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“...a figure strongly built and with broad shoulder, though shorter than the average of

men and now stooped with age, leaning on a thick rough-cut staff as he trudged along...”

- J. R. R. Tolkien, “The History of the Hobbit” describing Gandalf the Grey
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Gait and face biometrics have a unique advantage in that they can be used when images

are acquired at a distance and signals are at too low a resolution to be perceived by other

biometrics. Given such situations, some traits can be difficult to extract automatically

but can still be perceived semantically using human vision. It is contended that such

semantic annotations are usable as soft biometric signatures, useful for identification

tasks. Feature subset selection techniques are employed to compare the distinguishing

ability of individual semantically described physical traits. Their identification ability is

also explored, both in isolation and in the improvement of the recognition rates of some

associated gait biometric signatures using fusion techniques.

This is the first approach to explore semantic descriptions of physiological human traits

as used alone or to complement primary biometric techniques to facilitate recognition and

analysis of surveillance video. Potential traits to be described are explored and justified

against their psychological and practical merits. A novel dataset of semantic annotations

is gathered describing subjects in two existing biometric datasets. Two applications of

these semantic features and their associated biometric signatures are explored using the

data gathered. We also draw on our experiments as a whole to highlight those traits

thought to be most useful in assisting biometric recognition overall.

Effective analysis of surveillance data by humans relies on semantic retrieval of the

data which has been enriched by semantic annotations. A manual annotation process

is time-consuming and prone to error due to various factors. We explore the semantic

content-based retrieval of surveillance captured subjects. Working under the premise

that similarity of the chosen biometric signature implies similarity of certain semantic

traits, a set of semantic retrieval experiments are performed using well established Latent

Semantic Analysis techniques.
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Chapter 1

Context and Contributions

In today’s security conscious climate there is an increasing interest in efficient identifi-

cation of humans. When close contact and subject co-operation are assured, biometric

techniques using DNA, iris signature and fingerprint recognition [58] have been shown

to address this need effectively. However, there is an increasing interest in human recog-

nition when contact and subject co-operation are not assured. This is demonstrated

by the recent large scale uptake of surveillance technologies such as Closed Circuit

Television (CCTV), with 4 million CCTV cameras in operation in the UK in 2006 [7].

Non-contact biometrics such as gait [89], face [111] and ear [48] address the need for

identification at a distance whilst automatic surveillance analysis techniques [22] [47]

attempt to address the need for the analysis of large1 video data-sets generated auto-

matically by CCTV surveillance systems. The principal aim of this thesis is to show that

human ascribed semantic descriptions of individuals witnessed at a distance can be used

to improve identification and aid the retrieval of these individuals in large surveillance

datasets.

The human ability to identify individuals has been shown to be consistently effective

at a distance, under varying weather conditions, light conditions [116] and behavioural

configurations (e.g. walking, running, various emotional states); situations which auto-

mated techniques often find challenging. Humans can easily perceive and express higher

level semantic concepts [68] such as Sex, Race, Bulk etc. and use them for descrip-

tion and identification. However, human recognition has various issues itself which can

impede accurate description ability, recall and subsequently recognition.

13.6GBytes of video data per hour per camera calculated using 25.5 frames per second using 704 ×
576 Common Intermediate Format (4CIF) images compressed using MPEG4
(http://www.info4security.com/story.asp?storyCode=3093501)

1

http://www.info4security.com/story.asp?storyCode=3093501
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For the purposes of improved identification, the potential strengths offered by auto-

mated techniques compared to human descriptions are distinct and indeed complemen-

tary. Furthermore, relating human descriptions to automatic features extracted from

video sources empowers the efficient manipulation and exploration of large surveillance

datasets by humans. To these ends, we explore the relationship between semantic de-

scriptions and primary biometric sources for applications in both biometric fusion and

in Content Based Information Retrieval (CBIR).

The largest portion of this work, presented in Chapter 2, is devoted to defining a set

of physical traits and associated semantic terms. We concentrate on physical attributes

which can be easily perceived from a distance. Using the combined results of work

originating in cognitive psychology, eye witness analysis and existing practical applica-

tions we choose and justify a set of physical traits describable by a set of associated

semantic terms. We also outline the development of a web based interface designed to

facilitate the efficient and effective annotation of terms to traits against arbitrary bio-

metric sources. The decisions made in the system’s construction are justified against

psychological considerations. We begin the exploration of our semantic annotations by

discussing the content of the datasets gathered. We provide exact figures with regards

to the number of individuals annotated, the number of annotators and the number of

terms gathered. We also present a correlation analysis where internal structures found

between semantic annotations gathered are discussed.

Using the annotations gathered against the Southampton Large (A) HumanID Database

(HIDDB) and Southampton Multibiometric Tunnel Database (TunnelDB) datasets, we

explore the recognition capabilities of the semantically described traits in Chapter 3. One

of our main goals is the exploration of retrieval capabilities of the semantic annotations

in combination with other existing automatic biometrics. To this end we provide an

overview of current research in face and gait biometrics as well as biometric fusion,

including an exploration of soft biometrics. After this general overview, we outline the

six specific biometric signatures across the two datasets which we use in the identification

experiments in Chapter 3, as well as the the retrieval experiments in Chapter 4.

Once these features are outlined, the semantic traits are explored with the goal of order-

ing them with regards to some metric of worth, as well as gauging their recognition capa-

bility. Firstly, we use Analysis Of Variance (ANOVA) to outline an order of significance

with regards to a feature’s ability to separate disparate groups. Secondly, we present

a similar experiment using Pearson’s product-moment correlation coefficient (Pearson’s

r), exploring the stability of annotations ascribed to different traits across several an-

notators. We use these two orderings to perform a feature subset selection to achieve

a high Correct Classification Rate (CCR) and Equal Error Rate (EER) using smaller
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feature subsets. Following this work, we explore the retrieval capability of the seman-

tic annotations when compared to existing biometric techniques, both in isolation and

in fusion. We perform a set of exhaustive Leave-one-Out (LoO) classification experi-

ments and employ two simple fusion schemes: min-max normalised feature fusion and

transformation score fusion. We show that, in isolation, semantic traits in the HIDDB

and TunnelDB can achieve an EER of 14.66% and 15.3%. When combined with any of

the more powerful visual signatures, semantic features are shown to universally perform

better than the more powerful biometrics. This ranges from a small improvement of

0.01% in feature fusion with the Average Face features of the TunnelDB up to a more

impressive improvement of 3.89% in score fusion with the Projected Gait Signature of

the TunnelDB.

In Chapter 4 we present another application of the semantic biometric traits, this time

as used in CBIR of surveillance footage. We introduce a form of Latent Semantic

Analysis (LSA) which uses the Singular Value Decomposition (SVD) in a conceptually

similar way to the Principal Components Analysis (PCA). The chosen approach has

the ability to perform semantic retrieval of unlabelled documents, given a training set

of annotated examples. Retrieval performance for each physical trait is discussed across

all six biometric signatures, and for comparable reasons to the recognition results, some

traits can be retrieved successfully whilst others fail entirely. We also outline how this

approach could feasibly be used to annotate surveillance video with regards to the hu-

mans they contain and also how LSA techniques could be used to improve unannotated

biometric identification.

In Chapter 5 we combine the notions of worth ascribed to our traits by each of the

preceding chapters. We utilise two vote combination techniques and combine 15 differ-

ent ordering schemes and attempt to understand which traits are most suitable for the

description of individuals. We discover that traits related to global attributes of individ-

uals portray higher significance than more granular traits. We also note that between

whole body descriptions, those describing some notion of general bulk surpass specific

descriptions of Limbs or body parts. This confirms findings in the existing eye witness

literature.

Finally, in Chapter 6 we discuss future research directions. Firstly, to make more con-

crete judgements on semantics as a biometric, we recommend larger semantic datasets

be collected. We also recommend an exploration into the correlation between semantic

annotations and some concrete ground truth statistics of individual height, weight and

appearance. In turn this will allow more concrete statements to be made with regards

to the accuracy of self annotations as compared to ascribed annotations. Given the

success of semantic annotation of physical traits in both retrieval and identification, an
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exploration into semantic description of behaviour and action is recommended. Such

semantic descriptions of dynamic aspects of human movement are more likely to com-

pliment dynamic features of gait recognition, allowing further advantage to be taken of

existing gait biometrics. In this way this new approach can be further extended.

Several papers are based on this work, they are listed chronologically below.

1. S. Samangooei and M. S. Nixon, Semantic Attributes in Gait Biometrics. At

MMKM’07: Multimedia Knowledge Management Workshop, 2007

2. S. Samangooei, B. Guo and M. S. Nixon, The Use of Semantic Human Description

as a Soft Biometric. In BTAS’08: Proceedings of the IEEE Biometrics: Theory,

Applications and Systems, 2008

3. J. S. Hare, S. Samangooei, P. H. Lewis and M. S. Nixon. Semantic spaces re-

visisted: investigating the performaces of auto-annotation and semantic retrieval

using semantic spaces. In Proc. CIVR, 2008

4. R. D. Seely, S. Samangooei, L. Middleton, J. N. Carter and M. S. Nixon, The Uni-

versity of Southampton Multi-Biometric Tunnel and introducing a novel 3D gait

dataset. In BTAS’08: Proceedings of the IEEE Biometrics: Theory, Applications

and Systems, 2008

5. S. Samangooei and M. S. Nixon, Performing Content-based Retrieval of Humans

using Gait Biometrics. In SAMT’08: Proceedings of Semantic and Digital Media

Technologies, 2008

6. S. Samangooei and M. S. Nixon, Performing content-based retrieval of humans

using gait biometrics. Multimedia: Tools and Applications, 2009

7. S. Samangooei, J. D. Bustard, R. D. Seely, M. S. Nixon, J. N. Carter, Multibio-

metrics for Human Identification, Chapter 6, On Acquisition and Analysis of a

Dataset Comprising of gait, ear and semantic data. To be published.



Chapter 2

Semantic Features

2.1 Introduction

The description of humans based on their physical features has been explored for several

purposes including medicine [107], biometric fusion [51], eyewitness analysis [67] and

human identification [49]. Descriptions gathered vary in levels of visual granularity and

include both features that can be measured visibly and those that are only measur-

able using specialised tools. The principal aim of this thesis is to show that semantic

descriptions of individuals witnessed at a distance can be used in to improve identifi-

cation and aid the retrieval of individuals. To these ends, we must firstly explore the

semantic terms people use to describe one another. Once these terms are outlined, the

second task becomes the collection of a set of manually ascribed annotations against

these terms. In isolation these terms allow the exploration of semantic descriptions as

a tool for identification. To explore their capabilities in biometric fusion and automatic

retrieval, these annotations must be collected against a set of individuals in an existing

biometric dataset.

In this chapter we develop a set of key semantic terms people use to describe one another

at a distance. Once outlined, we introduce a set of semantic annotations made using

these terms gathered against two existing biometric datasets. In Section 2.2 we start

with an overview of human description, from early anthropometry, to modern usage

in police evidence forms and in soft biometrics. In Section 2.3 we outline a set of key

physiological traits noticeable at a distance and explore a set of semantic terms usable

for their description. Once identified, we give the details of the procedures used to gather

two new semantic biometric datasets in Section 2.4. These datasets are comprised of

annotations of several subjects, each described by several distinct annotators across two

multibiometric datasets. The exact contents of the semantic annotation datasets are

5
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examined in Section 2.5 where we also perform correlation analysis, briefly exploring

the underlying structures and other interesting facets of the gathered data.

2.2 Background Reading

In this section we provide an outline of the use of anthropometric measurements for

purposes of human identification.

2.2.1 Historical Anthropometry

Figure 2.1: Example identity slate produced from Bertillonage. This particular slate
portrays Alphonse Bertillon himself. Taken from Rhodes [102]

One of the first attempts to systematically describe people for identification based

on their physiological traits was the anthropometric system developed by Alphonse

Bertillon [12] in 1879. By 1809 France had abandoned early methods of criminal identi-

fication such as branding. However, no systematic method of identification was outlined

as an alternative, which meant the verification of repeat offenders or confirmation of the

identity of criminals was a near impossible task. Long descriptions in prose were held



7

Figure 2.2: Two example diagrams taken from Bertillon’s [12] instructional manual
designed as a reference manual for police gathering Bertillonage measurements.

including semantic terms such as “Large” or “Average” to describe height and limbs.

However, these descriptions proved inadequate due to subjectivity as well as to dis-

proportionate numbers of “Average” height and “Brown” haired individuals in a given

population. This, coupled with an uncontrolled lexicon, resulted in many descriptions

which added nothing to identification process whatsoever. By 1840, the photography of

criminals was introduced. However, the photographic techniques themselves were not

standardised and, though useful for confirmation of identity, a photograph is of little use

in discovery of identity given that any existing photograph collection had to be searched

manually. In this landscape, Alphonse Bertillon worked as a clerk in the departments

of the Prefecture of Police in 1879 making him a firsthand witness to the failings of the

police identification and cataloguing system. He was therefore in an ideal position to

apply his father’s anthropological work to the development of a more systematic method

of identifying people.

His system of anthropometrics, eponymously Bertillonage, outlined the tools and

techniques for the careful measurement of:

• 10 physiological features including Length/Width of head, Length of middle and

little fingers and the dimensions of the Feet, Arm, Right Ear and standing Height

• descriptions of the dimensions of the nose, eye and hair colour

• the description and location of notable scars, tattoos and other marks
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The method for gathering these features was rigorously outlined in Bertillon’s man-

ual [12] along with a set of descriptive diagrams (see Fig. 2.2). The measurements for

a given individual were held on separate slides along with standardised photographs of

the individual. The metrics of the system were chosen primarily to be simple simple

so that they could be gathered accurately. This meant measurements were taken by

a trained individual, though not necessarily a skilled individual. To this end, features

were chosen to allow easy identification of points to begin and to end measurement on

the body. The success of Bertillonage came from its ability to geometrically reduce the

probability of type 1 errors1. Though two individuals may have very similar heights,

the chance of the same two having similar measurements for all the other 13 features is

very unlikely. Furthermore, Bertillonage inherently allowed for efficient discovery of an

individual’s existing measurement card and therefore their identity. Cards were held in

drawers where each drawer was allocated to specific range combination of each metric

in a given order. This meant that once new measurements of an unidentified individual

were taken the identity of the individual could be easily ascertained2.

Achieving great success and popularity in France, Bertillonage went on to see application

in the United States as well as Great Britain in the late 19th century [95]. Difficulties

in cases such as Will West vs. William West [92] lead to the system being superseded

by more rigorous forms of identification such as fingerprint analysis and more recently

biometric analysis. In spirit, all these systems attempt to reduce the identity of an

individual to a representative and measurable set of classification metrics, though none

directly use descriptions of the human body as a whole.

2.2.2 Modern Anthropometry

Police Records

An example of a modern use of anthropometric descriptions, both numeric and semantic,

is the information repositories held by separate UK police constabularies: individually

refereed to as the Records Management System (RMS). Such systems are employed to

store information pertinent to criminal investigations in a given constabulary, includ-

ing: vehicle description and registration information; property information and, most

importantly, anthropometric suspect descriptions. The interface to any individual RMS

supports semantic and vague descriptions of anthropometric features, a level of descrip-

tion regularly expected from witness reports and suspect descriptions as noted by Police

Officers. All records in an RMS are manually added after being translated to match a

1error by coincidence
2given that the individual had previously been measured and stored
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(a) Body part naming convention diagram (b) Query Global features (e.g. Gender)

(c) Query whole body descriptions (d) Query other features

Figure 2.3: Example screens from the querying system of the Hampshire Constabu-
lary Records Management System (RMS). These images and associated descriptions

are provided care of PCSO Jade Richards

prescribed lexicon for any given piece of information described. This facilitates semantic

querying of the details held on the RMS and therefore anthropometric querying against

the dataset. To query this system, users must use a bespoke search engine as seen

in Fig. 2.3. Each field with a drop down box represents a controlled set of keywords.

With regards to anthropometric descriptions of people the RMS can be queried against

such features as:

• global information such as Sex and Name

• ethnic information including description of Nationality, Ethnicity and Skin Colour

• body shape information including Weight, Height and Build
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• notable marks, Scars and Tattoos

Furthermore, the system holds sets of descriptions not related explicitly to the human

body description, but which could none the less prove useful. These include:

• non-visual information, such as accent

• non-physical information, including address, employment and marital status

• non-permanent information, such as clothing

Most of the fields relating to humans in an RMS are categorical. For example: build can

only be prescribed using keywords such as “Broad”, “Slight” and “Proportionate”, while

Ethnic descriptions are restricted to those found in the UK census3. Users of the system

cannot construct arbitrary queries; they are instead asked to translate search description

into the closest matching terms in the subsets provided, for example a description of

“young black boy” is searched for by setting ethnicity to “Black”, setting gender to

“Male” and choosing a relatively young apparent age. Though incredibly useful for

police investigations, these systems are by their nature non-automatic. This guarantees

a certain reliability and quality, but is undoubtedly expensive and also prone to human

error. Furthermore, no two constabularies share the same RMS nor is there a standard

for the attributes held or the keywords used to describe them. This limits the clear

benefits gained from these anthropometric descriptions of individuals.

Biometric Anthropometry

In research, a recent use of anthropomorphic traits to aid primary biometric schemes

was suggested by Wayman [128] in the form of filtering by Age or Gender. One of

the few explorations into this approach was performed later by Nandakumar et al. [88],

who used methods for automatic extraction of soft biometric values and fusion methods

(see Section 3.3.4) on these features with primary biometrics using a Bayesian framework.

Their experiments show an improvement of around 1-2% when combining ethnicity and

gender traits with fingerprint signals. Other related approaches such as Zewail et al. [136]

use iris colour (a soft biometric) with automatic fingerprint and iris signatures using a

weighted average scheme and a Parzen Classifier. These approaches used automatically

extracted soft biometrics from existing video or image signals. In behaviour analysis,

several model based techniques [2] attempt the automatic extraction of individual body

components as a source of behavioural information. Though the information about the

3http://www.statistics.gov.uk/about/Classifications/ns_ethnic_classification.asp

http://www.statistics.gov.uk/about/Classifications/ns_ethnic_classification.asp
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individual components is not used directly, these techniques provide some insight into

the level of granularity at which body features are taken to be discernible at a distance.

