FEEG6017 lecture:
The chi-squared test and
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Assumption of normal error term

® In all of the techniques we've covered so far,
there has been a background assumption
that the noise In the data generating process
was normally distributed.

® Taking ANOVA as an example, we assume
that each group has a characteristic mean
value and that a normal random variate Is
added to that mean to get the actual data
point.



Normality assumption in ANOVA
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A reasonable assumption?

® Often the normal-error-term assumption is a
safe one: the truth is close enough that our
Inferential logic works well.

® But sometimes it is obvious that the data
generating process could not have been
some systematic effect plus a normal error
term.



Distribution of X across 2 groups
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® Values in group A and B are clearly being
generated by two very different -- and non-
normal -- processes.



Distribution of X across 2 groups

® If we were trying to test for a difference
between the means of samples A and B, we
can't really trust the answer we'd get from a
2-sample t-test.

® We need some statistical tests that don't
make the normally-distributed-errors
assumption.



Non-parametric statistics

® The term "non-parametric” refers to
statistical tools that do not assume normality
In the error term of the generation process.

® There are non-parametric equivalents for
most of the techniques we've discussed.

® Why not use them all the time? The
mathematics are trickier, and we lose some
power by dropping the normality assumption.



The chi-squared test

® This is a versatile non-parametric test.

® Goodness of Fit: whether a sample fits an
expected distribution (of arbitrary shape).

® Test for Independence: are paired
observations on two categorical variables
Independent.

® Variable X: Gender [Male,Female]
® Variable Y: Voting Preference [Lab,Con,Lib]
® Does gender affect voting preference?



Chi-squared test: Goodness of Fit

® Consider throwing a die many times to see
whether or not it's fair.

® We get a frequency distribution.

® We expect this to be a uniform distribution:
an equal number of 1s, 2s, 3s, etc.



Chi-squared test: Goodness of Fit

® Most of the time we won't get a perfectly
uniform distribution though.

® How far away from uniform would the results
have to be before we would suspect the die
was not fair?

® How might we measure deviation from the
expected values?



Sample of 300 throws
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Difference from what was

expected?
Obs. EXp. O-E | (O-BE)*2
1 48 50 -2 4
2 52 50 2 4
3 56 50 6 36
4 35 50 -15 225
5 61 50 ikl 121
6 48 50 -2 4




Difference from what was
expected?

® We're "expecting" to see each number 50
times.

® We can tally up how far from the expected
value each observation Is.

® We then try squaring those values to deal
with negative numbers.

® We're on our way to some measure of
deviation from the expected values.



Scaling our measure

® The particular size of these numbers
depends on our sample size: if we'd thrown
the dice 30 times or 3000 times we'd have
different numbers.

® We scale the "observed minus expected,
squared" term somewhat by dividing through
by the expected value.




Scaling our measure

Obs. (O-E)*2 |(O-E)*2/E
1 48 4 0.08
2 52 4 0.08
3 56 36 0.72
4 35 225 4.5
5 61 121 2.42
6 48 4 0.08




The chi-squared test

® The final step is to sum the (O-E)"2/ E
terms.

® The total value is the chi-squared statistic.
In our example this number is 7.88.

® But what distribution should we expect this
to have? How do we translate this number
to a p-value?

® Chi-squared distribution... (hint is in the
name)



The chi-squared distribution
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Repeated sampling experiment

® Let's generate 500 samples of 300 die
throws, and calculate the chi-squared
statistic each time.

® That should give us an idea of how often
extreme deviations from uniformity (and thus
large values on the chi-squared statistic)
come up by chance.



Repeated sampling experiment
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Repeated sampling experiment

® In practice, a p-value of 0.05 (i.e., the top-
most 5% of the distribution) equates to a chi-
sqguared statistic of around 10.

® The exact value is 11.07.

® For p = 0.01, the critical chi-squared value is
15.09.

® Our observed value of 7.88 is not unusual.



How Is the chi-squared statistic
distributed?

® Imagine that we were doing the same kind of
test not with die-rolling but with coin tossing.

® If we toss a fair coin 100 times, clearly the
expected values for heads and tails are 50
each.

® In reality we'll get combinations like 48/52,
53/47, 45/55, etc.

® What's the probability distribution of getting
different numbers of heads?



The binomial distribution

® The binomial distribution describes the
number of heads we expect to get from
throwing a coin multiple times.

® The binomial describes the outcome of
multiple Bernoulli trials,

® Bernoulli trial is any situation where there's a

probabllity p of one outcome and 1-p for the
other.

® What does it look like?



Binomial = normal distribution
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® Asngets
larger, the
binomial
approximates
the normal
distribution
very closely.




From binomial to chi-squared

® So if the number of heads we get in multiple
coin tosses Is binomially distributed...

® And the binomial is approximately normal...

® As the number of trials (n) increases...

® Then the chi-squared procedure of squaring

the differences from the expected value,

then dividing by the expected value, will give

us what?




