Relations in B

Michael Butler, University of Southampton

Cartesian Products

An ordered pair is written: (x, y) or $x \mapsto y$ Cartesian Product is the type for ordered pairs: $S \times T$ Given $x \in S$, $y \in T$, we have $x \mapsto y \in S \times T$ $4 \mapsto 7 \in \{5, 6, 3\} \mapsto 4 \in \{5, 6, 3\} \mapsto 4 \in \{4 \mapsto 8, 3 \mapsto 0, 2 \mapsto 9\} \in \{4 \mapsto 8, 3 \mapsto 0, 2 \mapsto 9\} \in \{1, 2\}$

Cartesian Product is a constructed type.

Sets of Order Pairs

A database can be modelled as a set of ordered pairs:

$$directory = \{ mary \mapsto 287573, \\ mary \mapsto 398620, \\ john \mapsto 829483, \\ jim \mapsto 398620 \}$$

directory has type

 $directory \in \mathbb{P}(Person \times Number)$ This is also known as a *relation*. Relation is a constructed type:

$$T \leftrightarrow S = \mathbb{P}(T \times S)$$

So we write:

$$directory \in Person \leftrightarrow Number$$

Note:

 \leftrightarrow combines 2 types to form a type.

 \mapsto combines 2 elements to form an ordered pair.

Domain and Range

Given a pair $x \mapsto y$, we say that x is the first component of the pair and y is the second component.

Domain is the set of first components of all the pairs in a relation.

Range is the set of second components of all the pairs.

 $dom(directory) = \{mary, john, jim\}$ ran(directory) = {287573, 398620, 829483}

Phone Directory Spec

Phone directory relates people to their phone numbers. Each person can have zero or more numbers. People can share numbers.

SETS Person ; PhoneNum

VARIABLES dir

INVARIANT $dir \in Person \leftrightarrow PhoneNum$

INITIALISATION $dir := \{\}$

Add an entry to the directory:

Check if a person is known in the directory:

$$res \leftarrow IsKnown(p) \stackrel{\widehat{=}}{=} PRE$$

$$p \in Person$$

$$THEN$$

$$res := bool(p \in dom(dir))$$

$$END$$

Relational Image

Given $R \in S \leftrightarrow T$ and $A \subseteq S$

Relational image of set A under relation R is R[A] $R[A] = \{ y \mid x \in A \land x \mapsto y \in R \}$

Example:

$$directory = \{ mary \mapsto 287573, \\ mary \mapsto 398620, \\ john \mapsto 829483, \\ jim \mapsto 398620 \}$$

 $directory[\{mary\}] = \{ 287573, 398620 \}$

Return all the numbers associated with a person in the directory:

$$nums \leftarrow GetNumbers(p) \stackrel{c}{=} PRE$$

$$p \in Person$$

$$THEN$$

$$nums := dir[\{p\}]$$

$$END$$

Return all the numbers associated with a set of people:

$$nums \leftarrow GetMultiNumbers(ps) \stackrel{?}{=} PRE$$

$$ps \subseteq Person$$

$$THEN$$

$$nums := dir[ps]$$

$$END$$

Relational Inverse

Given $R \in S \leftrightarrow T$

Relational inverse of R is R^{-1}

$$R^{-1} = \{ y \mapsto x \mid x \mapsto y \in R \}$$

Example:

$$directory^{-1} = \{ 287573 \mapsto mary, \\ 398620 \mapsto mary, \\ 829483 \mapsto john, \\ 398620 \mapsto jim \}$$

 $directory^{-1}[\{398620\}] = \{ mary, jim \}$

Return all the people associated with a number in the directory:

$$peo \leftarrow GetNames(n) \cong \mathsf{PRE}$$

 $n \in PhoneNum$
THEN
 $peo := dir^{-1}[\{n\}]$
END

Return all the people associated with a set of numbers:

$$peo \leftarrow GetMultiNames(ns) \cong \mathsf{PRE}$$

 $ns \subseteq PhoneNum$
 THEN
 $peo := dir^{-1}[ns]$
 END

Domain Restriction

Given $R \in S \leftrightarrow T$ and $A \subseteq S$

The domain restriction of R by A is $|A \triangleleft R|$

Restrict R so that it only contains pairs whose first component is in the set A.

Example:

$$directory = \{ mary \mapsto 287573, mary \mapsto 398620, \\ john \mapsto 829483, jim \mapsto 398620 \}$$

 $\{john, jim, jane\} \triangleleft directory = \{ john \mapsto 829483, \\ jim \mapsto 398620 \}$

Domain Subtraction

Given $R \in S \leftrightarrow T$ and $A \subseteq S$

The domain subtraction of R by A is $A \triangleleft R$

Remove those pairs from R whose first component is in A.

Example:

 $\{john, jim, jane\} \triangleleft directory = \{ mary \mapsto 287573,$ $mary \mapsto 398620 \}$

Range Restriction

Given $R \in S \leftrightarrow T$ and $B \subseteq T$

The range restriction of R by B is $R \triangleright B$

Restrict R so that it only contains pairs whose second component is in the set B.

Range Subtraction

Given $R \in S \leftrightarrow T$ and $B \subseteq T$

The range subtraction of R by B is $R \Rightarrow B$

Remove those pairs from R whose second component is in B.

Remove all the entries associated with a person in the directory:

Remove all the entries associated with a number in the directory:

$$RemoveNumber(n) \stackrel{\widehat{=}}{=} PRE$$

$$n \in PhoneNum$$

$$THEN$$

$$dir := dir \triangleright \{n\}$$

$$END$$

Relational Inverse

Given $R \in S \leftrightarrow T$

Relational inverse of R is R^{-1}

$$R^{-1} = \{ y \mapsto x \mid x \mapsto y \in R \}$$

Example:

$$directory^{-1} = \{ 287573 \mapsto mary, \\ 398620 \mapsto mary, \\ 829483 \mapsto john, \\ 398620 \mapsto jim \}$$

 $directory^{-1}[\{398620\}] = \{ mary, jim \}$

Return all the people associated with a number in the directory:

$$peo \leftarrow GetNames(n) \cong \mathsf{PRE}$$

 $n \in PhoneNum$
THEN
 $peo := dir^{-1}[\{n\}]$
END

Return all the people associated with a set of numbers:

$$peo \leftarrow GetMultiNames(ns) \cong \mathsf{PRE}$$

 $ns \subseteq PhoneNum$
THEN
 $peo := dir^{-1}[ns]$
END

Recap

Cartesian product is the constructed type for pairs of elements.

A relation is a set of pairs.

Range of a relation, domain of a relation.

Relational image, relational inverse,

Domain restriction, subtraction

Range restriction, subtraction