In the surveillance and biometrics community, approaches that use human body de-

scriptions do not attempt to formally outline exactly how humans identify each other.

This results in ad hoc choices of descriptions with no general justification. Furthermore,

apart from obviously semantic descriptions such as gender and ethnicity, most anthropo-

metric data is inherently numerical. Little to no consideration is given to the improved

identification of individuals using prose or semantic descriptions one might often find

in witness descriptions. In the next section of this chapter we attempt to bridge this

gap. We provide a more complete analysis of potential physiological traits humans may

notice at a distance. Once outlined, we explore the associated semantic terms used in

their descriptions. We offer clear justifications for the choice of these traits with respect

to psychological considerations as well as practical eyewitness analysis. In doing so we

outline the ground work for the analysis of semantic witness descriptions in identification

and retrieval.

2.3 Traits and Terms

In this section we introduce a set of anthropometric traits and associated semantic terms

suitable for the description of humans at a distance. The traits selected for description

are justified on their psychological merits and an appropriate constrained set of semantic

terms are outlined for each trait. The datasets discussed in future sections are collected

against these traits.

2.3.1 Traits

To match the advantages of automatic surveillance media, one of our primary concerns

is to choose traits that are discernible by humans at a distance. To do so, we must

determine which traits humans are able to consistently and accurately notice in each

other and describe at a distance. The traits we discuss are grouped by similar levels of

meaning, namely:

• global traits (Sex, Ethnicity etc.)

• build features that describe the target’s perceived somatotype [80] (Height, Weight

etc.)
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• head features, an area of the body humans pay great attention to if it is visible [44]

(Hair Colour, Beards etc.).

With regards to global attributes, three independent traits - Age, Race and Sex - are

agreed to be of primary significance in cognitive psychology with respect to human

description. For gait, humans have been shown to successfully perceive such categories

using generated point light experiments [68, 119] and in other adverse viewing conditions

involving limited visual cues [116].

In the eyewitness testimony research community there is a relatively well formed no-

tion of which features witnesses are most likely to recall when describing individu-

als [129]. Koppen and Lochun [67] provide an investigation into witness descriptions in

archival crime reports. Unsurprisingly, the most accurate and highly mentioned traits

were Sex (95% of the respondents mentioned this and achieved 100% accuracy), Height

(70% mention 52% accuracy), Race (64% mention 60% accuracy) and Skin Colour (56%

mention, accuracy not discussed). Detailed head and face traits such as Eye Shape and

Nose Shape are not mentioned as often and when they are mentioned, they appear to be

inaccurate. More prominent head traits such as Hair Colour and Length are mentioned

more consistently, a result also noted by Yarmey and Yarmey [135]. Descriptive features

which are visually prominent yet less permanent (e.g. clothing) often vary with time

and are of less interest than other more permanent physical traits.

Traits regarding build are of particular interest in our investigation having a clear rela-

tionship with gait while still being reliably recalled by eyewitnesses at a distance. Few

studies thus far have attempted to explore build in any amount of detail beyond passing

mention of Height and Weight. MacLeod et al. [79] performed a unique analysis on whole

body descriptions using bipolar scales to define traits. There were two phases in their

approach towards developing a set of descriptive build traits.

Firstly a broad range of useful descriptive traits was outlined with a series of experi-

ments where a mixture of moving and stationary subjects were presented to a group of

annotators who were given unlimited time to describe the individuals. A total of 1238

descriptors were extracted, of which 1041 were descriptions of overall physique and the

others were descriptions of motion. These descriptors were grouped together (where

synonymous) and a set of 23 traits generated, each formulated as a bipolar five-point

scale.

Secondly the reliability and descriptive capability of these traits was gauged. Annota-

tors were asked to watch video footage of subjects walking at a regular pace around

a room and rate them using the 23 traits identified. The annotators were then split

into two groups randomly from which two mean values were extracted for each subject
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for each trait. Pearson’s product-moment correlation coefficient (Pearson’s r) was calcu-

lated between the sets of means and was used as an estimate of the reliability for each

trait. Principal Components Analysis (PCA) was also used to group traits which repre-

sented similar underlying concepts. The 13 most reliable terms, the most representative

of the principal components, have been incorporated into the final trait set described

later.

Jain et al. [57] outline a set of key characteristics which determine a physical trait’s suit-

ability for use in biometric identification. These include: Universality, Distinctiveness,

Permanence and Collectability

The choice of our physiological traits keeps these tenets in mind. Our semantic descrip-

tions are universal in that we have chosen factors which everyone has. We have selected

a set of subjects who appeared to be semantically distinct in order to confirm that these

semantic attributes can be used in the best case. The descriptions are relatively perma-

nent: overall Skin Colour naturally changes with tanning, but our description of Skin

Colour has racial overtones and these are perceived to be more constant. Our attributes

are easily collectible and have been specifically selected for being easily discernible at a

distance by humans. However much care has been taken over procedure and definition

to ensure consistency of acquisition (see Section 2.4). The final set of traits chosen can

be seen at the end of this subsection in Table 2.1.

2.3.2 Terms

Having outlined the considerations made in choosing the physical traits which should be

collected, the next question is how these traits should be represented. One option for

their representation in our scheme is a free text description for each trait. The analysis of

such data would require lexical analysis to correlate words used by different annotators.

Though interesting in itself, this study is beyond the scope of this thesis. Following the

example of existing soft biometric techniques, a mixture of semantic categorical metrics

(e.g. Ethnicity) and value metrics (e.g. Height) could be used to to represent the traits.

Humans are generally less accurate when making value judgements when compared

to category judgements. Therefore we compromise by formulating all traits with sets

of mutually exclusive semantic terms. This approach avoids the inaccuracies of value

judgments, being more representative of the categorical nature of human cognition [80,

118, 119]. Simultaneously this approach avoids the complex synonymic analysis that

would be required to correlate two descriptions if free text descriptions were gathered.

With categorical metrics there is an inherent risk that none of the categories fit, either

because the information is unclear or due to the presence of a boundary case where
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any annotation whatsoever may feel disingenuous. For this purpose each trait is given

the extra term “Unsure”, allowing the user to make the ambiguity known. For reasons

covered in Section 2.4 the “Unsure” annotation is also the default option for any given

trait on the annotation user interface.

What remains is the selection of semantic terms which best represent the many words

that could potentially be used to describe a particular trait. This task can be logically

separated by considering those traits which are intuitively describable using discrete

metrics and those intuitively requiring value metrics.

2.3.2.1 Discrete Metrics

Discrete metrics are those traits not describable intuitively or commonly by numerical

values. Sex is the most clear cut and it splits into Male and Female.

Age is another of the primary categories used by humans during cognition. Although

based on a value metric, it has been noted in the field of human developmental biology [8]

that there are several key developmental stages in a human’s life. The categorical terms

chosen for age in our system are synthesised from these stages. We specifically take note

of the higher number of categories required to describe early life when compared to later

life.

Ethnicity is also of primary significance and intuitively categorical, however it is perhaps

the most difficult trait for which to find a limited set of terms. There is a large corpus

of work [3, 35, 101] exploring ethnic classification, each outlining different ethnic terms.

These range from the use of 3 to 200, with none necessarily convergent. Our ethnic

terms encompass the three categories mentioned most often and an extra two categories

(Indian and Middle Eastern) matching the United Kingdom (UK) census4.

The colours which appear throughout the human anatomy can be described by values

extracted from a continuous space. Methods such as reflection spectrophotometery can

be used to extract exact values of colour but are clearly inappropriate to provide terms

usable by humans. Human perception and description of colour is often categorically

described [43], however, Skin Colour remains a complex area of discussion, partially due

to controversy about race, but also due to inherent skin colour variability due to exposure

to sun. To allow agreement, Skin descriptions cannot be too detailed. The approach

chosen to define skin colour is the Identity Code (IC)5 system, using primarily racial

cues to describe skin colour. Similar problems occur with Hair Colour description; our

4http://www.statistics.gov.uk/about/Classifications/ns_ethnic_classification.asp Eth-
nic classification

5http://www.mpa.gov.uk/committees/eodb/2005/050110/08.htm UK police IC code

http://www.statistics.gov.uk/about/Classifications/ns_ethnic_classification.asp
http://www.mpa.gov.uk/committees/eodb/2005/050110/08.htm
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descriptions avoid these issues using categories mentioned in literature [33] and existing

human description methodologies [49].

2.3.2.2 Value Metrics

For other traits representable with intuitive value metrics (Lengths, Sizes etc.) bipolar

scales with intermediate categories (ranging from 5 to 7) representing concepts from

Small to Large are used as semantic terms. This approach closely matches human

categorical perception. Annotations obtained from such approaches have been shown to

correlate with measured numerical values [23]. Note that our value metrics avoid any

notion of “political correctness” aiming to reduce annotator confusion.

2.3.3 Semantic Biometric Terms and Traits

Using a combination of the studies in cognitive science, witness descriptions and the work

by MacLeod et al. [79] outlined in Section 2.3 we outline the set of traits we have chosen

to investigate in this thesis. Following this, in Section 2.3.2 we described a strategy for

the description of these traits through a set of categorical semantic descriptions. Table 2.1

shows the corpus of physiological traits and associated semantic terms generated by this

investigation and used in the following sections and chapters.

2.4 Semantic Annotation

In this section we describe the process undertaken to gather a novel dataset of semantic

annotations of individuals in an existing biometric dataset. We outline the design of

the data entry system created to allow the assignment of manual annotations of physi-

cal attributes to individuals. Using this system, individuals in the Southampton Large

(A) HumanID Database (HIDDB) and the new Southampton Multibiometric Tunnel

Database (TunnelDB) datasets were annotated against recordings taken of the individu-

als in lab conditions. The original purpose of these recordings was the analysis of subject

gait biometrics and, in the case of TunnelDB, their face and ear biometrics. We discuss

the composition of these datasets in greater detail in Section 2.5, here we concentrate

on the procedure undertaken to assign annotations.

Two systems were developed to gather annotations: The PHP based Gait Annota-

tion system (GAnn), and later, the Python/Pylons based Python Gait Annotation

system (PyGAnn). The collection interface was initially developed in GAnn, written

in HTML and CSS for the bespoke system. This web application was designed for the
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Table 2.1: Physical traits and associated semantic terms

Body
Trait Term

0. Arm Length

(0.1) Very Short
(0.2) Short
(0.3) Average
(0.4) Long
(0.5) Very Long

1. Arm
Thickness

(1.1) Very Thin
(1.2) Thin
(1.3) Average
(1.4) Thick
(1.5) Very Thick

2. Chest

(2.1) Very Slim
(2.2) Slim
(2.3) Average
(2.4) Large
(2.5) Very Large

3. Figure

(3.1) Very Small
(3.2) Small
(3.3) Average
(3.4) Large
(3.5) Very Large

4. Height

(4.1) Very Short
(4.2) Short
(4.3) Average
(4.4) Tall
(4.5) Very Tall

5. Hips

(5.1) Very Narrow
(5.2) Narrow
(5.3) Average
(5.4) Broad
(5.5) Very Broad

6. Leg Length

(6.1) Very Short
(6.2) Short
(6.3) Average
(6.4) Long
(6.5) Very Long

7. Leg
Direction

(7.1) Very Bowed
(7.2) Bowed
(7.3) Straight
(7.4) Knock Kneed
(7.5) Very Knock Kneed

8. Leg
Thickness

(8.1) Very Thin
(8.2) Thin
(8.3) Average
(8.4) Thick
(8.5) Very Thick

9. Muscle
Build

(9.1) Very Lean
(9.2) Lean
(9.3) Average
(9.4) Muscly
(9.5) Very Muscly

10.
Proportions

(10.1) Average
(10.2) Unusual

11. Shoulder
Shape

(11.1) Very Rounded
(11.2) Rounded
(11.3) Average
(11.4) Square
(11.5) Very Square

Global
Trait Term

12. Weight

(12.1) Very Thin
(12.2) Thin
(12.3) Average
(12.4) Big
(12.5) Very Big

13. Age

(13.1) Infant
(13.2) Pre Adolescence
(13.3) Adolescence
(13.4) Young Adult
(13.5) Adult
(13.6) Middle Aged
(13.7) Senior

14. Ethnicity

(14.1) European
(14.2) Middle Eastern
(14.3) Indian/Pakistan
(14.4) Far Eastern
(14.5) Black
(14.6) Mixed
(14.7) Other

15. Sex
(15.1) Female
(15.2) Male

Head
Trait Term

16. Skin
Colour

(16.1) White
(16.2) Tanned
(16.3) Oriental
(16.4) Black

17. Facial Hair
Colour

(17.1) None
(17.2) Black
(17.3) Brown
(17.4) Red
(17.5) Blond
(17.6) Grey

18. Facial Hair
Length

(18.1) None
(18.2) Stubble
(18.3) Moustache
(18.4) Goatee
(18.5) Full Beard

19. Hair
Colour

(19.1) Black
(19.2) Brown
(19.3) Red
(19.4) Blond
(19.5) Grey
(19.6) Dyed

20. Hair
Length

(20.1) None
(20.2) Shaven
(20.3) Short
(20.4) Medium
(20.5) Long

21. Neck
Length

(21.1) Very Short
(21.2) Short
(21.3) Average
(21.4) Long
(21.5) Very Long

22. Neck
Thickness

(22.1) Very Thin
(22.2) Thin
(22.3) Average
(22.4) Thick
(22.5) Very Thick

initial experiments used to extract annotations with the existing HIDDB. Later, as

part of the TunnelDB data collection process, PyGAnn was developed to provide an
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integrated interface for the dual purposes of leading a subject through the tunnel multi-

biometric data acquisition process [112] and secondly gathering annotations from the

user, including both self annotations and annotations of previous subjects gathered.

PyGAnn was built on a modern web development framework called Pylons [1]. Develop-

ment in Pylons follows Model, View, Controller (MVC) oriented design practise as well

as making extensive use of Web Server Gateway Interface (WSGI), a web framework

standard used to promote a common ground for web application development. These

factors mean future maintenance of the TunnelDB interface is made easier as is the

integration of the user interface with the existing Python based Southampton tunnel

backend [112]. Furthermore, modern database interface methodologies such as Object-

Relational Mapping (ORM) are well supported in Pylons. This heavily relieves the data

manipulation burden inherent with the co-ordinated use of semantic annotations with

the related subjects and their biometric data samples.

Collection Interface

Both systems were used to collect semantic annotations using the web interface initially

designed for the GAnn web application (See Fig. 2.4). This interface allows annotators

to view all samples of an arbitrary biometric gathered from a subject as many times as

they require. Annotators were asked to describe subjects by selecting semantic terms

for each physical trait. They were instructed to label every trait for every subject and

that each trait should be completed with the annotator’s own notions of what the trait

meant. Guidelines were provided to avoid common confusions, for example that rough

overlapping boundaries for different age terms and height of an individual should be

assigned absolutely compared to perceived global “Average”, while traits such as Arm

Length could be annotated in comparison to the subject’s overall physique.

To attain an upper limit for the capabilities of semantic data we strive to assure our

data is of optimal quality. The annotation gathering process was designed carefully to

avoid (and allow the future study of) inherent weaknesses and inaccuracies present in

human generated descriptions. The error factors that the system was designed to deal

with include:

• Memory [27] - Passage of time may affect a witness’ recall of a subject’s traits.

Memory is affected by variety of factors e.g. the construction and utterance of

featural descriptions rather than more accurate (but indescribable) holistic de-

scriptions. Such attempts often alter memory to match the featural descriptions.
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Figure 2.4: Example of GAnn interface

• Defaulting [76] - Features may be left out of descriptions in free recall. This

is often not because the witness failed to remember the feature, but rather that

the feature has some default value. Race may be omitted if the crime occurs in a

racially homogenous area, Sex may be omitted if suspects are traditionally Male.

• Observer Variables [32, 93] - A person’s own physical features, namely their self

perception and mental state, may affect recall of physical variables. For example,

tall people have a skewed ability to recognise other tall people but will have less

ability when it comes to the description of shorter individuals, not knowing whether

they are average or very short.

• Anchoring [18] - When a person is asked a question and is initially presented

with some default value or even seemingly unrelated information, the replies given

are often weighted around those initial values. This is especially likely when peo-

ple are asked for answers which have some natural ordering (e.g. measures of

magnitude)

We have designed our semantic data gathering procedure to account for all these fac-

tors. Memory issues are addressed by allowing annotators to view videos of subjects as

many times as they please, also allowing them to repeat a particular video if necessary.

Defaulting is avoided by explicitly asking individuals for each trait outlined in Table 2.1,

this means that even values for apparently obvious traits are filled in and captured. This



19

style of interrogative description, where constrained responses are explicitly requested,

is more complete than free-form narrative recall but may suffer from inaccuracy, though

not to a significant degree [135]. Subject variables can never be completely removed so

instead we allow the study of differing physical traits across various annotators. Users

are asked to self annotate based on self perception, also certain subjects being annotated

themselves provided annotations of other individuals (See Section 2.5). This allows for

some concept of the annotator’s own appearance to be taken into consideration when

studying their descriptions of other subjects. Anchoring can occur at various points

of the data capture process. We have accounted for anchoring of terms gathered for

individual traits by setting the default term of a trait to a neutral “Unsure” rather than

any concept of “Average”. Another potential source of anchoring is that attributed by

the order subjects are presented to an annotator. Seeing a string of relatively tall indi-

viduals may unfairly weight the perception of an averaged sized individual as short. We

attempt to account for this by randomising the order of subjects presented to different

annotators so that, overall, the descriptions reflect some notion of the true description.

In order to efficiently involve these annotations in future analysis, they are numerically

represented. The exact representation scheme depends on how the data is to be used

and is discussed in further detail in Chapter 3 and Chapter 4 where the annotations

are formatted for use in two distinct experiments. In the final section of this chapter,

we outline some statistics of the gathered datasets including their content and some

structures inherent in the semantic data in isolation.

2.5 Dataset Statistics

In this section we discuss the composition of the semantic annotations gathered and

the biometric datasets they were gathered against. Furthermore, in Section 2.5.3 we

present some evidence for the validity of the datasets gathered by exploring their internal

structure. By showing the inherent structure and correlation between annotations as

well as those between annotator self annotations and the annotations they were given,

we show some initial evidence that the data gathered has some regularity and thus merit.