Difference from what was

expected?
Obs. EXp. O-E | (O-BE)*2
48 50 -2 4
52 50 2 4




From binomial to chi-squared

® Each term in our chi-squared procedure is
taking an approximately normally distributed
value and squaring It.

® The chi-squared distribution is in fact the
sum of K squared-standard-normal deviates
(K Is the degrees of freedom of the test).

® Ironic that we've returned to the normal
distribution in an effort to avoid assuming it

was present.



Degrees of freedom?

® If we toss a coin 100 times, it's easy to see
how many degrees of freedom there are: If
there are 53 heads, there must be 47 talls.
Thus there's 1 degree of freedom for the chi-
sguared test here.

® Similarly with the die: once we know how
many 1s, 2s, 3s, 4s, and 5s, the number of
6s Is determined. So there are 5 degrees of
freedom.



The chi-squared distribution
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Another use of chi-squared tests

® We've seen how to use the test to look at
whether a one-dimensional distribution fits
Its expected values reasonably closely.

® What about two-dimensional distributions?

® When we have pairs of observations, like our
gender and voting data set.



Recap: when to use which test?

® If we have a continuous outcome measure,
and a binary predictor variable, we use a
two-sample t-test.

®* If we have a continuous outcome measure,
and one or more categorical predictor
variables, we use ANOVA.

® If we have a continuous outcome measure,
and a single continuous predictor variable,
we use simple linear regression.



Recap: when to use which test?

® If we have a continuous outcome measure
and multiple continuous and categorical
predictor variables, we use multiple
regression.

® If we have a binary categorical outcome
measure and multiple predictor variables, we
use logistic regression.



When to use a chi-squared test?

® If we have a categorical outcome measure,
and one (or more) categorical predictor
variables, It turns out we can use a chi-
squared test.

® We're asking whether the observed
Incidence of outcomes for each level of the
predictor variable could have happened by
chance.



Voting example: Independence Test

® Suppose we're asking whether sex has any
relevance to predicting the way people will
vote.

® We ask 50 randomly selected men and 50
randomly selected women which party they
voted for at the last election.

® Note that both variables are categorical.



Voting example

Labour Tory | Lib dem
Men 16 23 11 50
Women 28 17 5 50
44 40 16

® Number of men and women voting for each

party shown, and the marginal totals.




Voting example: expected values

Labour Tory | Lib dem
Men 22 20 3 50
Women 22 20 3 50
44 40 16

® Using the marginal totals, we can easily

calculate the expected number of counts In

each cell if there were no relationship

between sex and voting preference.




Voting example: chi-squared

® We now have six places to calculate

"observed minus expected".

We can use the same logic of the chi-
sqguared test as outlined earlier.

® Sumof: (O-E)~2/E.



Voting example: O-E

Labour Tory | Lib dem
Men 16-22 23-20 11-8
Women | 28-22 17-20 5-3




Voting example: O-E

Labour Tory | Lib dem
Men -6 3 3
Women 6 -3 -3




Voting example: (O-E)*2

Labour Tory | Lib dem
Men 36 9 9
Women 36 9 9




Voting example: (O-E)*2/E

Labour Tory | Lib dem
Men 36/22 9/20 9/8
Women | 36/22 9/20 9/8




Voting example: (O-E)*2/E

Labour Tory | Lib dem
Men 1.64 0.45 1.125
Women 1.64 0.45 1.125

chisquared stat = Z(O — E)? = 6.43




How many degrees of freedom?

How many degrees of freedom?

You might think 5, because we have 6
observed counts.

But there are not 5 numbers here that are
free to vary if we are to hit the marginal
totals.

DF = num columns minus one, times num
rows minus one.

DF=(c-1)(r-1)
In this case: 2 x 1 = 2.



Voting example

® The calculation for our voting example works
out at a chi-squared value of 6.42.

® The critical value for a chi-squared
distribution with 2 DF, p = 0.05, is 5.99.

® Our test statistic is larger than the critical
value, so we reject the null hypothesis of no
link between sex and voting (assuming we're
happy with the p = 0.05 threshold).



How to do this in R

® In R the easiest way to run a chi-squared
test Is to first produce a table.

® For the
example.chisqg.test (table (Sex,Votin
g))

® The output includes the test statistic, the

degrees of freedom, and the associated p-
value.



Further non-parametric tests

® No time to cover them all in this lecture, but
there are many tests that do not assume a
normally distributed error term in the data
generation process.

® The most useful is the rank-sum test (also
known as the Wilcoxon rank-sum test and
the Mann-Whitney U test).



Further non-parametric tests
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® We would use the rank-sum test to
Investigate whether these two samples come
from distributions with the same mean.



Further non-parametric tests

® It's based on the logic that if distribution A
has a higher mean than distribution B, then
values from sample A should be in the top
half of the joint sample more often than
those from sample B.

® Used in the same situations as a two-sample
t-test.

® wilcox.test (AValues,BValues)



Additional material

® There is no R script for this lecture; you just
need the commands chisqg.test, table,
and wilcox.

® Here is the for generating
the histograms and sampling experiment.


http://users.ecs.soton.ac.uk/jn2/teaching/chisquared.py

