary predictor variable, we use a 

two-sample t-test. 

• If we have a continuous outcome measure, 

and one or more categorical predictor 

variables, we use ANOVA. 

• If we have a continuous outcome measure, 

and a single continuous predictor variable, 

we use simple linear regression. 



Recap: when to use which test? 

• If we have a continuous outcome measure 

and multiple continuous and categorical 

predictor variables, we use multiple 

regression. 

• If we have a binary categorical outcome 

measure and multiple predictor variables, we 

use logistic regression. 



When to use a chi-squared test? 

• If we have a categorical outcome measure, 

and one (or more) categorical predictor 

variables, it turns out we can use a chi-

squared test. 

• We're asking whether the observed 

incidence of outcomes for each level of the 

predictor variable could have happened by 

chance. 



Voting example: Independence Test 

• Suppose we're asking whether sex has any 

relevance to predicting the way people will 

vote. 

• We ask 50 randomly selected men and 50 

randomly selected women which party they 

voted for at the last election. 

• Note that both variables are categorical. 



Voting example 

• Number of men and women voting for each 

party shown, and the marginal totals. 

Labour Tory Lib dem 

Men 16 23 11 50 

Women 28 17 5 50 

44 40 16 



Voting example: expected values 

• Using the marginal totals, we can easily 

calculate the expected number of counts in 

each cell if there were no relationship 

between sex and voting preference. 

Labour Tory Lib dem 

Men 22 20 8 50 

Women 22 20 8 50 

44 40 16 



Voting example: chi-squared 

• We now have six places to calculate 

"observed minus expected". 

• We can use the same logic of the chi-

squared test as outlined earlier. 

• Sum of: ( O - E ) ^ 2 / E. 



Voting example: O-E 

Labour Tory Lib dem 

Men 16-22 23-20 11-8 

Women 28-22 17-20 5-8 



Voting example: O-E 

Labour Tory Lib dem 

Men -6 3 3 

Women 6 -3 -3 



Voting example: (O-E)^2 

Labour Tory Lib dem 

Men 36 9 9 

Women 36 9 9 



Voting example: (O-E)^2/E 

Labour Tory Lib dem 

Men 36/22 9/20 9/8 

Women 36/22 9/20 9/8 



Voting example: (O-E)^2/E 

Labour Tory Lib dem 

Men 1.64 0.45 1.125 

Women 1.64 0.45 1.125 

𝑐ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑠𝑡𝑎𝑡 = 𝑂 − 𝐸 2 = 6.43 



How many degrees of freedom? 

• How many degrees of freedom?   

• You might think 5, because we have 6 

observed counts. 

• But there are not 5 numbers here that are 

free to vary if we are to hit the marginal 

totals. 

• DF = num columns minus one, times num 

rows minus one.   

• DF=(c-1)(r-1) 

• In this case: 2 x 1 = 2. 



Voting example 

• The calculation for our voting example works 

out at a chi-squared value of 6.42. 

• The critical value for a chi-squared 

distribution with 2 DF, p = 0.05, is 5.99. 

• Our test statistic is larger than the critical 

value, so we reject the null hypothesis of no 

link between sex and voting (assuming we're 

happy with the p = 0.05 threshold).  



How to do this in R 

• In R the easiest way to run a chi-squared 

test is to first produce a table. 

• For the 
example:chisq.test(table(Sex,Votin

g)) 

• The output includes the test statistic, the 

degrees of freedom, and the associated p-

value. 



Further non-parametric tests 

• No time to cover them all in this lecture, but 

there are many tests that do not assume a 

normally distributed error term in the data 

generation process. 

• The most useful is the rank-sum test (also 

known as the Wilcoxon rank-sum test and 

the Mann-Whitney U test). 



Further non-parametric tests 

• We would use the rank-sum test to 

investigate whether these two samples come 

from distributions with the same mean. 



Further non-parametric tests 

• It's based on the logic that if distribution A 

has a higher mean than distribution B, then 

values from sample A should be in the top 

half of the joint sample more often than 

those from sample B.  

• Used in the same situations as a two-sample 

t-test. 

• wilcox.test(AValues,BValues) 

 



Additional material 

• There is no R script for this lecture; you just 
need the commands chisq.test, table, 

and wilcox.   

• Here is the Python program for generating 

the histograms and sampling experiment. 

http://users.ecs.soton.ac.uk/jn2/teaching/chisquared.py