Further evidence is then presented in future chapters where the gathered data’s abilities

with regards to identification and retrieval, both in isolation and in combination with

other biometrics, is explored.
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HIDDB TunnelDB Totals

Terms
Observed 20976 58023 78999
Self 1659 4957 6616
Of Anno-
tators

0 31874 31874

Total 22635 62980 85615

Partial Descriptions
Observed 334 956 1290
Self 10 77 87
Of Anno-
tators

0 544 544

Total 344 1033 1377

Complete Descriptions
Observed 625 1685 2310
Self 63 149 212
Of Anno-
tators

0 904 904

Total 688 1834 2522

Individuals Described
Observed 115 71 186
Self 73 226 299
Of Anno-
tators

0 43 43

Total 188 226 414

Table 2.2: Table summarising composition of the annotations gathered against two
biometric datasets

2.5.1 Overall Data Composition

Southampton Large (A) HumanID Database (HIDDB) contains between 6 and 20 sample

videos of 115 individual subjects each taken from a front-parallel viewpoint to extract

side-on 2D gait information. The new Southampton Multibiometric Tunnel Database

(TunnelDB) contains biometric samples of 227 subjects for which 10 gait sample videos

from between 8 to 12 viewpoints are taken simultaneously and stored to extract 3D

gait information. TunnelDB also contains high resolution frontal videos to extract face

information and high resolution still images taken to extract ear biometrics. There are

roughly 10 such sets of information gathered for each subject in TunnelDB

The GAnn annotation system used to collect data against the HIDDB was designed

to allow annotation by anonymous annotators across the internet, though in reality

the primary source of annotations came from two separate sessions involving a class of

psychology students. In the first session, all the students were asked to annotate the

same group of subjects, while in the second session 4 equally sized groups of subjects

were allocated between the students.
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The PyGAnn annotation system used to collect data against the TunnelDB was designed

to gather annotations as part of the collection of an individual’s multibiometric signature.

After performing the experiment annotators were asked to annotate themselves and a

group of 15 subjects. Due to various time constraints some annotators annotated fewer

subjects but all annotators captured provided a self annotation. We selected 4 groups

of 15 subjects to be annotated by progressively few annotators, aiming to maximise the

number of annotators describing the same subjects while simultaneously annotating the

maximum spread of subjects.

Table 2.2 shows a summary of the data collected. In this table Terms refers to individual

semantic terms collected to describe physiological traits. Descriptions refer to a set of

terms used to describe an individual. Here Partial Descriptions are those which contain

terms for only a subset of the physiological traits outlined in Table 2.1, where Complete

Descriptions contain terms for the full set of traits. Finally, Individuals denotes a count

of the number of distinct subjects annotated, not counting repeat annotations made by

separate annotators. In each of these sections, Observed is a count of annotations made

by an annotator to an individual subject, Self is a count of self annotations and Of

Annotators makes a note of annotations ascribed to annotators when they themselves

were subjects. Each of these sets of annotations are explored in more detail in the

following sections.

Overall, across both datasets, 85615 descriptive semantic terms were collected. Of these

6616 were self annotation terms and 78999 were ascribed to individuals by annotators.

This results in 2522 complete descriptions of individual subjects within which there

were 212 complete self descriptions and 2310 complete descriptions ascribed to individu-

als. Here, a complete description is defined as a group of terms describing all 23 physical

traits of an individual subject.

In future sections, the annotations gathered are discussed in three ways:

• Self Annotations - Annotations an individual gave to themselves.

• Subject Annotations - Annotations given by an individual to a subject

• Ascribed Annotations - A subset of subjects in TunnelDB were in fact annota-

tors. The annotations of these annotators are referred to as ascribed annotations
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2.5.2 Dataset Distributions

In the respective datasets a total of 414 individuals were described. In this section we

explore the distribution of the annotations describing individuals as well as the distribu-

tion of the self annotations gathered. In Fig. 2.5 and Fig. 2.6 we show the distributions

of the annotations gathered from the TunnelDB and the HIDDB respectively. Following

these graphs, in Table 2.4 and Table 2.3 we show a significance analysis of the difference

between self annotations and ascribed annotations of the two datasets.

Trait Distribution Comparison

In Fig. 2.5 and Fig. 2.6 we show the normalised distribution of self and subject anno-

tations for all traits in both datasets. An aspect of note is the distribution of measures

of physical length including Height, Leg Length and Arm Length. For both datasets

ascribed lengths tend towards long and average annotations meaning annotators avoid

the use of the term short. This is in contrast to measurements of thickness or bulk such

as Figure, Weight, Chest and Arm/Leg Thickness which display a more normal distri-

bution. From these graphs we can also see different terms for traits such as Proportions

were not used. It is possible that such traits were not perceived or the trait itself was

not understood by either group of annotators, with most subjects described as having

normal Proportions. Alternatively, the subjects collected may indeed portray inherently

“Normal” proportions. Leg Direction seemed to enjoy similar term patterns in both

datasets, a relatively unexpected result as the HIDDB did not provide the viewpoints

one would expect to be necessary to make such judgements. The results for the ma-

jor global features seem weighted towards Young Adult as Age; White as Ethnicity and

Male as Sex. This distribution is to be expected from the datasets as both contain many

subjects from the Engineering departments of the University of Southampton, UK.

Overall, we note that self annotations taken in both systems used semantic terms in ratios

comparable to those used in the ascribed annotations, as well as ratios comparable to

each other. This is evidence towards the idea that individuals do not wholly believe

themselves to be an average; rather individuals can reasonably describe themselves as

others might see them, using the full set of semantic terms others might use.

Cross-Dataset Distribution Comparison

In Table 2.4 and Table 2.3 we explore the differences in the distribution from self anno-

tations and ascribed annotations of the two datasets. We note small disparities between

the self annotations of HIDDB when compared to those of TunnelDB, though these are
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Figure 2.5: Normalised annotation distributions of ascribed annotations of the Tun-
nelDB dataset
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Figure 2.6: Normalised annotation distributions of ascribed annotations of
the HIDDB dataset
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Figure 2.7: Normalised annotation distributions of self annotations of the TunnelDB
dataset
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Figure 2.8: Normalised annotation distributions of self annotations of the HIDDB
dataset
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Trait p-value

Ethnicity 0.62
Hair Colour 0.70
Hair Length 0.84
Facial Hair Length 0.84
Age 0.90
Shoulder Shape 0.91
Sex 0.92
Leg Direction 0.92

Trait p-value

Chest 0.95
Facial Hair Colour 0.95
Leg Length 0.95
Hips 0.95
Height 0.96
Weight 0.97
Arm Length 0.97
Leg Thickness 0.98

Trait p-value

Figure 0.98
Skin Colour 0.99
Muscle Build 1.00
Neck Thickness 1.00
Proportions 1.00
Arm Thickness 1.00
Neck Length 1.00

Table 2.3: The p-value of the difference in ascribed annotations between the Tun-
nelDB and HIDDB dataset. Here we note no differences are significant to p ≤ 0.1

Trait p-value

Hair Colour 0.66
Facial Hair Length 0.66
Skin Colour 0.79
Sex 0.80
Facial Hair Colour 0.86
Ethnicity 0.87
Hair Length 0.92
Figure 0.93

Trait p-value

Leg Direction 0.93
Height 0.93
Neck Thickness 0.95
Weight 0.96
Chest 0.97
Leg Thickness 0.97
Age 0.97
Neck Length 0.97

Trait p-value

Arm Thickness 0.97
Leg Length 0.98
Shoulder Shape 0.99
Arm Length 0.99
Muscle Build 0.99
Hips 0.99
Proportions 1.00

Table 2.4: The p-value of the difference in self annotations between the TunnelDB
and HIDDB dataset. Again we note no differences are significant to p ≤ 0.1

mostly insignificant differences with large p-values. The p-values in these tables repre-

sent the probability of a shared distribution having created the annotation distributions

across the HIDDB and TunnelDB datasets. Two extremely similar distributions will

produce p-values close to 1.0 while completely dissimilar distributions will produce p-

values close to 0. A more detailed explanation of Analysis Of Variance (ANOVA) can

be seen in Section 3.5.1.1.

From the graphs and the relatively high p-values of ascribed annotations, we note that

the individuals annotated were overall similarly distributed in appearance. More pre-

cisely, disparate groups of annotators described the different individuals in the differ-

ent datasets using similar annotations. Some traits enjoy higher disparity between the

datasets and therefore lower p-values; namely Ethnicity and associated attributes of

Hair Colour. A special effort was made in the collection of TunnelDB to include individ-

uals of different ethnic backgrounds in order to analyse ethnicity as a co-variate of gait;

this may explain the apparent higher degree of ethnic disparity reported by annotators

of the TunnelDB. Individuals with beards were specifically chosen to be annotated in

the TunnelDB due to a lack of such individuals in the HIDDB. This was performed to

test the ability of the facial hair related traits to some degree.

With regards to self annotations across the two datasets, both from the graphs and the

relatively lower p-values in Table 2.4, we note a disparity in the ratio of self annotation

of Sex. However, the graphs and p-values show comparatively similar distributions in

other traits.
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There were key differences in how the groups of annotators ascribed descriptions to the

two datasets. Firstly, in TunnelDB annotators saw their own samples for purposes of self

annotation; the annotators of HIDDB only had self perception on which to base their

self annotation responses. Furthermore, although HIDDB was originally intended to be

gathered from anonymous participants across the internet, in reality most of the HIDDB

annotations were gathered from the attendants of a female dominated 3rd year Psychol-

ogy course at the university of Southampton in two different years. This second detail

explains the higher usage of Sex Female in self annotations recorded in the HIDDB

dataset. The slight visible differences in the Hair Length distributions could also be

attributed to a secondary effect of the difference in Sex distributions. However, other

distribution differences in metrics such as Figure, Height and Arm Thickness are shown

to be non-significant using a one-way ANOVA (See Table 2.4). This result is surpris-

ing as it might be expected that a group of young, primarily female individuals would

present different annotation distributions in such areas as Height and Figure.

However, as the annotators in the HIDDB were not themselves annotated by other

people, commenting on exactly what has caused the similarity between the two sets

of self annotations lies beyond the scope of this dataset and this thesis. To measure

such effects, a direct comparison of self annotations against third party annotations or

some ground truth measurements must be made. Such ground truths would include

numerical measurements of Weight, Height and Hair Length. If the ground truths are

significantly disparate between the two datasets, then there would be an argument for

a shift in perception on the part of the annotators in the HIDDB. It would show that

female annotators have self-normalised and, if they themselves were annotated by others

against the whole population, they would be attributed different annotations. If however

the ground truth sets were not significantly different one could argue that the individuals

annotating the HIDDB were in fact similarly distributed in appearance to those who

annotated the TunnelDB. This would then explain the similarity in self annotation terms

measured. There is some argument for this second notion in the correlations explored

in Section 2.5.3.2, though even then we cannot make any conclusion with complete

certainty.

2.5.3 Internal Correlations

Having outlined the overall content and distributions of the gathered datasets in the

previous sections, in this section we explore notable correlations found between the

various semantic annotations gathered. The goal of this section is to highlight internal

structures inherent in the datasets gathered, some of which are supported by previous
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studies, therefore confirming the data’s validity. In this section we explore the correlation

between relevant pairings of self, subject and ascribed annotations (See Section 2.5.1).

Though interesting for its own merits, these correlations could also have some useful

practical applications. For example, by knowing the correlation between traits, esti-

mated terms for missing traits could be inferred. This would result in more accurate

results for a given incomplete semantic query, though such query competition could also

be achieved through related techniques discussed in Chapter 4. In this section we also

explore in greater detail the correlation between especially notable traits, such as Sex

and Ethnicity when compared to other physical characteristics.

The following sections present correlation matrices containing the Pearson’s r between

each term; represented graphically. Colours closer to red represent correlation coeffi-

cients closer to 1.0 and thus a positive correlation, while colours closer to blue represent

correlation coefficients closer to -1.0 and thus a negative correlation. Pale green repre-

sents 0 correlation.

We calculate the correlation coefficient between two terms using individual annotator

responses of individual subjects. The calculation of Pearson’s r is shown in Equation 2.1.

r =

�n
i=1 (Xi − X̄)(Yi − Ȳ )��n

i=1 (Xi − X̄)2
��n

i=1 (Yi − Ȳ )2
, (2.1)

Here X and Y represent two semantic terms. In this experiment each semantic term is

set to 1 if the annotation contains the term and 0 if the annotation does not. Xi and

Yi are the value ascribed to an individual in a single annotation, where there exist n

annotations. Note that if (Xi − X̄)(Yi − Ȳ ) > 0 then Xi and Yi lie on the same side of

their respective means. In the binary case, where X and Y can only take the values 0 or

1, this denotes simultaneous annotation. Therefore, Pearson’s r when applied to these

semantic annotations is positive ifXi and Yi are simultaneously present in an annotation.

Furthermore, a higher correlation simultaneously represents how far an appearance of

X or Y is from the mean, as well as the frequency of simultaneous appearances of X

and Y across all n annotations.

In the graphs below, each solid pixel represents the Pearson’s r between two terms. For

clarity, individual terms are only labelled in the 6 subgraphs below each major graph,

with only whole term groups representing traits labelled in the larger graphs for each

group pairing. We present the larger graphs to show the general trait trends across the

whole feature set, and the more detailed graphs for more in-depth analysis of specific

example term pairings.
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2.5.3.1 Subject Annotations Auto-Correlation and Self Annotation Auto-

Correlation

In Fig. 2.9 and Fig. 2.10 we explore the correlations between subject annotation auto-

correlation, representing how often individual trait and term pairings were used by

annotators. Due to its nature, in the identity of the graph we achieve a perfect corre-

lation. This is a trivial result meaning simply that a term appeared with itself every

time it was used in an annotation. More informative correlations can be seen firstly

between traits 0 to 12. These are build traits whose terms describe overall thickness and

length of the body, as well as extremities. We note that Figure and Weight are highly

correlated. In turn they are both correlated with Arm Thickness, Leg Thickness and

Chest annotations. Correlation can also be noted between Height and Leg Length, each

also portraying correlations with Arm Length. We also notice some inverse correlations.

In Neck Length against Neck Thickness we see signs of thinner necks being correlated

with longer necks, bulky necks with shorter necks and so on. This inverse correlation

can also be noted in both Neck Length and Neck Thickness compared to other traits of

bulk and length respectively, though it should be noted that these inverse relationships

are not as significant. There seems to exist two groups of traits whose terms correlate

in ascending order. Namely traits denoting some notion of bulk or girth (represented by

Weight, Figure etc.) and those denoting some notion of length or longness (represented

by Height and appendage lengths).

Another informative set of correlations can be noted between the global and head traits.

Again both datasets show clear correlations between annotated Skin Colour and Eth-

nicity. This is to be expected as skin colour is a major contributor to the description

of ethnicity. We also note a correlation between skin colour and hair colour; this was

expected due to physiological and anthropological reasons. With regards to Sex we

observe a high correlation with Females and longer hair and Males and shorter hair.

Alternative fashion trends notwithstanding, within our datasets Hair Length seems to

be a reasonable distinction between the genders.

The rest of pairings show little to no correlation, bar a few outliers, which is to be ex-

pected. We find basically no correlation between most build features and global features

for example. Though we estimate that ethnicity can dictate stature to some extent,

either our dataset was too small, or within stereotypes variance is too high to show cor-

relation in our results. An outlier of note is the strong correlation between younger Ages

and shorter Heights. Upon further inspection these proved to be the height annotations

ascribed to the children present in the respective datasets, a result to be expected with

human height often achieving stability in the adolescent years.
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Figure 2.9: Term Correlations of annotations ascribed by individuals in TunnelDB
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Figure 2.10: Term Correlations of annotations ascribed by individuals in HIDDB
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Figure 2.11: Term Correlations of self annotations in TunnelDB
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Figure 2.12: Term Correlations of self annotations in HIDDB
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Figure 2.13: Term Correlations of annotations ascribed TO individuals against their
Self Annotations in TunnelDB
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In Fig. 2.11 and Fig. 2.12 we see the auto-correlations of self annotations. The correla-

tions in self annotations are very similar to those found between ascribed annotations

and many of the same statements with regards to build and global features can be made

as above. This shows that in describing themselves that annotators are as consistent

as they are when describing other people. This corresponds well with the similarity in

annotations distributions noticed in Section 2.5.2.

The correlations noted between self auto-correlations and ascribed auto-correlations can

be broadly interpreted in two ways. One possibility is that these correlations exist inher-

ently in the human population. In this case annotators may be acting on the existence

of some natural correlation between these traits. With regards to the build traits, nat-

urally bulky individuals may often have bulkier legs and arms, shorter individuals have

shorter arms and legs. With regards to global traits, white people have pale skin, black

people have dark skin and so on. Though this may be intuitive, one can easily imagine

contrary situations, such as pregnant women, who could potentially have large stomachs

and waists, but average or thin legs and arms.

Another possibility is that annotators are making holistic decisions which effect their

annotation of sets of traits in unison. In this case annotators make some categorical

decision, holistically considering all the attributes of an individual; they then proceed to

assign tags to a set of traits in unison based on this decision. For example, people may

only notice two variables with regards to build, namely some notion of bulk coupled

with some notion of lengths; or may notice some overall concept of ethnicity. Upon

viewing an individual and making this decision, the annotator proceeds to choose terms

for individual’s traits which coincide with these decisions. A small european girl may be

denoted as having white skin and thin arms regardless of actual perceived dimensions

of her arms or the relative tone of her skin. Trying to understand which is the case

would require a data outside the scope of the current dataset. As described at the end

of Section 2.5.2, to understand the reason for such correlations a direct comparison of

ascribed annotations against some ground truth measurements must be made. Such

ground truths would help us understand whether these correlations exist inherently in

the population or whether human perception is ignoring parts of the feature descriptions

in favour of decisions made against holistic features.

