Sets and Types in B

Michael Butler, University of Southampton

Types

Let T be some set and x some constant or variable. $x \in T$ says that x is of type T.

All variables and expressions in B must have a type.

$$x \in \mathbb{N}$$

$$y \in \mathbb{Z}$$

$$unix \in OperatingSystem$$

$$7 \in \mathbb{N}$$

$$(3+5) \in \mathbb{N}$$

What are the types of the following expressions?

 $(a + b) \times (3!)$ windows

Types in B

• Basic Types:

 \mathbb{Z} Integers

- \mathbb{N} Natural numbers (including 0)
- \mathbb{B} Booleans (TRUE, FALSE)
- Deferred Types:

SETS Word; Name

We defer a decision about how these types are formed.

• Enumerated Types:

SETS $Direction = \{ north, south, east, west \}$ We enumerate all the possible values of these types.

Sets have types too

 $\{3, 4, 5\}$ is a set of natural numbers.

More Precisely: $\{3,4,5\} \in \mathbb{P}(\mathbb{N})$.

IMPORTANT $S \in \mathbb{P}(T)$ is the same as $S \subseteq T$

Example

 $\mathbb{P}(\{a,b,c\}) = \{ \{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \}$

 $\{a,b\} \in \mathbb{P}(\{a,b,c\})$ $\{a,b\} \subseteq \{a,b,c\}$

4

Assume S and T have type $\mathbb{P}(M).$ What are the types of: $\begin{array}{c} S \cup T \\ S \cap T \end{array}$

Type of $\{ 3.4, 5.78, \pi \}$?

Type of { $\{3,4\}, \{4,6\}, \{7\}$ } ?

Expressions which are incorrectly typed are meaningless:

 $\{4, 6, unix\}$ $\{windows, mac\} \cup \{bwm, rover, ford\}$

Classification of Types

Simple Types:

- \mathbb{Z} , \mathbb{N} , \mathbb{B}
- Deferred types (*Word*, *Name*)
- Enumerated types (Direction = { north, south, east, west })

Constructed Types:

• $\mathbb{P}(T)$

 $\mathbb{P}(T)$ is a type constructed from T. We will see more constructed types later.

Why Types?

- Help to structure specifications by differentiating objects.
- Help to prevent errors by not allowing us to write meaningless things.
- Types can be checked by computer.

Example System Requirements

- Specify a system that monitors users entering and leaving a building.
- A person can only enter the building if they are recognised by the monitor.
- The system should be aware of whether a recognised user is currently inside or outside the building.

Is there anything missing from this set of requirements?

MACHINE Monitor

SETS User; $Status = \{ is_in, is_out \}$

VARIABLES register, in, out

INVARIANT

$$\begin{array}{rcl} register \in \mathbb{P}(User) & \land \\ in \in \mathbb{P}(User) & \land \\ out \in \mathbb{P}(User) & \land \end{array}$$

 $in \subseteq register \land$ $out \subseteq register \land$ $in \cap out = \{\} \land$ $register \subseteq in \cup out$ INITIALISATION in, out, register := $\{\}, \{\}, \{\}\}$

$$Enter(s) \stackrel{\widehat{}}{=} PRE$$

$$s \in out$$

$$THEN$$

$$in := in \cup \{s\} \parallel out := out \setminus \{s\}$$

$$END$$

$$Leave(s) = PRE$$

$$s \in in$$

THEN

$$in := in \setminus \{s\} \parallel out := out \cup \{s\}$$

END

10

```
res \leftarrow GetStatus(s) \cong

PRE

s \in register

THEN

IF s \in in

THEN res := is\_in

ELSE res := is\_out END

END
```

```
NewUser(s) \cong

PRE

s \in (User \setminus register)

THEN

register := register \cup \{s\}

END
```

```
res \leftarrow GetStatus(s) \cong

PRE

s \in register

THEN

IF s \in in

THEN res := is\_in

ELSE res := is\_out END

END
```

```
NewUser(s) \cong

PRE

s \in (User \setminus register)

THEN

register := register \cup \{s\} \parallel out := out \cup \{s\}

END
```