P34 The ideal value of m is actually related to the signal to noise ratio (bandwidth).

P43 Figure 2.8(b). If the sample spacing is large, then the time-variant signal’s spectrum is replicated close.

P56

$$\mathcal{X}[\rho(\lambda t)] = \frac{1}{\lambda} \mathcal{P}\left(\frac{\omega}{\lambda}\right)$$

(0.1)

P89 is a two-dimensional sinc function. This has a frequency response where the magnitude of the transform does not reduce in a smooth manner.

P105 Fig. 3.33(c)

P168 corresponds to the projection of movement of the objects.

P175 in code 4.20

$E_t = (L_2(y,x) - L_1(y,x) + L_2(y+1,x) - L_1(y+1,x) + L_2(y,x+1) - L_1(y,x+1) + L_2(y+1,x+1) - L_1(y+1,x+1))/4$;

P206 delete the sentence “Note that we do not have the earlier problem…closed shape” (since a chord is an open shape).

P207 middle. We might also know brightness.

P210 In order to compute ρ we use Equation (5.28) given the value of θ computed by Equation (5.40).

P215 Figure 5.21 shows the accumulators obtained by the implementation of Code 5.8 for the images in Figure 5.1(a).

P216 Small peaks in the background of the accumulator in Figure 5.1(b).

P224 In Fig 5.24(b) the entry $2\Delta/\phi$ should read $2\Delta\phi$.

P263 - previously discussed in Section 4.8, Equation 4.53. (The curvature at.

P275 that ASMs search around the current position, typically.

P315 and an excellent review is available [Prokop and Reeves, 1992].

P334

- the largest horizontal frequency magnitude; and
- the largest vertical frequency magnitude.

MSN 2/6/2008