2.5.3.2 Self Annotations vs Ascribed Annotations

In Fig. 2.13 we examine the correlations between annotator self annotations and the an-

notations those annotators were ascribed. All participants in the gathering of TunnelDB

were requested to make self annotations. Therefore, all annotations made on subjects
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in TunnelDB can be compared with their self annotations. Unlike the previous pairing,

the identity of this matrix is of clear interest. High correlation in the identity means

the same terms were used in self annotation and ascribed annotation, low correlation

means the opposite. The diagrams clearly show less correlation in build features than

in global features. This could show that although annotators can accurately gauge the

population’s response to their Age, Sex and Ethnicity they have more trouble under-

standing how their physical appearance will be gauged by the population as a whole.

Some physical descriptions are also clearly better than others. While knowledge of ones

own Limb and Bulk descriptions is lacking, we seem to have a better idea of our own

Height.

2.6 Conclusions

In this chapter we have introduced our approach to semantic physical description anal-

ysis. We have chosen a set of physical traits which are consistently and accurately

discernible at a distance. The traits were justified in the context of cognitive psychology

and eyewitness analysis. For each trait, a further set of semantic categorical terms were

outlined and justified.

To discover the potential of semantic terms in biometrics identification and retrieval,

a set of annotations against two existing biometric datasets has been gathered. We

have designed a purpose-built system for the annotation of biometric signals using the

physical traits taking into considerations and counteracting possible points of weakness

in human descriptive ability. The content of the dataset gathered has been summarised.

Finally, we have presented an exploration of the annotations gathered in two ways.

Firstly, we explored the distribution of the annotations gathered, highlighting notable

patterns found in these distributions. Secondly we explored the internal correlations

between ascribed annotations and self annotations. Through analysis of this correlation

we uncovered structures inherent in the data gathered, providing some evidence for the

validity of the data gathered.

The following chapters further analyse semantic annotations through their practical

application in two distinct scenarios. In doing so we show the capability of the semantic

description of physiological traits for purposes of recognition and multimedia retrieval.



Chapter 3

Semantic Biometric Fusion

3.1 Introduction

The identification of humans is an important task, essential for controlling access to

resources or locations, as well as identification in surveillance scenarios. The identifica-

tion task can be expressed as a multi-class classification problem: the identity (class)

of an individual (probe-element) must be ascertained based on its similarity to some

set of individuals (reference identities or gallery-elements). The effectiveness of a given

classification system can be measured by its ability to separate elements of the refer-

ence identity set based on their inherent distinguishing attributes. We can also measure

a given system’s False Positive (FP) and False Negative (FN) classifications for given

thresholds. This classification process is the main goal of Biometrics [58]; the science

of establishing probe-element class membership through the analysis of inherent human

physiological, chemical or behavioural modalities. These modalities must hold certain

characteristics [57], namely: Universality, Distinctiveness, Permanence and Collectabil-

ity in order to be applicable to the identification problem for large populations.

The process by which biometrics achieve identification starts with the capture of a

biometric signal. Depending on the given situation, some sensor is used to translate

a given modality into some computable format. For example, this may take the form

of a audio signals capturing a voice, 2D images capturing a face, relief information for

fingerprints, video information for gait etc. Once the signal is captured various stages of

pre-processing are undertaken which attempt to extract the useful information regarding

the individual from any irrelevant background information in the modality; this process

is called enrolment. Once enrolled, the useful signal information is represented in some

comparable numerical format called a feature vector. Various techniques can be used

38
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which attempt the classification of this feature vector, and hence the identification of

the probe-element that the feature vector represents.

Several human physiological modalities have been identified which are suitable for use

in such a process, each with associated techniques for the extraction of usable features.

These modalities include, but are not limited to: iris, face, ear, speech, signature, DNA,

fingerprint and gait. They each have their weaknesses and strengths: DNA, fingerprint

and iris are noted for their accuracy, but require suspect co-operation and contact;

gait is effective at range, but is affected by uncontrollable covariates such as mood or

clothing. As a consequence none are considered (or expected) to accurately identify in

all situations; there is no panacea in biometrics. As outlined by Jain et al. [55, 57],

biometrics in isolation may have the following limitations:

Noise: Sensed data from a particular modality may be noisy or distorted. An example

in surveillance is Closed Circuit Television (CCTV) where, although the amount

of CCTV cameras installed in public locations has increased, the quality of the

recorded data remains poor due to low resolution. This means the biometric

features extracted from CCTV and other surveillance sources are usually of poor

quality, and their signatures are therefore susceptible to noise.

Non-universality or unavailability: It is unreasonable to assume that every modal-

ity can be extracted from every member of a population. In some cases the quality

of a modality may be too low, for example, dry cracked finger tips mean unusable

fingerprints. Also the signal may not be collectable, for example in cases of a

mugging, CCTV footage may be available showing gait and posture but not iris

and fingerprint.

Intra-Class variation: These variations describe the different signals which could be

extracted from two recordings of the same subject. This is particularly a problem

with techniques such as gait, which is not mood invariant. Related to this is

spoofing where the Intra-Class variation can be increased immensely for purposes

of deception, for example in voice recognition.

Inter-Class similarities: When datasets are large it becomes more likely that separate

individuals will share similar biometric signals simply due to limited range of the

feature space and subsequent overlaps.

The overarching issue is that when noise is high or populations are large, the intra-

class variance increases and as this approaches the inter-class variance, it becomes

more difficult to correctly classify individuals i.e. FP classifications increase. To tackle

some of the issues present in individual biometrics techniques (uni-modal biometrics)
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many approaches have combined multiple biometrics (multi-modal biometrics), i.e. the

production of a single classification from multiple sources. Biometric fusion has received

much interest in the last decade, with several approaches taken towards choosing the

level of fusion (data, feature, score etc.) as well as several implemented fusion scenarios

(multiple sensors, multiple classifiers, multiple biometrics features etc.). Examples of

such approaches include the combination of: 3 separate gait signatures [4], 3 face and 2

voice signatures [16] and face and gait signatures [61] all with promising results.

In this chapter we introduce the use of semantic annotations as a biometric modality,

both in isolation and in fusion with 2 primary biometric modalities across six different

biometric signatures. In Section 3.2, we outline some background of the two existing

modalities used in our experiments, namely Face and Gait biometrics. In Section 3.3

we explore biometric fusion in general, summarising techniques and discussing some

previous work. In Section 3.4 we present the feature vectors used in our experiments.

These include our semantic features constructed from annotations described in Chap-

ter 2 and our six automatic features extracted from our two modalities available in

the HIDDB and TunnelDB datasets against which we have a collection semantic an-

notations. In Section 3.5, we outline a set of experiments which highlight the ability

of our semantic features to function as biometric modalities and also outline the most

important physical traits with regards to identification.

3.2 Biometric Signatures

In the previous chapter, we outlined the collection of a novel dataset of semantic anno-

tations associated with individuals stored in existing biometric datasets. To explore the

abilities of semantic annotations as compared against, as well as in combination with,

existing biometric techniques we must first outline those techniques and the modalities

they analyse. Gait and face biometrics have been chosen for the comparison and fusion

tasks. Both biometric modalities are non contact and therefore amongst the few which

are usable across larger distances. This factor complements the situations in which

witness descriptions are necessary, making these biometrics related to the semantic an-

notations gathered, a topic we explore further in Chapter 4. In this section we present

a brief history of the fields of gait and face biometrics. This overview provides the

tools necessary to understand how we can compare the use face and gait signatures with

semantic biometrics, as well as how we can use these techniques effectively in fusion.
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3.2.1 Face

Face recognition has been called the holy grail of artificial vision and biometrics [100].

It is research area is extremely active, primarily motivated by the inherent advantages

of the face as a modality, including:

• Its inherent non-contact nature. Face biometrics are non-contact and therefore

non-obtrusive. This results in higher levels of public acceptability and also makes

face biometrics potentially acquirable without subject co-operation in surveillance

scenarios.

• The prevalence of large face datasets. With the rise of cheaper digital cameras and

large police mugshot datasets the collection of face signals is both easier and more

prolific with several standard datasets of faces available [82, 83, 99]1 for analysis

and comparison of techniques.

• Its relationship with the human ability to recognise each other. In the interest

of semantic biometrics, faces share a direct analogy with a major component of

human recognition [44]. This fact itself may be an underlying motivator for the

numerous research efforts focusing on face as a biometric.

Interest in the use of the human face as a tool for identification can be dated to Galton

[34] in 1890. Later, initial experiments with automatic computerised face recognition

can be dated to the first large-scale computers in 1964 [14]. This work appeared over 40

years ago and since then face recognition has been applied to a wide variety problems

attracting an extremely broad range of researchers, from biometric analysis to com-

mercial applications. The COMPENDEX reports over 900 works published under the

controlled term “Face Recognition” in 2009 alone and over the past decade there has

been mention of 15 conferences dedicated to facial recognition [139]. Therefore this sum-

mary does not hope to provide a complete dissemination of the field. Instead, our aim

is an overview of the aspects of face recognition of interest for our purposes: namely the

process of face detection and simple techniques for face recognition with faces gathered

from the TunnelDB. Reviews of the research can be found in [53, 133, 139].

Broadly speaking, face recognition can be separated into the two major tasks inherent

in any biometric system. Firstly, the face in a given image or video must be extracted.

This process must take into consideration such factors as: pose; occlusion; facial ex-

pression; image orientation; lighting and the removal of background information [133].

This portion of the task is critical, if these covariates are completely accounted for, face

1Several others found at: http://www.face-rec.org/databases/

http://www.face-rec.org/databases/
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recognition is made trivial. A popular approach to the task of face localisation in sim-

ple scenarios is the Harr-cascade as proposed by Viola and Jones [125]. This technique

uses an integral image and a set of Harr wavelet features to make quick decisions about

whether a patch of pixels contains a given object which it has been trained against. The

technique is very powerful and incorporates resilience to occlusion, changes in lighting

and scale. However, this approach is sensitive to pose, orientation and extreme occlusion

of faces when compared to the training set meaning that for more complex system other

approaches must be taken. However, for the TunnelDB this is sufficient as direction of

gaze and lighting are controlled variables.

Once face registration is achieved, a set of features must be extracted from the detected

probe face for comparison with the same features extracted from faces in the gallery set.

The bulk of modern face recognition research is made up of the various kinds of features

which can be gathered from a given face. Broadly speaking, these approaches can be

broken down into holistic matching and structural matching techniques [139].

Holistic approaches treat the whole face as raw input, often utilising statistical methods

to deal with registration errors. One of the most widely used representations of the

face is the eigen-face implemented by Turk and Pentland [122], an approach based

on PCA which finds a low dimensional space in which new faces can be projected and

compared, excluding dimensions which likely represent error due to mis-registration.

This is achieved by finding the main directions of change in a set of training faces.

Other methods include: the use of Linear Discriminant Analysis (LDA) which more

explicitly attempts to find subspaces which best separate individuals [117]; and also

the reformulation of the 2 class Support Vector Machines (SVM) problem to the k

class face recognition problem [98]. All these approaches amount to the application of

some mathematical transform applied to detected faces aiming to increase the inter-class

variance while decreasing the intra-class. With adequate registering holistic approaches

work very well. However they tend to perform badly under difficult covariates including

changes in lighting, pose and facial expression between the probe and the gallery. This

is the case because, by definition, they rely on the overall per-pixel similarity of faces.

Structural approaches locate some local features such as eyes, nose, mouth and chin

and measure a set of characteristics for each. By comparing the characteristic and local

statistics of these features, identity can be discovered. Some of the earliest approaches

in face recognition approached the problem structurally, attempting to measure fea-

tures such as the width of head and distance between eyes [63] and discovering the

geometry of local features [62]. More recent structural approaches include the notably

successful Elastic Bunch Graph Matching (EBGM) system by Wiskott et al. [130]. This

approach uses a Gabor wavelet transform to discover a set of feature points called jets.
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Graphs of jets connected by distance edges can be compared. Another kind of structural

approach attempts the estimation of the parameters of a 3D model of a face given a 2D

face image [13]. Such approaches attempt to explicitly account for pose, lighting and

occlusion once the 3D model is estimated. However, as with all structural approaches,

they are inherently reliant on the discovery of local features for parameter estimation,

the robust discovery of which is still an open question.

As the face gathering process in the TunnelDB is strictly controlled, the quality of

the faces detected are high, pose is practically guaranteed and lighting is controlled.

Therefore we successfully employ a simple holistic technique in our usage of the face

biometrics from the TunnelDB to gauge a baseline. This technique is described in more

detail in Section 3.4.2.2

3.2.2 Gait

In the medical, psychological and biometric community, automatic gait recognition has

enjoyed considerable attention in recent years. Psychological significance in human

identification has been demonstrated by various experiments [60, 119]; it is clear that the

way a person walks and their overall structure hold a significant amount of information

used by humans when identifying each other. Like the face, human gait recognition

portrays several attractive advantages as a biometric:

• It is unobtrusive, meaning people are more likely to accept gait analysis over other,

more accurate, yet more invasive biometrics such as finger print recognition or iris

scans.

• It is difficult to conceal. Unlike the human face which can easily be covered by

masks, the alteration of gait is difficult. To do so takes considerable effort which

is often detrimental to active movement such as running.

• It is one of the few biometrics which has been shown to identify individuals ef-

fectively at large distances and low resolutions. However this flexibility also gives

rise to various challenges in the use of gait as a biometric. Gait is (in part) a

behavioural biometric and as such is affected by a large variety of co-variates in-

cluding mood, fatigue, clothing etc. all of which can result in large within-subject

(intra-class) variance.

Over the past 20 years there has been a considerable amount of work dedicated to

effective automatic analysis of gait. Marker-less machine vision techniques have been

employed in order to match the capabilities of human gait perception [90]. Broadly
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speaking, these techniques can be separated into model-based techniques and holistic

statistical techniques.

The latter approaches tend to analyse the human silhouette and its temporal variation,

making few assumptions as to how humans tend to move. An early example of such an

approach was performed by Little and Boyd [77] who successfully extracted optic flow

“blobs” between frames of a gait video which they use to fit an ellipsoids to describe

predominant axes of motion. Murase and Sakai [87] analyse gait videos by projecting each

frame’s silhouettes into the eigenspace separately and using the trajectory formed by all

of an individual’s separate frames in the eigenspace as their signature. Combining each

frame silhouette and averaging by number of frames, or simply average silhouette [38, 78,

123], is the most popular holistic approach. It produces relatively promising results and

is comparatively simple to implement and as such is often used as a baseline algorithm.

Model based techniques start with some assumption of how humans move or a model

for human body structure, usually restricted to one view point, though some tackle

the problem in 3D. Values for model parameters are estimated which most faithfully

represent the sensed video data. An elegant early approach by Niyogi and Adelson

[91] stacked individual silhouettes in an x-y-time (XYT) space, fitting a helix to the

distinctive pattern caused by human legs at individual XT slices. The helix perimeters

are used to define the parameters for a five-part stick model. Another, more recent

approach by BenAbdelkader et al. [6] uses a structural model and attempts to gather

evidence for subject height and cadence.

Model based techniques make several assumptions and explicitly extract certain infor-

mation from subject videos. Though this would be useful for specific structural semantic

terms (Height, Arm/Leg dimensions etc.), the model could feasibly ignore global seman-

tic terms (Sex, Ethnicity etc.) evidence for which could exist in the holistic informa-

tion [75]. Subsequently we choose the simple yet powerful average silhouette operation

for our automatic gait signature both for purposes of simplicity and to increase the like-

lihood of correlation with global semantic terms. These holistic average silhouettes are

extracted from subjects in both HIDDB and TunnelDB. The different datasets collect

gait in significantly different ways, therefore the specifics of how these signatures are

generated are discussed in more detail in Section 3.4.2.1 and Section 3.4.2.2

3.3 Biometric Fusion

A key problem with any biometric system is intra-class variance caused either by noise

or by lack of distinguishing capability of the biometric trait or algorithm. An approach
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to addressing this problem is combining data captured from multiple biometric modal-

ities or multiple sets of the same biometric modality. Such multi-modal biometric sys-

tems [104, 105] can be shown to have less than or equal error rates when compared to a

uni-modal system, as shown with some theoretical rigour by Hong et al. [46]. The bene-

fits of multi-modal biometrics systems are somewhat more intuitive; it can be expected

that with more information regarding an individual’s various traits, a better picture of

the identity of the individual can be created. Multiple traits also improve a system’s

resilience to spoofing attacks, if an impostor is to pass a mutli-biometric system they

are required to steal impressions of multiple traits, thus increasing difficulty. The issue

of non-universality is also addressed; if a trait on an individual is of poor quality or non

existent, the ability to use another trait for validation is desirable. With these benefits in

mind it is clear that independent biometric traits are desirable in multi-modal systems.

Indeed it is shown by Kuncheva et al. [69] that it is not only desirable to have statis-

tically independent classifiers, but that it is desirable that the classifiers are negatively

dependent, i.e. classifiers which commit errors on different objects.

The principle of fusion of multiple biometric signals can be approached in several ways [57].

These may include multiple sensors (e.g. several finger print scanners), multiple units

(e.g. using multiple fingers, using both eyes) and multiple traits (e.g. fingerprint and

hand, gait and face). In relation to the task of biometric fusion with semantic informa-

tion, one approach is to define the semantic information as another biometric trait and

treat this as a multiple biometric traits scenario. There exist four stages at which the

fusion of multiple biometric traits could be approached: at sensor level, at the feature

level, at the score level or at the decision level. The general consensus is that the lower

levels contain richer information about the source traits and as a consequence improve

fusion results. Viable approaches along with existing example applications are outlined

below. Note that sensor level fusion is specifically ignored as here it requires compatible

sensor level signals, which semantic features and the chosen automatic signatures do not

share.

3.3.1 Feature Level

In feature level fusion, feature sets from multiple sources (samples, algorithms, modalities

etc.) are consolidated into a single feature set after some normalisation scheme is applied.

Feature level fusion occurs at the lowest level at which it is still feasible to combine

semantic features with automatic features. As a consequence feature level fusion has

the capacity to hold the richest information of all fusion levels discussed. Feature level

fusion also allows for the exploration of correlation between components of automatic

signatures and semantic features. This means correlated features can be removed due to
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redundancy, or their correlation can provide useful insight into the relationships between

the different sources; this is discussed in further detail in Chapter 4.

