
Sets and Types in B

Michael Butler, University of Southampton

1

Types

Let T be some set and x some constant or variable.

x ∈ T says that x is of type T .

All variables and expressions in B must have a type.

x ∈ N
y ∈ Z
unix ∈ OperatingSystem
7 ∈ N
(3 + 5) ∈ N

What are the types of the following expressions?

(a + b)× (3!)
windows

2

Types in B

• Basic Types:
Z Integers
N Natural numbers (including 0)
B Booleans (TRUE, FALSE)

• Deferred Types:
SETS Word; Name

We defer a decision about how these types are formed.

• Enumerated Types:
SETS Direction = { north, south, east, west }

We enumerate all the possible values of these types.

3

Sets have types too

{3,4,5} is a set of natural numbers.

More Precisely: {3,4,5} ∈ P(N).

IMPORTANT S ∈ P(T) is the same as S ⊆ T

Example

P({a, b, c}) = { {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }

{a, b} ∈ P({a, b, c})

{a, b} ⊆ {a, b, c}

4

Assume S and T have type P(M). What are the types of:

S ∪ T

S ∩ T

Type of { 3.4, 5.78, π } ?

Type of { {3,4}, {4,6}, {7} } ?

Expressions which are incorrectly typed are meaningless:

{4,6, unix}
{windows, mac} ∪ {bwm, rover, ford}

5

Classification of Types

Simple Types:

• Z, N, B

• Deferred types (Word, Name)

• Enumerated types (Direction = { north, south, east, west })

Constructed Types:

• P(T)

P(T) is a type constructed from T .
We will see more constructed types later.

6

Why Types?

• Help to structure specifications by differentiating objects.

• Help to prevent errors by not allowing us to write meaningless

things.

• Types can be checked by computer.

7

Example System Requirements

• Specify a system that monitors users entering and leaving a

building.

• A person can only enter the building if they are recognised

by the monitor.

• The system should be aware of whether a recognised user is

currently inside or outside the building.

Is there anything missing from this set of requirements?

8

MACHINE Monitor

SETS User; Status = { is in, is out }

VARIABLES register, in, out

INVARIANT

register ∈ P(User) ∧
in ∈ P(User) ∧
out ∈ P(User) ∧

in ⊆ register ∧
out ⊆ register ∧
in ∩ out = {} ∧
register ⊆ in ∪ out

9

INITIALISATION in, out, register := {}, {}, {}

Enter(s) =̂ PRE
s ∈ out

THEN
in := in ∪ {s} ‖ out := out \ {s}

END

Leave(s) =̂ PRE
s ∈ in

THEN
in := in \ {s} ‖ out := out ∪ {s}

END

10

res ←− GetStatus(s) =̂
PRE

s ∈ register
THEN

IF s ∈ in
THEN res := is in
ELSE res := is out END

END

NewUser(s) =̂
PRE

s ∈ (User \ register)
THEN

register := register ∪ {s}
END

11

res ←− GetStatus(s) =̂
PRE

s ∈ register
THEN

IF s ∈ in
THEN res := is in
ELSE res := is out END

END

NewUser(s) =̂
PRE

s ∈ (User \ register)
THEN

register := register ∪ {s} ‖ out := out ∪ {s}
END

12