Feature level fusion presents several challenges. On a practical level, most Commercial

Off-The-Shelf (COTS) biometric implementations do not openly provide access to fea-

ture vectors they use, though this is not an issue when all information is open, as in

most research level systems. More importantly, it cannot be guaranteed that feature

sets are compatible. Finger print minutia generate feature sets of varying length, in-

compatible with the constant length feature vectors produced by iris analysis. Also, as

noted by Ross and Govindarajan [103], the simple concatenation of feature vectors may

result in the curse of dimensionality [120] problem, damaging the identification capa-

bility rather than improving it. This can be avoided through careful selection of feature

components which affect matching performance most favourably. Normalisation may

also be necessary in feature fusion as features being fused exhibit significant differences

in their range and form (i.e. their distributions). Several strategies have been proposed

to tackle feature normalisation (min-max, median etc.).

3.3.1.1 Examples

Due to perceived difficulties of incompatible feature sets in feature fusion, most tech-

niques in the past used score fusion. We present some notable examples of multi-modal

feature fusion as this compliments semantic fusion, though there are a few examples in

multi-sample [86] and multi-algorithm [28, 132] scenarios.

Ross and Govindarajan [103] present an extensive discussion on feature level fusion.

In their approach, hand and face feature vectors are concatenated and subjugated to

a feature subset selection using PCA. Euclidian distance and threshold absolute dis-

tance of the concatenated, dimensionally reduced vectors are combined using a score

fusion technique. The authors show some improvement when feature fused scores are

themselves fused with simple match scores, success attributed primarily to removal of

redundant features. They argue that this itself is justification for biometrics vendors to

make feature level information available. Feng et al. [30] present another example, ap-

plying Independent Component Analysis (ICA) and PCA on both face and palm print

feature vectors, combining them using a feature concatenation. Other examples can

be found by Chibelushi et al. [20] who combine voice and lip shape features, reducing

dimensionality using PCA and Son and Lee [115] who combine face and iris features,

reducing dimensionality using Direct Linear Discriminant Analysis (DLDA).
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3.3.2 Score Level

Scores are generated from classifiers as a measure of how well a probe element matches

a given class. Score fusion attempts to combine the scores from multiple classifiers to

improve recognition. Kittler et al. [64] present a theoretical framework for score-based

approaches for consolidating evidence from multiple classifiers. Classification scores pro-

vide the richest input pattern information that is still readily available from most COTS

biometric matchers. These factors make score fusion the most popular and well-explored

fusion strategy in the literature.

Scores generated by different classifiers are likely to be incompatible in their raw form.

One issue is orientation; some classifiers produce a distance score, where small values

denote relevance, while other classifiers produce a similarity score, where large values

denote relevance. There is also no guarantee that scores have a common distribution

and range. These factors produce complications which can been approached in three

main ways [58, 106]: density-based, transformation-based and classifier-based schemes.

3.3.2.1 Density-Based Score Fusion

This approach starts by formulating the classification problem using conditional proba-

bility. For a set of scores generated by R classifiers, scores held in vector s = {s1, ..., sR}
such that sj is the score generated from the jth classifier, we define a classification as:

Assign s → ωi, if (3.1)

P (ωi|s) > P (ωj |s), i �= j (3.2)

Where ω = {ω1, ..., ωN} and ωi is the ith class. This formulation of the posterior

probability can be calculated using the probability density of the score set given a class

label class using Bayes theorem:

P (ωi|s) = P (s|ωi)P (ωi)
P (s) (3.3)

Where P (ωi) is the probability of observing a class, P (s) is the probability of observing

a given score. The class conditional probability P (s|ωi) is the only unknown and is esti-

mated using parametric [114] or non-parametric [52] techniques. Parametric techniques

assume an underlying function for the density function, (e.g. a Gaussian Distribution)

and attempt to calculate its parameters. However assigning such limitations may be

inappropriate in common multi-biometric score distributions which have large tails and
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have multiple modes. Alternatively non-parametric approaches assume no model and

are essentially data-driven, using training examples to estimate underlying probability

densities. Approaches such as Parzen-Window presented by Jain et al. [52] may estimate

densities inaccurately due to finite training data.

3.3.2.2 Classifier Score Fusion

Classification approaches treat each score sj from each classifier as the dimensions in an

R dimensional space, resulting in a feature vector s = {s1, ..., sR}. Similar to density-

based schemes, classifier approaches require a large amount of correct classification ex-

amples in the training phase to accurately estimate the parameters of the classifier. The

benefit lies in no prior requirement to transform the scores into some common domain

(as in transformation based schemes) and no need to estimate complex probability dis-

tributions (as in density based approaches). Several classifiers have been used for this

approach score fusion techniques, including: the use of a HyperBF network [16], K Near-

est Neighbours (KNN), decision trees and logistic regression [124] and several examples

using SVM [5, 19, 31, 110].

3.3.2.3 Transformation-Based Score Fusion

Density and classification based schemes require large numbers of training examples,

even if independence is assumed and a product of marginal densities is calculated as

opposed to the joint-density function [64]. In the scenarios such as that of semantic

annotations, gathering many training examples may not be viable. Therefore, rather

than using probabilistic frameworks or classifiers to learn the underlying structure of

generated scores, another approach is to combine the scores directly using simple fusion

operators (sum, product, min-max etc.) and guarantee meaningful results by normalis-

ing and orientating scores from each classifier. A variety of normalisation schemes can

be employed [106], many of which have been shown to have merit, as discussed in the

comprehensive set of normalisation experiments discussed by Jain et al. [52].

3.3.3 Decision and Rank Level

Many COTS biometric matchers do not provide access to scores or features, subsequently

the final decision to accept/reject (in the verification case) or rank (in the classification

case) of a certain candidate is the only information available. Decision level fusion tech-

niques take advantage of this data, attempting to combine the ranks or final reject/accept

decisions given to each class by each matcher.
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In the classification case, ranks of classes can be combined in a variety of ways as

outlined by Ho et al. [45]. Approaches essentially separate into those performing class

set reduction and those performing class set reordering. Class set reduction attempts

to reduce the number of classes in the output list while keeping the true class present,

whereas class set reordering attempts to improve the rank of the true class in the output

list.

In the validation scenario, the final decision can be combined in a variety of strate-

gies [106]. The most simple approach is the “AND” and “OR” rules, though they come

with high False Reject Rates and False Accept Rates respectively [21]. More forgiving

approaches use matcher decisions as votes, the most common of which is majority vot-

ing [59, 71], though majority voting has limits [70] and more successful results have been

reported if votes from stronger and weaker classifiers are weighted appropriately. More

elaborate approaches have also been attempted, Xu et al. [131] report improvement in

handwriting recognition using Bayesian Decision Fusion. Firstly, the conditional prob-

abilities P (cj |wk) (i.e. classification to a particular class cj given a true class wk) is

calculated using the decisions of a training set. Bayes rule can then be used to calculate

P (wk|c) where c = c1, ..., cJ , i.e. the probability of true class given a set of decisions.

This calculation can be simplified if independence is assumed between matcher decisions.

It has been argued [104] that decision based techniques are coarse, losing rich information

by not taking into account the detail held in the features or the scores. However, pure

decision technique bypasses incompatibilities between classifiers, ignoring normalisation

issues present in score techniques or possible feature space incompatibles and “the curse

of dimensionality” [54].

3.3.4 Soft Biometric Fusion

One of the few efforts made towards the incorporation of physical traits held in a format

comprehensible, and often collectable, by humans has been the use of so called soft

biometrics [58, 106] as ancillary data in a process called soft biometric fusion. As briefly

mentioned in Section 2.1 a few efforts [56, 88, 136] have been made to incorporate

attributes such as Gender, Ethnicity, Height and Weight as a source of information

alongside primary biometric sources.

The Bayesian framework recommended by Jain et al. [56] approaches soft biometric fu-

sion in a similar way to density estimation in score fusion. Let x = [x1, ..., xRp ] be a

set of features provided by Rp primary biometrics and y = [y1, ..., yRs ] features (such

as Gender, Ethnicity etc.) provided by Rs soft biometrics. Independence is assumed

between primary and soft features and the probability of a class assignment given an
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observation P (ωi|x,y) (of both soft and primary features) is calculated using the under-

lying probability densities of an observation given a class P (x,y|ωi) by following Bayes

rule (see Section 3.3.2). These densities are calculated using a set of training examples

for primary biometric features whereas, for the soft features, the accuracy of the un-

derlying estimator is used as the parameters for the probability density. Jain et al. [56]

discuss the possibility that the calculation of P (ωi|x,y) could be dominated by the soft

features due to their high variance. This problem is solved through the use of scaling

factors used to reduce the effect of soft biometric traits.

Justifications for the use of soft biometrics [58, 106] often cite the benefits provided by

information obtained at negligible extra cost to the user and COTS biometric imple-

mentation. As such, soft biometric approaches are often discussed along side automatic

approaches, extracting the soft biometric information from existing primary sources.

However, in using existing automatic feature extraction techniques, we argue that there

is potential for the extracted ancillary data to be a reiteration, i.e. information already

present in the primary biometric signature. Alternatively, by incorporating human un-

derstanding (in forms such as our semantic annotations), we actively enrich the biometric

signature with a novel source [69], distinct from information extracted automatically.

3.4 Semantic Fusion

In this section we describe the structure and source of the data used in our biometric

and fusion experiments. We describe the process undertaken to represent semantic

labels numerically in a manner suitable for classification and fusion. We also describe

the automatic visual features extracted from our two datasets, namely the extraction

of gait signatures from the HIDDB and the TunnelDB as well as the face signatures

extracted from the latter.

3.4.1 Semantic Features

To allow for the analysis of semantic data, we must first numerically represent terms

ascribed to traits. There are two strategies which we have explored to represent semantic

features. Firstly, as most of our semantic traits are described using terms which lie on

some sort of continuum of size (big to small), a logical approach is the assignment of

normalised values between 0 and 1 to each trait. In this scheme low values would be

assigned to annotations such as Small or Thin, higher values given to annotations such

as Large or Fat for each trait. This also preserves the implicit order of the values. For

example, Small and Very Small would be values which lie on the same side of the number
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line from Average as the centre. Our first experiments with semantic labels used this

approach with some success [109] as did our correlation analysis of all traits against all

other traits presented in Section 2.5.3.

However though meaningful for traits with ordered value centred terms, this scheme is

unnatural for clearly categorical attributes like Sex or Ethnicity which have no concept

of order. Choosing an arbitrary order artificially relates two terms and pushes others

apart. More subtly, choosing an arbitrary equal separation of the number range between

the chosen terms of even value orientated traits may be misleading. For example, the

distinction between calling an individual Average or Small may be little; many annota-

tors may be fickle with regards to the fact. However if an individual ascribes Very Thin

or Very Large this might be a rare annotation that in turn carries more meaning. In a

simple scheme its value may be simply twice the distance from the Average when com-

pared to Small, though in reality the distinction in the annotators mind may be larger.

Therefore, another scheme has been explored centred around a binary notation. In this

scheme each term rather than each trait is represented. An individual’s annotation of

a given subject is represented by setting assigned terms to 1 and setting non assigned

terms to 0. Though we lose the notion of explicit ordering of value based terms, we open

the exploration and correlation of feasibly disparate terms. Also, with careful analysis,

the order relationship of terms such as Small compared to Big can still be detected and

therefore exploited using this encoding technique (See Section 2.5.3 and Chapter 4)

Following this scheme, for each annotation assigned to each subject, a semantic feature

vector is generated. This is a 137 dimensional feature vector per annotation attributed

to each subject, one dimension per term of each trait. Each feature vector is directly

comparable to those of another annotator using any given distance metric; often the

Euclidian distance metric is used in our experiments though a cosine metric also has

meaning in this context. A unique annotation for a given subject across a set of annota-

tors can also be represented by averaging the responses to each term from each annotator.

Such an approach is useful when constructing gallery and probe sets of annotators as

well as subjects in the results sections. In Section 3.5 this annotation representation

scheme is used to explore the ability of our semantic datasets both in isolation and in

fusion with other biometric signatures.

3.4.2 Automatic Visual Features

To give context to the ability of semantic annotations and also to explore their ability

in fusion with primary biometric signatures we must first outline those signatures. In
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this section we explore the automatic biometric features extracted from the datasets for

which we have collected semantic annotations.

3.4.2.1 HIDDB Dataset

Subject lighting
low power

diffuse lights

Subject’s walking path

Green backdrop

orientation
Camera oblique

orientation
Camera normal

Backdrop
lighting

high power
flood lights

Figure 1: Laboratory lighting arrangement, enabling the separation of the two lighting schemes.

track and treadmill scenarios. This near perfect subject extraction provides an approximation to
ground truth. Further ground truth includes the still photos and subject information. Iterative
optimisation of the laboratory and equipment setups produced blur free data and significantly
reduced shadows. This iterative process used Canny and Sobel edge detectors and a statistical
subject extraction technique [8] enabling the assessment of the quality of the lighting and camera
positions. A software implementation of chroma-key extraction allows for easy monitoring of the
data quality between filming sessions, as invariably (over time) equipment can be knocked and
the output from lights can change. Figure 2 shows example images and a chroma-keyed result
(actual data is in colour). The complete database (captured in one month) includes details
of all settings and session specifics, recorded on a per-filming session basis. To increase the
available information for the ground truth (and to ease use), the data from the fronto-parallel
track camera has been significantly described and labelled using XML, an example fragment
of XML can be seen in Figure 3. Further information includes: less detailed labeling for the
remaining viewpoints, camera sync information (between views) and parameters enabling radial
distortion correction.

Analysis

To date, three different recognition approaches have been applied to the data, all with encour-
aging results. This analysis of the database suggests that it has indeed met its design objectives.
First, high gait recognition performances have been achieved on the largest yet number of sub-
jects for gait, an overview of these results can be seen in Table 1. The progression of these results
reflects the gradual construction of the database and detailed explanations of these results can
be found in [9, 10, 11]. The processing of the data used much of the available support material,
enabling streamlined and in some cases automated analysis. These results used a selection of
binary silhouettes and optical flow descriptions generated from the inside laboratory data. The
use of the chroma-keyed binary silhouettes has also provided a test-bed for performance anal-
yses of the various techniques eg. [11]. A preliminary analysis of the outdoor data confirms
the increased variance of features extracted from application scenario imagery as opposed to
ground truth [11], shown here for two subjects in Figure 4. In each plot the tight Gaussian
represents the variance of the inside data, whereas the larger Gaussians (greater variance) are
the outdoor data, the mean of each shows the mean feature point drift from the baseline (inside
data). Finally, only data-quality checks have been applied to the inside treadmill data.
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Figure 3.1: The configuration of the laboratory portion of the HIDDB from Shutler
et al. [113]

Here we describe the features automatically extracted from HIDDB (See Section 2.5.1).

Two automatic gait features were extracted from this dataset and used in the experi-

ments in this work: the Average Silhouette gait signature and the newly developed

Average Colour Silhouette. The configuration of the biometric dataset collection

environment itself is shown in Fig. 3.1 and discussed in greater detail by Shutler et al.

[113]. Subjects collected in the HIDDB walked continuously around the track shown

in Fig. 3.1. During their walk the subjects were filmed continuously from two different

viewpoints, but in our experiments we use only the “Normal” viewpoint described in

the diagram, here called the fronto-parallel viewpoint. As they walk the subjects were

captured against a chroma-keyed background allowing for easy background subtraction.

A single sample is classified as one complete traversal across the central area of the

walking path with the subject walking from right to left or left to right. In practise this

amounted to between 6 and 20 samples for each subject in the HIDDB

Standard Average Gait Signature

For each gait sample, firstly the subject is extracted from each frame with a median

background subtraction and the frame is transformed into a binary silhouette image

(Fig. 3.2(b)). In this image the largest set of connected pixels is taken as the subject.

This results in a set of binary silhouettes, one for each frame. At this point each
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(a) Individual subject captured by a single high definition camera as they walk

(b) Each frame of a given gait cycle walk has the background subtracted. The subject is the largest connected region

(c) The connected region is isolated
and a mask created. This is used
directly for the greyscale signature

(d) The connected region is isolated
and a mask created. This is used to
extract the individual for the colour
signature

(e) The masks are averaged across a
single gait cycle to create the Aver-
age Silhouette Signature

(f) The colour silhouettes are aver-
aged across a single gait cycle to cre-
ate the Average Colour Silhouette
Signature

Figure 3.2: Subfigures (a)-(f) showing the silhouette signature generation from
the HIDDB
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frame is height normalised such that the individual’s height is set to 64 pixels and their

width is normalised in proportion (Fig. 3.2(c)). This process retains the aspect ratio

but purposefully loses absolute height information as to allow the sample to be taken

from an arbitrary distance to the camera, making the signatures distance invariant. The

silhouette is then centred by its center of mass on a 64x64 final frame. The gait signature

of a particular sample is the averaged summation of all these binary silhouettes across

one gait cycle (Fig. 3.2(e)). For simplicity the gait signature’s intensity values are used

directly as the feature vector, although there have been several attempts made to explore

a subset of significant features in such feature vectors, using ANOVA or PCA [123] and

also mutual information [37].

Colour Average Gait Signature

We formulat another colour gait signature which is likely to correlate with semantic

features such as Ethnicity and Skin Colour. The binary silhouettes extracted during

the first stage of the standard average gait signatures are used to mask the original full

colour videos on a frame by frame basis (Fig. 3.2(d)). From these masked colour images

the subject is extracted and once again height normalised and centred to a 64x64 image

for each frame. A colour signature is generated from the averaged summation of all these

images across the same gait cycle as the standard average gait signature (Fig. 3.2(f)).

These two techniques result in two automatic feature vectors of size 4096 (64x64) and

12288 (64x64x3) (See Table 3.1) respectively which describe each sample video of each of

the 115 subjects. This complete set of automatically and semantically observed subjects

is manipulated in Section 3.5

3.4.2.2 TunnelDB Dataset

Here we describe the visual features automatically extracted from subjects in Tun-

nelDB [84, 112] (see Section 2.5.1). Two automatic gait features were extracted from this

dataset and used in the experiments in this work: the Projected Gait (Normalised)

signature and the Projected Non-Normalised Gait signature. Furthermore, two

face features were extracted from another portion of this dataset: the newly developed

Average Face signature and the related Average Face Histogram signature. The

configuration of the biometric tunnel itself is shown in Fig. 3.3. Subjects collected in

the TunnelDB walk through an entry beam on a straight red path towards the exit beam

and therefore towards a face camera. During a single walk (a sample), the subject is

simultaneously captured by the gait cameras and the face camera. Upon reaching the

exit beam, a single flash camera is used to photograph the right ear.
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Average Color Silhouette Average Silhouette
Subject 098

Subject 112

Table 3.1: HIDDB Signature Examples

Figure 3.3: The configuration of the biometric tunnel used to gather TunnelDB

Projected Gait (Normalised and Non-Normalised)

One of the main contributions of the TunnelDB is its novel dataset of 3D gait signatures.

Subjects in the dataset are synchronously captured by 82 and later 123 cameras. These

cameras are used in combination to produce a 3D model of a given subject’s walk

and can therefore produce gait signatures of a subject from several novel viewpoints.

This results in several applications including self contained security checks (e.g. airport

identity verification) as well as viewpoint reproduction to replicate signatures extracted

2Until July 2007
3Current configuration
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(a) Individual subject captured by 8 synchronized cameras simultaneously

(b) Each camera is background subtracted. The largest connected area is the subject’s silhouette

(c) Using each silhouette, volumetric
carving is used to construct a model

(d) The model of each frame is used
to capture a silhouette generated
from a novel perspective

(e) These silhouettes are combined to
produce a single signature

Figure 3.4: Subfigures (a)-(e) showing the signature generation from the TunnelDB
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from arbitrary cameras (e.g. CCTV). There are several stages involved in producing a 3D

model from videos collected by this system. Before the subject walks through the tunnel,

a snapshot of the tunnel background is taken for each camera. For each image taken of

the subject as they walk through the tunnel (Fig. 3.4(a)), this background is subtracted

resulting in a silhouette per frame of the subject’s walk for each camera (Fig. 3.4(b)).

These silhouettes are used as the basis for a volumetric carving technique [112]. This

process can be intuitively understood by picturing a 3D scene where all volumetric-pixels

(or voxels) are potentially those of the subject at a given frame. Given the knowledge

of the exact calibration information of each camera it is possible to project a cone

representing a given camera’s silhouette of the subject into this 3D scene. By “keeping”

voxels in the scene covered by the projection of most or all of the camera’s silhouettes

while “removing” those voxels covered by few or none of the camera’s silhouettes, it is

possible to carve a 3D representation of a given subject at a given frame (Fig. 3.4(c)).

This process is demonstrated visually in the 2D case in Fig. 3.5 and produces static 3D

models of a human. Using the generated 3D model, gait signatures can be created of

a subject from novel viewpoints. This involves producing a model for each frame of an

individual gait cycle of a subject (Fig. 3.4(d)) and then combining each of these frames

to form an average silhouette from the given perspective (Fig. 3.4(e)). This process is

described in more detail by Seely et al. [112].

Figure 3.5: An example of volumetric carving in the 2D case. Here the actual ob-
ject being perceived is the circle in blue while the regenerated object found from the

volumetric carving of each camera is shown in black.

To complement the features generated from the HIDDB we chose to generate 2D sig-

natures from a fronto-parrallel perspective from the 3D models gathered in TunnelDB.

For each 3D model generated for each frame, the virtual camera is placed parallel to
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the direction of walk and a single 2D frame is projected. Each frame is then treated in

one of two ways. Firstly, we can normalise each frame, making the signature distance

invariant. We call this the Projected Gait (Normalised) signature. However, as

each of these projections is made from a synthetic camera viewpoint whose exact 3D

position is known, the scale information of the subject from the camera need not be

removed, and has been shown in Section 4.3 to contain important information about

the subject’s identity. Therefore we also generate and analyse a second signature, called

Projected Gait (Non-Normalised). With or without this normalisation step, these

frames are scaled to a (64x64) image and averaged across a single gait cycle producing a

gait signature for a given sample of a given subject in a similar manner to those gener-

ated in Section 3.4.2.1. This results in two sets of 4096 (64x64) signatures (see Fig. 3.8)

for each subject generated from a camera perspective dependent on an automatically

generated 3D model.

Figure 3.6: TunnelDB Signature Examples

Generated Model Projected Gait
(Normalised)

Projected Gait
(Non-Normalised)

Subject 155

Subject 138

Average Face and Average Face Histograms

While gait images are taken, a single higher definition camera at the end of the tunnel

captures a 1600x1200 high resolution face images at 27 frames per second. In the

tunnel scenario, direction of gaze is guaranteed by instruction to subject as well as by

their walking direction. Lighting and other environmental variables are also controlled.

This means that many of the difficulties inherent in face detection and face recognition

discussed in Section 3.2.1 can be ignored. Also, as the background of the tunnel is known

it can be easily removed, isolating the subject in the scene which is further simplified by
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(a) Individual subject captured by a single high definition face camera as they walk

(b) Each frame of the walk has the background subtracted. The largest connected region is taken as being the subject

(c) The connected region is isolated
by using as the largest connected re-
gion above as a mask on the original
frame

(d) The Viola-Jones faces detector
implemented in the OpenCV library
is used to locate the face in the iso-
lated region

(e) Each face is normalised to 32x32
coloured image. A single average
face is generated and used as the sig-
nature

Figure 3.7: Subfigures (a)-(e) showing the signature generation from the TunnelDB

the presence of only one subject in the tunnel for a given sample. With this knowledge,

some preprocessing is undertaken to aid the localisation of a face in each frame. Firstly,

for each frame, the background is subtracted (Fig. 3.7(b)) and a bounding box is drawn

around the area of the image containing the largest bulk of pixels distinct from the

background (Fig. 3.7(c)). The face is assumed to appear in the upper portion of the

located bulk of pixels. This preprocessing lowers the area within which to look for a face

from 1600x1200 to between 200x100 on earlier frames and 500x200 on later frames. At

this point a more powerful face detector is used to find the exact location of possible faces

(Fig. 3.7(d)). We use the Viola-Jones face detector [126] implemented in the OpenCV

library [15]. This allows the final narrowing down of a bounding box drawn around

the most likely location of a face in the background-subtracted image. The location of
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this face is used to provide further clues as to the face location in neighbouring frames,

further reducing the calculation time and the probability of error. This results in a

set of localised faces, one per frame captured per sample per individual. Background

information is also ignored from each face frame, increasing the information gathered

per face. The number of frames per sample can be significantly affected by the height

of the participant. Notably, the face of the younger participants was below the camera’s

view towards the end of the walk.

Average Face Average Face Histogram
Subject 155

Subject 138

Figure 3.8: TunnelDB Average Face and Average Face Histogram Examples

To account for blinking, changes in expression and other sources of noise, the first

signature we generate from these faces is an average of the faces localised using this

technique. Firstly, each face is height normalised to a common size of 32x32, maintaining

the aspect ratio and thus preserving key characteristics of the face, while allowing the

comparison of face images taken at different points of the subject’s walk. At this point,

the same pixel across each frame of each face sample is summed. If a pixel contains

no information in a given frame (i.e. if it is a background pixel) it is ignored. This

means that key structure around the edges of the face are maintained. For example, if a

subject has short or tied back hair, there will exist completely blank pixels around the

neck area in the final signature. The summed values are then divided by the number

of frames composing the summed pixel’s value. This results in a single colour Average

Face Signature per sample of each subject of size 3072 (32x32x3).
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A second signature, related to the first, is also generated. Any particular average face

signature inherently maintains some notion of the structure of the face. This includes

the edges of the face, but also nose, lips and hairline. Some of our semantic traits

such as Sex and Hair Length are likely to correlate with this structure and it may

therefore prove useful. Others however may need only to correlate with absolute colours

of a given average face but may incorrectly correlate with less meaningful structure.

We construct a second face signature called the Average Face Histogram. This

histogram is constructed by binning the RGB colour space into a simple (9x9x9) space;

the colour space is discretised into 729 bins. Each bin in the histogram is assigned a

count of the pixels in the Average Face which fall into the colour range represented by

that bin. This results in a signature of size 729 which directly encodes colour while

ignoring predominant structure. Example Average Face and Average Face Histograms

can be seen in Table 3.8.

3.5 Semantic Recognition Experiments

In this section we outline a set of experiments used to explore the semantic annotation

data we have designed and collected. In the first section we explore the relative signifi-

cance of the various semantic traits. Firstly using ANOVA and secondly using Pearson’s

r we explore which traits are best in terms of their ability to distinguish individuals

across separate annotators. Once the best semantic traits are outlined with respect to

identity separation, we explore their ability in comparison to gait and face biometric sig-

nals from the two datasets. Finally, we outline a tactic of feature fusion, exploring the

possible benefits of semantic annotations used in conjunction with standard biometrics.

3.5.1 Semantic Features Significance

The utility of any given trait can be explored in many ways. In Section 3.5.3 we explore

each trait’s identification capability while in Chapter 4 we explore the retrieval capability

of individual traits. In this section we use a trait’s ability to separate groups and

its consistency across separate annotators to measure its usefulness. Using ANOVA

and Pearson’s r we investigate each trait and thus provide another set of metrics with

which to gauge their relative worth. These metrics are also used as the basis for a feature

set selection, allowing the maintenance of a low EER with a reduced subset of semantic

traits.
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3.5.1.1 ANOVA

In statistics there is a notion of significance for a given set of measurements. Generally

an experiment can be described in terms of a set of groups separated by some difference

in experimental conditions. Often it is of great importance to judge whether a given

experimental condition significantly separates or maintains group distributions. If the

groups are not significantly separated, one would argue that the experimental condi-

tions made no difference, this is called the null hypothesis (H0). If they are significant,

this can be used as evidence to reject the null hypothesis and thus support a hypoth-

esis H1 with regards to different outcomes given different experimental conditions. To

measure the significance of a single experimental variable in isolation, one can use the

one-way Analysis Of Variance (ANOVA). This process calculates a statistic called the

F-ratio:

F-ratio =
total between-group variance

total within-group variance
, (3.4)

=

�
i ni(X̄i − X̄)2/(K − 1)�
ij(Xij − X̄i)2/(N −K)

, (3.5)

In Equation 3.4, Xij represents the sample value for the jth sample of the ith group. In

turn, X̄i is the mean of the ith group’s samples and X̄ is the mean across all samples.

K represents the number of group while N represents the total number of samples.

Therefore, the F-ratio is a ratio of the within group variance against the between group

variance weighted by the degrees of freedom K − 1,N −K. The values of this statistic

will be large if the between group variability is large when compared to the within group

variability, which in turn is unlikely to happen if the null hypothesis is true. Put another

way, this is a measure used to discover whether the groups are all the result of the same

distribution, and therefore whether the effects which supposedly separate the groups

actually do so significantly.

In the case of human identity, the separate groups are the different individuals to be

observed and the different experimental variables are the various physical traits on which

they can be semantically described. If a given trait is significant in terms of ANOVA, i.e.

has a higher F-ratio, then it could be said to be more successful at separating individuals

and therefore a more useful measure of identity.

In Table 3.2 we show the ordering and associated F-ratios of the physical traits as

described by the semantic terms we have proposed. The ordering is a result of the

non-self annotations given to subjects in the TunnelDB and HIDDB. Of note is the
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Table 3.2: Ordering of the semantic traits by their F-ratios given the respective
datasets

TunnelDB Ordering HIDDB Ordering
Feature F-ratio

df =
(59, 2630)

Feature F-ratio
df =
(50, 817)

Sex 675.11 Sex 383.70
Hair
Length

210.16 Skin Colour 149.44

Facial Hair
Length

155.87 Ethnicity 96.10

Skin Colour 131.14 Hair
Length

79.05

Age 77.82 Age 57.02
Weight 67.32 Hair Colour 52.18
Height 63.58 Facial Hair

Length
25.72

Hair Colour 58.67 Height 25.14
Figure 51.28 Weight 20.75
Chest 46.09 Figure 20.69
Ethnicity 42.19 Chest 18.32
Leg Thick-
ness

32.28 Neck
Length

15.57

Facial Hair
Colour

31.55 Neck Thick-
ness

14.73

Hips 31.25 Arm Thick-
ness

13.90

Neck Thick-
ness

28.50 Leg Length 13.68

Arm Thick-
ness

28.12 Muscle
Build

12.85

Muscle
Build

27.38 Leg Thick-
ness

11.61

Leg Length 25.49 Hips 10.55
Neck
Length

18.67 Arm
Length

5.74

Shoulder
Shape

14.58 Facial Hair
Colour

5.61

Arm
Length

11.26 Leg Direc-
tion

3.25

Leg Direc-
tion

8.09 Proportions 2.77

Proportions 4.17 Shoulder
Shape

2.54

comparable top and bottom halves of the two sets, containing roughly similar features

though not in exactly the same order. We also note that global features such as Sex,

Age and Ethnicity are more separating, while descriptions of physical features are less
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so. Proportions and Leg Direction were quite uninformative in both datasets, showing

their weakness or ambiguity as traits. The discrepancies between the capabilities of the

traits across the two datasets are likely to be a reflection of the different viewpoints

available to the two sets of annotators as well as a reflection of the contents of the

datasets themselves. The ability of Facial Hair in the HIDDB for example is notably

lower than in TunnelDB but this is more likely a reflection on the lower resolution of the

face and facial details in the HIDDB videos compared to the facial videos available in

the TunnelDB. It should be noted that the exact distribution which the F-ratios form

is affected by differing degrees of freedom of a given dataset. As a result of this, the

magnitude of the F-ratios cannot be compared directly but must instead be compared

through their p-values extracted from the F cumulative probability distribution. Due

to the tiny p-values (p � 10−9) associated with the many degrees of freedom in these

datasets it is meaningless to extract these values in this case and therefore impossible

to directly compare the two datasets using ANOVA. However, statements regarding

the relative power of traits within a given dataset remain valid. With the exploration

of Pearson’s r as used for feature ordering we can more rigorously compare features

across the two datasets.

3.5.1.2 Pearson’s r

In their paper investigating whole body descriptions, MacLeod et al. [79] used Pearson’s

r to to discover the stability of a given feature. In their method, the annotators of a given

subject are randomly split into two groups and whose descriptions are averaged, pro-

ducing two descriptions for each subject. By producing 100 such random groupings, 100

pairs of annotations are gathered per subject per annotation. By finding the correlation

coefficient (See Section 2.5.3) of each semantic trait given by these random groupings

we can find the semantic traits which are most correlated. This can be interpreted as

those semantic traits which are most stable, or put another way: most commonly agreed

upon by disparate groups of annotators.

In Table 3.3 we show the ordering and associated Pearson correlation coefficients of the

physical traits. It should be stated that for the degrees of freedom in these datasets,

all these correlation coefficients were significant (p � 0.01). For the most part the

information presented here is as expected, agreeing with the ordering of the ANOVA

F-ratios. This is to be expected, as some of the group separating ability of a given trait

is undoubtedly related to its stability across several annotators. If this were not the case

there would be no group separation as each individual annotation could be taken as a

potential sample of any given group. We see a fairly large correlation in Sex in both

datasets, showing that this is a feature for which there exists little ambiguity. We can
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Table 3.3: Ordering of the semantic traits by their correlation coefficients given the
respective datasets

TunnelDB Ordering HIDDB Ordering
Feature Pearson’s r Feature Pearson’s r

Sex 0.99 Sex 0.99
Skin Colour 0.98 Skin Colour 0.97
Facial Hair
Length

0.98 Age 0.95

Hair
Length

0.98 Hair Colour 0.95

Age 0.93 Hair
Length

0.95

Hair Colour 0.91 Ethnicity 0.94
Weight 0.91 Height 0.90
Ethnicity 0.91 Facial Hair

Length
0.88

Height 0.91 Figure 0.88
Chest 0.89 Weight 0.87
Facial Hair
Colour

0.89 Chest 0.84

Figure 0.88 Leg Thick-
ness

0.80

Hips 0.85 Muscle
Build

0.80

Leg Thick-
ness

0.81 Leg Length 0.76

Neck Thick-
ness

0.81 Arm Thick-
ness

0.75

Leg Length 0.81 Neck
Length

0.74

Arm Thick-
ness

0.79 Hips 0.74

Muscle
Build

0.77 Facial Hair
Colour

0.67

Neck
Length

0.68 Neck Thick-
ness

0.63

Arm
Length

0.67 Arm
Length

0.56

Shoulder
Shape

0.64 Leg Direc-
tion

0.36

Leg Direc-
tion

0.50 Proportions 0.34

Proportions 0.39 Shoulder
Shape

0.33

reach similar conclusions for other global features in both datasets including Age, Skin

Colour and Ethnicity showing them all to be reliable features. As suggested by ANOVA,

Facial Hair Colour and Length is more consistently agreed upon and thus more stable
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in the TunnelDB than in the the HIDDB. This, along with descriptions of the Neck and

Shoulders, are probably aided in the TunnelDB by the multiple perspectives offered by

the gait cameras and importantly, the face camera.

3.5.2 Semantic Significance Validation

To test whether the feature ordering recommended by Pearson’s r and ANOVA are mean-

ingful the orderings were used in a set of Leave-one-Out (LoO) classification tests [65].

Each test involves a set of LoO classifications using a feature vector comprised of a

subset of the best traits in the order outlined by the significance tests above. The first

annotation feature vector is constructed using the best trait in isolation, the next ap-

pends the second best trait and so on until progressively an annotation feature vector

containing all traits is tested. For each test, the Equal Error Rate (EER) was calculated

using an Receiver Operator Characteristic (ROC) as well as KNN classification with

k = 1. An exhaustive LoO strategy was utilised with regards to annotators. A probe set

was constructed containing a single annotator’s annotations on all the subjects they had

seen. The remaining annotators were used to construct a gallery set. This gallery set

was the single, averaged description of each subject by all the annotators, minus that

of the single annotator separated for the probe set. Therefore, an individual annotator

was never compared to their own responses.

The Euclidean distance was then calculated between each subject in the probe set and

gallery set, resulting in a distance matrix. Such a matrix was then calculated for each

annotator left out as the probe. These distance matrices were used to calculate a Correct

Classification Rate (CCR) using a KNN scheme as well as an ROC used to calculate

an EER. These two numbers were calculated for each set of features recommended by

the ANOVA and Pearson’s r ordering. Furthermore, these numbers were calculated for

the reverse ordering recommended by these schemes. The results for these tests can be

seen in Fig. 3.9 to Fig. 3.12.

The results validate the feature significance ordering prescribed by both ANOVA and Pear-

son’s r. When compared to their reverse ordering, both schemes show significantly faster

improvements of CCR and EER. Both orderings also show that after roughly 50% of

the more important traits are considered, the optimal recognition rates, measured both

using CCR and EER, can be achieved. In both feature orderings, the first 50% of the

features are the global and head traits, including: Sex, Skin Colour, Hair descriptions

and Age. The general body traits such as Leg and Arm descriptions come later in both

orderings and are shown here to also be less able in the reverse ordered classification

experiment.
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Figure 3.9: CCR against number of features used in the Tunnel Dataset. CCR
calculated using KNN (with k=1) and a LoO classification test. The graph compares
the use of features in order of significance recommended by ANOVA, Pearson’s r and

in the reverse order.

There exist some visible fluctuations in the results achieved by the two ordering tech-

niques across the two datasets. We check whether these differences are significant by

comparing the CCR and EER of the two ordering techniques using a one-way ANOVA.

It can be shown that these deviations are not significant (p >> 0.01) and so there is

no major difference between the two approaches to ordering feature significance. The

orderings of traits produced by the two approaches are both useful pieces of evidence

in discovering which human trait is most useful when semantically described. This is

discussed in more detail in Chapter 5

3.5.3 Fusion Experiments

In this section we explore the ability of the semantic annotations gathered against ex-

isting visual biometrics. We also implement a simple feature fusion and score fusion

strategy to show the ability of the gathered semantic annotations in fusion with ex-

isting biometric signals. Both the ability of visual biometrics and fusion experiments

are performed against the sources of visual features outlined in Section 3.4.2, namely
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Figure 3.10: EER against number of features used in the Tunnel Dataset. EER
calculated by plotting an ROC, finding the threshold resulting in an equal number
of FPs and FNs. The graph compares the use of features in order of significance

recommended by ANOVA, Pearson’s r and in the reverse order.

the Average Silhouette and Colour Average Silhouette from the HIDDB and the two

Projected Gait and two Average Face signatures from the TunnelDB.

3.5.3.1 Approach

In following section several performance ROC curves are shown. Individual graphs

depict the annotations of a dataset, a single visual feature of the dataset and the fusion

of semantic annotations with this visual feature. The ROC curves are generated from

a LoO classification scheme.

Unimodal Biometrics

This scheme is firstly used to gauge the performance of unfused signatures. For the

visual signatures, a single sample from a single subject is separated as the probe set

and compared to the rest of the samples of all the other subjects as the gallery set. For

annotations a similar strategy to Section 3.5.2 is undertaken where each annotator is
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Figure 3.11: CCR against number of features used in the HID Dataset. CCR calcu-
lated using KNN (with k=1) and a LoO classification test. The graph compares the
use of features in order of significance recommended by ANOVA, Pearson’s r and in

the reverse order.

left out as the probe set and compared to the averaged response of each other annotator

for a given subject.

Semantic Biometrics Fusion

Once these unimodal biometrics are examined, two fusion strategies are employed to

test semantic features in fusion with existing biometrics.

Feature Fusion - The first fusion strategy undertaken is a simple normalised feature

fusion. This approach assumes independence between the automatic and semantic data

sources and concatenates the two feature domains. We also assume that the semantic

annotations generated for a particular subject’s sample would have been generated iden-

tically across all samples of that subject. This is reasonable as annotators were given

access to all sample videos of a subject when making annotations. To fuse annotations

firstly the annotations are averaged so there exists a single consensus annotation per sub-

ject. Then all visual samples of each subject are extended with the semantic features of

that subject. To make such a concatenation valid, a simple min-max normalisation is
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Figure 3.12: EER against number of features used in the HID Dataset. EER calcu-
lated by plotting an ROC, finding the threshold resulting in an equal number of FPs
and FNs. The graph compares the use of features in order of significance recommended

by ANOVA, Pearson’s r and in the reverse order.

employed on the visual features meaning that each component of a given feature vector

maintains its relative magnitude with relation to other features in the feature vector,

but now lies within the range of 0 and 1.

Score Fusion - The second fusion strategy undertaken is a transformation-based score

fusion (See Section 3.3.2.3). In this scheme, a distance matrix is separately generated

using the automatic biometric features and semantic features in isolation. The two dis-

tances are then normalised. The normalisation factor for the annotations is taken as

being the number of traits, as even when represented by trait, the maximum two an-

notations could be away from each other is if they disagreed on every physical trait.

The normalisation factor for the visual features was calculated as the largest distance

two signatures could be away from each other, namely if each pixel disagreed between

two samples. In the case of the HIDDB’s Average Gait Signature, the features being

compared are 4096 normalised pixels, therefore the maximum Euclidian distance two

samples could theoretically be from each other is if all pixels disagreed, therefore 64

(
��n=4096

i=1 12 =
√
4096 = 64). Upon normalisation, a simple sum-rule was used, fus-

ing the two signatures. It is also possible to fuse these scores with different weightings
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applied to annotations and visual signatures. In doing so we can find the weighting of

each signature which produces optimal classification results, as well as an improved un-

derstanding of which signature is more important for purposes of accurate classification.

To perform a LoO classification on these fused results, a probe and gallery set must be

carefully generated. The probe set is constructed from a single visual sample fused with

its semantic annotations as attributed by a single annotator. The gallery set contains

the remaining samples fused with the averaged annotations of the remaining annotators.

This is repeated with all combinations of all annotators and samples. We use these

combinations to perform an exhaustive LoO test, generating an ROC and calculating

an EER for the visual features fused with annotations. We also perform this test using

the visual features and annotations in isolation, finding the non-fused EERs. In the next

section, we present these results for each visual feature in both datasets. Finally, we

also present a set of results depicting the effect of varying the weighting between visual

and annotation signatures on the EER in score fusion.

3.5.3.2 Results

Fig. 3.13 to Fig. 3.18 shows the results of LoO experiments for both fused and non-fused

features across both datasets. These results show that universally annotation features

in isolation perform less effectively than automatic visual features from all datasets.

However, regardless of the relative weakness of annotations, the fusion of annotations

and visual features out-performs visual features in isolation in all feature sets in both

datasets. This is the case both in feature fusion and in score fusion, though there is

some discrepancy between the two results. The extent to which semantic annotations

aid automatic visual features varies depending on the dataset and fusion scheme. In

this case, Projected Gait signatures from the TunnelDB are assisted most, with an

increased EER of roughly 3.89%, while Average Face signatures are aided least with a

small improvement of 0.01% in feature fusion.

Fig. 3.19 presents the results of variable weightings between visual and annotation signa-

tures in score fusion. We note that improved EERs can be achieved through exploration

of appropriate weightings between the signatures. We also note that most signatures

achieve an optimal EER below a 50-50 split between the two signatures, instead achiev-

ing an optimal score with a weighting between 0.2 to 0.4 for the visual signatures and

a corresponding weighting of 0.8 to 0.6 for annotation signatures. We note an improve-

ment of between 0.15% and 2.16% when selecting these weightings over the standard
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Figure 3.13: ROC for HIDDB annotations with Average Gait Signatures

Figure 3.14: ROC for HIDDB annotations with Average Colour Signatures
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Figure 3.15: ROC for TunnelDB annotations with Projected Gait signatures

Figure 3.16: ROC for TunnelDB annotations with Projected Non-Normalised Gait
signatures
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Figure 3.17: ROC for TunnelDB annotations with Average Face signatures

Figure 3.18: ROC for TunnelDB annotations with Average Face Histogram signatures
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(a) Average Face (b) Average Face Histogram

(c) Projected Gait (d) Projected Non-Norm Gait

(e) HIDDB Average Silhouette (f) HIDDB Average Colour Silhouette

Figure 3.19: Subfigures (a)-(f) showing the effect of alternative weightings between
annotations and visual signatures in score fusion
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50-50 weighting. These results show that though annotation signatures are compara-

tively weaker than visual signatures in isolation, better results are achieved by weighting

annotation signatures higher than visual signatures in score fusion.

Figure 3.20: An example of a corrected TunnelDB misclassification

Gait Signature Partial Semantic Signature
Subject 161

Subject 89

It has been shown that if two classifiers are negatively dependent, improved classification

is to be expected from fusion [69]. Therefore, upon closer inspection of specific cases,

it becomes clear how semantic annotations are achieving these improved results. For

example, in Fig. 3.20 we see a common misclassification made using the reprojected

Gait signatures from the TunnelDB. Here subject 89 was misclassified as 161. The

gait signatures of both subjects were visually similar, due to the fact that both subjects

are small females. However, the subjects did have dissimilarities, the foremost being

Ethnicity: 161 is Asian and 89 is European. On average across most annotators this

feature was agreed upon and therefore a correct classification was made in both fusion

strategies. Inherently semantic notions such as ethnicity are not encoded explicitly in

grayscale projected gait signatures, however we explore how correlation of some visual

features can help the automatic estimation semantic annotations against those features

in the following chapter.



77

3.6 Conclusions

We have introduced the use of semantic human descriptions as a soft biometric. We

outlined the procedure undertaken to transform a set of semantic annotations for use

as a biometric signature. To explore the semantic feature’s ability in fusion and also to

provide a point of comparison, we outlined a set of automatic visual biometric signatures

across two datasets. Using ANOVA and Pearson’s r we explored the notion of the most

important semantic traits, our results confirming prominent traits of previous studies.

Finally, we have shown that semantic traits have inherent identification capability and

also that they can successfully improve identification results of a primary biometric when

combined in both score and feature fusion.

The following chapter uses semantic annotations for the related, though separate, task

of retrieval. We show that with some simple mathematical models, the same semantic

terms used in this section of recognition can be used for semantic query and Content

Based Information Retrieval (CBIR).



Chapter 4

Content-Based Analysis

4.1 Introduction

In the previous chapters we have highlighted the capability of semantic features for pur-

poses of recognition. In this chapter we explore a logical extension of this recognition

ability, namely whether features which can be used for recognition can also facilitate

retrieval. Towards efficient human usage of large collections of surveillance data, media

items should be traversable through a semantic query and therefore meaningfully seman-

tically transcoded or annotated. The desire for such searching ability was shown in the

example of the Hampshire Police RMS in Section 2.2.2. However, surveillance datasets

suffer from issues presented by the multimedia semantic gap [138], a requirements gap

between semantic queries which users readily express and which systems cannot answer.

Semantic descriptions have been discussed [47, 127] as an open area of interest in surveil-

lance. This includes a mapping between behaviours and the semantic concepts which

encapsulate them. Although some efforts in the past have attempted to bridge this

gap [127] for behavioural descriptions, no attention as of yet has been devoted to se-

mantic appearance descriptions. As discussed in Chapter 2, semantic descriptions are a

natural way to describe individuals. Their use is abundant in character description in

fiction and non-fictional narrative, with a few key words such as slender or stout helping

readers understand what characters look like, therefore understanding plot in a richer

context. In a more practical capacity, stable physical descriptions are of key importance

in eyewitness crime reports, a scenario where human descriptions are paramount as high

detail images of assailants are, generally, unavailable. Such features are challenging

to extract and analyse automatically and yet are readily discernible from surveillance

videos by humans. Unfortunately, the manual annotation of videos is a laborious [22, 47]

process, too slow for effective use in real time CCTV footage and vulnerable to various

78
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sources of human error (subject variables, anchoring etc.). Automatic analysis of the

way people walk [89] (their gait) and analysis of their face are efficient and effective

approaches towards collecting human features at a distance. Yet automatic techniques

such as face and gait do not necessarily generate signatures which are immediately com-

prehensible by humans.

In this chapter, we explore how Latent Semantic Analysis (LSA) techniques can be used

to associate the semantic physical descriptions presented in Chapter 2 with automatically

extracted visual features such as gait and face. We show the resulting retrieval of un-

annotated surveillance footage based on semantic queries. Furthermore, we outline the

possibility of automatically inferred semantic variables (automatic annotation) in the

application of improved recognition of unannotated individuals. In doing so, we outline

a novel application for semantic physical descriptions.

The rest of this chapter is organised in the following way. In Section 4.2 we describe LSA

using the Singular Value Decomposition (SVD), the technique explored to bridge the

gap between semantic physical descriptions and gait signatures. We proceed to the

methodology by which semantic retrieval and also improved recognition of unannotated

samples can be achieved through LSA, presenting an example of this approach. Once the

methodology is outlined, we discuss the process by which the annotations and automatic

signatures outlined in the previous chapters are used in tests to explore semantic retrieval

(See Section 4.3). Finally, in Section 4.4, we discuss the final results and what has been

achieved in this chapter.

4.2 Latent Semantic Analysis

4.2.1 History

The analysis of documents, especially those containing text, has been an active area of

interest throughout human history. This is exemplified by tables of contents in books

and the Dewey decimal system. Indeed during the 1960s, corresponding to the begin-

ning of the information age, major research efforts were focused around the automatic

computational indexing of large, primarily textual, corpuses. Furthermore, the idea

of the representation of documents as vectors of weightings of terms is not new, with

works such as Salton et al. [108] presenting an early discussion on this topic in the

mid 1970s. Although useful for mathematical conceptualisation of the problem, vector

representations alone are, in essence, direct lexical comparisons of terms in documents

to ascertain similarity to other documents and to queries. In this approach synonyms

(i.e. different words sharing the same meaning) and polysemes (i.e. single words having
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different meanings in different contexts) cause major problems with regards to incorrect

classification and subsequently retrieval rate deterioration.

In their seminal work Deerwester et al. [24] present a well received extension to the

notion of documents as vectors of terms, attempting to address the problem of syn-

onyms and polysemes. Briefly (see Section 4.2.2 for a more in-depth discussion), their

approach, dubbed LSA, uses SVD to extract a set of linearly independent latent con-

cepts from a term-document matrix O, represented by the set of eigenvectors forming an

orthonormal basis for OTO and OOT (the document and term co-occurence matrices

respectively, see Section 4.2.2). Their argument is that documents in the corpus and

their associated terms are in fact artefacts of this set of generative underlying concepts.

Furthermore, Deerwester et al. [24] argue that by selecting only the eigenvectors with

the k largest eigenvalues to represent this underlying set of concepts, improved retrieval

rates can be achieved by projecting documents into this space prior to comparison. The

commonly cited argument is that this is due to eigenvectors with smaller eigenvalues

representing so called “obscuring noise” in the model [81], however a more rigorous ex-

planation has been suggested by Papadimitriou et al. [94] (see Section 4.2.2 for more

details).

Given its conceptually satisfactory model and relative success, as compared to simple lex-

ical comparison, LSA (also known as Latent Semantic Indexing (LSI)) has been applied

to various applications in different fields. An early review by Berry et al. [10] showed a

great deal of interest in LSA from the text information retrieval community in the early

1990s. An initial work by Dumais [25] presents the application of LSA to querying of

automatically indexed bibliographic citations. Their results show a 30% improvement

when compared to simple lexical matching. This initial work also explores the benefits

of weighting terms according to their appearance in a document, their appearance in

the whole corpus or various other weighting techniques. Another notable use in text re-

trieval is presented by Landauer and Littman [72] who use LSA (under the name Cross

Language Latent Semantic Indexing (CL-LSI)) to achieve the automatic translation of

French documents to English using a training matrix containing contextual usage of a

corpus of French and English words.

Following the success enjoyed by LSA in the text retrieval domain it is of no surprise

that many attempts have been made to duplicate the performance in other problem

areas, namely that of the automatic retrieval of images or CBIR. This is an active field

of research with several interesting approaches [17, 36, 39–42, 96, 97, 137], a few of which

we shall summarise here.

Initial research [17, 36, 96, 137] in achieving CBIR using LSA concentrated around

improving query by example by utilising semantic annotations in conjunction with so
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called “visual terms” to construct the concept space. The first mention of such an

approach was presented by Pecenovic [96] in 1997. The author concentrates on a query

by example backed by a relevance feedback approach where image features and their

semantic features are compared wholesale after being projected in a rank reduced concept

space. Efforts are made to quantise continuous visual features in the form of binned

colour, texture and block correlations alongside semantic features. Another notable

work presented later by Grosky and Zhao [36], Zhao and Grosky [137] concatenates 15

semantic category features (which they call category bits) with global and local colour

histograms. In their experiments they construct a concept space with images represented

fully by their visual and semantic components. The semantic components of their query

documents are artificially set to 0s, both before and after projection into the concept

space. Using this approach, they present improved classification results when compared

to a concept space constructed using visual components alone. This work exposes the

positive effect semantic components have on weighting the non-semantic components of

the concept space.

Later, several attempts [39–42, 85, 97] were made to go beyond simple usage of LSA

to improve image to image comparison and instead use it to automatically prescribe

or retrieve unannotated images using text annotations. These approaches generally

construct a concept space using a standard LSA performed on a fully observed (i.e.

both semantically and visually) training matrix. Documents containing no annotations

can be projected into the concept space with their annotations terms set to 0. Retrieval

queries are constructed as pseudo documents such that visual features are set to zero

values and appropriate semantic features are set to non zero values. Retrieval is now

a simple matter of comparing the cosine distance of the projected retrieval query with

the projected unannotated documents. Automatic annotation is also possible if the

projected documents are compared to the position of semantic terms in the concept

space (see Section 4.2.3 for more details of this approach).

4.2.2 The Singular Value Decomposition

In this section we go into further detail with regards to the usage of the SVD for LSA. We

start by constructing an n×m occurrence matrix O whose values represent the presence

of n terms in m documents (columns represent documents and rows represent terms). In

our scenario, documents represent individual samples of individual subjects. Semantic

features and automatic biometric features are considered to be terms. The “occurrence”

of an individual visual feature signifies the magnitude of that portion of the feature

vector while the “occurrence” of a semantic term signifies its semantic relevance to the

subject in the video given an individual annotation or the average annotation of a set of
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individuals. Our goal is the production of a rank reduced factorisation of the observation

matrix consisting of a two orthogonal basis matrices. These matrices are the term matrix

T which can represent the space of terms and the document matrix D for representing

the space of documents, such that:

O ≈ TD. (4.1)

The row vectors in T and D represent the location of individual terms and documents

whereas their columns represent two related sets of orthogonal bases. The orthogonal

vectors making up the columns of T are in fact weightings against a set of terms,

therefore they can be thought of as a set of basis documents. The vectors making up

the columns of D are in fact weightings against a set of documents, therefore they can

be thought of as a set of basis terms.

Once these matrices are calculated, novel terms and novel documents can be projected

into the appropriate space and compared with other terms and documents. Benefits to

retrieval, recognition and annotation arise when certain basis documents and terms are

discarded, i.e. rank reduced spaces are used for projection.

In practice, these orthogonal sets of document and term bases held in T and D in have

been calculated in a variety of ways in existing LSA research [81]. These methods in-

clude: the QR factorisation [11, 50], the ULV low-rank orthogonal decomposition [9]

and the semi-discrete decomposition (SDD) [66]. Whilst these methods are viable op-

tions, the most popular and common approach by far is to calculate T and D using

the Singular Value Decomposition (SVD) which is defined as:

O = UΣVT (4.2)

Such that T = U and D = ΣVT . The rows of U represent positions of the terms of

O while its columns represent the orthogonal dimensions used to represent these terms;

the aforementioned basis documents or eigen-documents. The rows of V represent the

position of the documents of O while its columns represent the orthogonal dimensions

used to represent these documents, the aforementioned basis terms or eigen-terms. The

diagonal entries of Σ are equal to the singular values of O. The columns of U and V

are, respectively, left- and right-singular vectors for the corresponding singular values

in Σ. The singular values of any n×m matrix O are defined as values {σ1, .., σr} such

that :

Ovi = σiui, (4.3)

and

OTui = σivi (4.4)
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Where vi and ui are defined as the right and left singular vectors respectively.

In can be shown that vi and ui are in fact the eigenvectors with corresponding eigenval-

ues {λ1 = σ2
1, .., λr = σ2

r} of the square symmetric matrices OTO and OOT respectively,

referred to as the co-occurrence matrices. The matrix U contains all the eigenvectors of

OOT as its rows while V contains all the eigenvectors of OTO its rows and Σ contains

all the eigenvalues along its diagonal. Subsequently:

OTO = VΣTUTUΣVT = VΣTΣVT , (4.5)

OOT = UΣVTVΣTUT = UΣΣTUT . (4.6)

To intuitively appreciate the importance of SVD in this context and the eigenvector ma-

trices V and U for information retrieval purposes, consider the meaning of the respective

co-occurrence matrices.

Tco = OOT , (4.7)

Dco = OTO. (4.8)

The magnitude of the values in Tco relate to how often a particular term appears with

every other term throughout all documents, therefore some concept of the “relatedness”

of terms. The values in Dco relate to how many terms every document shares with every

other document, therefore the “relatedness” of documents. By definition, the matrix of

eigenvectors U and V of the two matrices Tco and Dco form two bases for the co-

occurrence spaces, i.e. the combination of terms (or documents) which the entire space

of term co-occurrence can be projected into without information loss. The eigenvectors

or bases of these two matrices subsequently represent the principal ways in which terms

and documents co-occur. The more highly weighted directions represent main ways in

which documents and terms co-occur. This could be thought of as the main concepts of

the set of documents and term in O

Therefore, having attained these bases, the improved representation of document simi-

larity is achieved by using only eigenvectors of U and V corresponding to the k highest

eigen values:

Ok = UkΣkVT
k (4.9)

By selecting an appropriate value for k we can guarantee that minimal information is

lost according to Eckart and Young [26]:
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Theorem 4.1. “Among all n × m matrices C of rank at most k, Ok is the one that

minimises ||O − C||2F = Σi,j(Oi,j − Ci,j)”

This is the theorem often cited by Berry et al. [10] for the improved performance gained

by choosing only k largest eigenvectors Uk and Vk as part of LSA. However, this only

explains why LSA does not deteriorate too much from the true answer and not why a

notable improvement in performance is achieved. Only after a decade of interest in the

technique was a convincing argument suggested by Papadimitriou et al. [94] discussing

the cause of the success of this approach which chooses only the components of U and V

related to the largest eigenvalues as concepts. In summary, under the assumption that

each term belongs to one and only one concept and furthermore that each document

also contains only one concept, it can be shown that the eigenvectors of the k largest

eigenvalues have a highest probability of being the sole eigenvectors necessary for repre-

senting each concept. Though the assumptions are somewhat restrictive, they guarantee

that if these top k eigenvectors alone are chosen to represent O, two documents will be

projected onto some scalar multiple of an eigenvector in Vk if they are from the same

underlying concept and onto some orthogonal pair otherwise. Papadimitriou et al. [94]

go on to show that this statement holds under small perturbations of O. Subsequently if

two vectors are projected into the reduced concept space and their similarity measured

using a cosine metric1 the LSA procedure is likely to force similar documents close to

each other and dissimilar documents further apart.

4.2.3 Using the Singular Value Decomposition

With these insights, our task becomes the generation of an observation matrix for a set

of subjects comprising of semantic terms and visual features in feature fusion. Once

this matrix is generated, several tasks can be performed and improved by exploiting the

projection of partially observed vectors into the eigenspace represented by either T or

D.

Assume we have two subject collections, a fully annotated training collection and a

test collection, lacking semantic annotations. A matrix Otrain is constructed such that

training documents are held in its columns. Both the visual and the semantic terms

are fully observed for each training document, i.e. a term is set to a non-zero value

encoding its existence or relevance to a particular video. Using the process described

in Section 4.2.2 we can obtain Ttrain and Dtrain for the training matrix Otrain using

the SVD. In turn a matrix Otest is constructed such that test documents are held in

1This explanation for the success of LSA also explains why the cosine distance metric is needed. By
using the angle between two vectors as a metric for similarity, the scalar multiplier of each concept is
ignored and only the relation with the concept itself is considered.
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its columns. However, in Otest only visual features of documents are observed while

semantic features are set to 0.

Content-Based Retrieval

The retrieval of unannotated documents in Otest against some semantic query is one

scenario aided through LSA. This task is thought to be common given the prevalence

of CCTV surveillance video. Operators may want to answer questions such as “Which

video contains a person of this given description?”. This task would be impossible given

an unannotated surveillance video database, but is made possible given an existing

training set of surveillance videos. In this scenario both the unannotated document

being retrieved and the query retrieving it are considered partially observed documents;

while the documents in Otest lack semantic descriptions, the query document lacks all its

visual components and all but some of its semantic components. By carefully projecting

these matrices into the semantic space it is possible gauge their relative positions in

the space of concepts and therefore compare a semantically unobserved document in

Otest to a semantic query.

A new partially observed document matrix Otest is constructed holding all documents

to be retrieved with semantic terms set to zero. Similarly a partially observed document

matrix Oquery is constructed for the query where all visual and non-relevant semantic

terms are set to zero while relevant semantic terms are given a non-zero value 2. These

matrices are now projected in the latent space in following manner:

Dtest = TT
trainOtest, (4.10)

Dquery = TT
trainOquery. (4.11)

Projected test documents held in Dtest are ordered according to their cosine distance

to query documents in Dquery for retrieval. We explore the ability of semantic retrieval

against our datasets in Section 4.3.

Semantically Mediated Identification

Another area involving the individuals represented by documents in Otest which gains

benefit through LSA of a training set is the improved performance in a biometric iden-

tification task. The document concept space discovered by LSA from Otrain is in fact

a set of basis vectors in the space of features, therefore the concept vectors themselves

can regarded as a series of weightings against which both visual and semantic features

2usually 1.0, but weighting corresponds to importance of a term in a query
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gain or lose significance. In our case where the concept space was trained not only on

visual features in isolation, but in fusion with semantic features, it is reasonable to as-

sume that these weightings were effected by the co-occurrence and therefore underlying

relationship between visual features and semantic features. One of the main arguments

of this thesis is that semantic features represent some readily comprehensible underlying

space in which humans are separable. Therefore we postulate that improved retrieval

rates of subjects given a set of completely unannotated samples can be achieved by

first projecting these partially observed documents into the concept space. In doing so

the visual features of the samples will be weighted according to their relevance to the

semantic features and so identification must improve.

4.2.4 An Example: LSA using the SVD

Having discussed the specifics of the SVD as used in LSA, what remains is to present

an example. In the following section, LSA and CBIR are performed on an very small,

synthetic dataset. The goal is understanding of the less obvious elements of the process

and its benefits, more specifically how the representation of documents and terms in a

space made of orthogonal basis vectors can serve to separate dissimilar documents and

terms.

4.2.4.1 Cars, Trees and the Sun

Imagine four pictures, each containing combinations of cars, buildings, trees and the

sun. From each picture, or document, one can automatically extract visual features

describing visible components of the image (assuming a sufficiently powerful computer

vision algorithm). For example: cars can be described as being a car shape and two

visible circles (wheels) while the sun can be described as a single visible circle surrounded

by beams of light. There also exist visible features of the images which cannot be easily

extracted used computer vision techniques. For these purposes semantic attributes have

also been manually ascribed to the images. Specifically the terms “sunny day”, “nature”,

“man made” and “driving” have been ascribed to each, though this process is incomplete

and mistakes have been made. More importantly, these terms are also those people are

likely to use to search for these images. An example of such a set of images can be seen

in Table 4.1 where the rows represent terms, the columns represent images and the data

entries represent the number of times a given term or feature occurs in a given image.
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Table 4.1: Feature-by-Document matrix for countryside/city scene pictures with cor-
responding frequencies of of a given feature

City1 City2 Country 1 Country 2

3.0 3.0 0.0 0.0
buildingShape

3.0 1.0 0.0 1.0
carShape

5.0 2.0 1.0 3.0
circleShape

0.0 1.0 8.0 8.0
sunshineShape

0.0 0.0 5.0 2.0
treeShape
sunny day 0.0 0.2 1.0 1.0
nature 0.0 0.0 1.0 1.0
driving 0.8 0.4 0.0 0.0

man made 1.0 1.0 0.0 0.0

U =





−0.6 0.4 −0.4 0.5

−0.3 −0.7 0.4 0.5

0.6 −0.2 −0.6 0.5

0.3 0.5 0.6 0.5




, (4.12)

Σ =





1.1 0.0 0.0 0.0

0.0 0.3 0.0 0.0

0.0 0.0 0.2 0.0

0.0 0.0 0.0 0.0




, (4.13)

VT =





−0.3 −0.2 −0.2 0.8 0.4 0.1 0.1 −0.1 −0.1

−0.4 0.4 0.8 0.2 −0.0 0.1 0.1 0.0 −0.1

−0.1 −0.2 −0.1 0.4 −0.9 0.1 0.0 −0.1 −0.0

−0.0 0.0 0.0 0.0 0.0 −0.7 0.0 −0.7 −0.0




(4.14)
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Figure 4.1: A 2D rank-2 LSA vector space for the countryside/city scene pictures

Using the documents outlined in Table 4.1 we can calculate the Singular Value Decomposition

(SVD) shown in Equation 4.12. In this scenario, the rows of the U matrix represent

the positions of the 4 images according to 4 left-singular vectors where the rows of V

(i.e the columns of VT ) represent the positions of the 9 terms with regards the 4 right-

singular vectors. By weighting U and V by the eigenvalues and choosing only the first

2 highest eigenvalues we can visualise the position of the documents and terms in a 2

dimensional concept space (See Fig. 4.1). From this plot we can firstly see a clear sepa-

ration of city scenes and country scenes along the x-axis (the largest eigenvector) and a

separation of images containing cars and images not containing cars in the y-axis (the

2nd largest eigenvector). Furthermore we can see that visual shapes and descriptions

regarding natural scenes lie in the general direction of the countryside images.

4.2.4.2 Example Retrieval

Given that some of the features in this example are semantic, it is possible to perform

semantic retrieval. Assuming this ability, let us attempt the retrieval of the image in

our example most relevant to the notion of “a drive in the countryside”. Given this

query, the desired image is “Country2”, having both a car and evidence of a natural

scene. We achieve this by formulating a novel document dtest which contains only the

terms “driving” and “nature”. By projecting this document into the eigen-term concept

space represented by V, we can find its position in the 2D concept space;. By measuring

the cosine distance between this projection and the projected position of all existing

documents we can order the documents according to their relevance to the query. We
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Table 4.2: Cosine distances of projected query to projected documents. Larger values
for cosine distances mean closer documents as cos(1.0) = 0◦ and cos(0.0) = 90◦

whereas small values for the euclidean distances mean closer documents.

Documents
Query Distances

driving = 1.0, nature = 1.0

LSA Lexical
(cosine distance) (euclidian distance)

0.76 0.08
City1

0.90 0.07
City2

0.88 0.07
Country1

0.94 0.08
Country2

start with the query document and project it into the feature concept space VT weighted

by the singular values in Σ:

dtest =
�
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0

�
, (4.15)

dtest = dprojectedΣVT , (4.16)

dprojected = dtest(ΣVT )T (4.17)

To allow comparison to this query, the original images are also projected in this way. A

distance metric, in this case the cosine distance metric, is now used to order documents

by their distance to our novel query document. Closer documents are more relevant to

the query.
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The distances from projected query to all other documents can be seen in Table 4.2 where

the correct image is indeed “Country2”. Furthermore, other images are ordered correctly,

with “Country1” and “City2” coming before the least similar image “City”; containing

least features related to nature (i.e. sunshine and trees). It should be noted that due to

incorrect annotations in the source data, the desired image does not directly contain the

label “driving” and instead simply shares a similarity to the underlying Latent Concept

which generated driving. If we were to rely upon direct lexical comparison instead of

this LSA approach “Country2” would be as close to the query as all the other images,

each containing either “nature” or “driving” but not both. This shows the power of

the LSA approach over direct lexical comparison.

4.3 Semantic Retrieval Experiments

In this section we explore the retrieval capability of the semantic features introduced

in Section 2.3. This is done by applying LSA to the feature fused annotations gathered

against the HIDDB and TunnelDB datasets with all the biometric signatures covered

in Section 3. We firstly outline our experimental procedure, defining how a training

matrix is constructed in order to learn a latent semantic space and then how tests are

performed with this semantic space. We then outline the retrieval ability of our technique

with all semantic annotations and visual features collected. For each set of experiments

we analyse results and discuss their meaning and implications.

Experimental Procedure

For each set of biometric signatures in each of the biometric datasets, along with their

associated annotations, a training matrix Otrain is constructed comprising of some of

the subjects in the dataset. This matrix’s visual features and semantic features are fully

observed. A second test matrix Otest is also constructed using the rest of the subjects

such that visual features are observed while semantic features are unobserved. The

retrieval task attempts to order the documents in Otest against a set semantic queries

oquery. This ordering is then assessed for quality against the set of semantic features

omitted from the test set.

The documents in the training stage are the samples (and associated semantic anno-

tations) of a randomly selected set of half of the subjects in the datasets. The test

documents are the other subjects with their semantic terms set to zero. Importantly,

this means that subjects in the test set do not appear at all in the training set, unlike the

recognition tests in Section 3.5. This means that successful retrieval can be convincingly
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attributed to similarity of underlying semantic concepts rather than trivial matching of

identity. Ideally, every combination of subjects would be used for training and testing

purposes, but this would be unfeasible given the computational complexity of the train-

ing matrix analysis process. Instead, we simulate this by generating 20 such random

training-test sets, generating the associated matrix decompositions Utrain,Σtrain and

VT
train for each. The test documents are projected into the training space through the

process described in Section 4.2.3.

Once the test matrix is projected, they are compared and ordered against projected

queries. In these tests we measure the retrieval ability of each semantic term in isolation

(e.g. Sex Male, Height Tall etc.). All test documents are retrieved, but only a few

are relevant. The relevance of retrieval is assessed by considering the annotations of the

test set which are known, but thus far not included. For example, a sample retrieved

under the query “Age: Senior” is relevant if most annotators ascribed the term Senior

to the trait Age of the subject represented in the sample.

Measuring Performance

To measure the performance of any given query, a variant on the standard mean Average

Precision (mAP) metric is calculated. For a set of document received by a query, preci-

sion is defined as the number of correct documents retrieved divided by the total number

of document retrieved:

P (r) =
|relevant(r) ∩ retrieved(r)|

|retrieved(r)| (4.18)

Where r is the rank along the set of retrieved documents, relevant(r) is the set of relevant

documents in the first r returned, and retrieved(r) is the set of r documents returned.

If precision is 1.0 it means that all the documents retrieved are relevant. With systems

used by humans, it is not only important that the correct results are retrieved with a

good ratio to incorrect results (e.g. EER), but also that the correct results appear earlier

in the ordering. Another measure called average precision can help gauge this by finding

the average precision value found at every rank at which each a relevant document is

retrieved.
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AveP (R) =

�R
r∈R P (r)

|R| (4.19)

Where R is the set of ranks of retrieved documents amongst all documents returned.

The mAP is the average of average precisions over a set of experiments, in our case

across 20 random orderings to construct different training sets.

Furthermore, rather than simply measuring absolute mAP for a given term we show the

improvement of the mAP of each semantic term as compared to the mAP of a random

ordering for each query. We call this the improved mean Average Precision (i-mAP).

To generate the random mAP we generate 100 completely random orderings for each

semantic query and average their mAP. We generate the i-mAP in order to account for

the situation where all subjects were annotated with the same term. In this case the

absolute mAP would be high but meaningless because of random ordering’s mAP would

be equally high. Therefore, in this situation the i-mAP would be low giving us a better

idea of which terms successfully retrieved relevant documents. We present the i-mAP of

each physiological trait as a sum of the i-mAP of its semantic terms. These results give

some idea of which traits our approach is most capable of performing queries against,

while gathering these numbers for all 6 biometric features tells us which visual features

are most effective for each trait.

We now present these results grouped by related biometric features. Namely, the two gait

signatures of the two datasets are grouped and the two face signatures of the TunnelDB

are presented together. Each set of i-mAPs are shown on the same graphical scale

making the separate graphs visually comparable. Along with each pairing an ANOVA is

performed comparing the i-mAP scores of each of the traits in the two related signatures.

This allows a clear analysis of the ability of the related features against one another.

Exploration of Singular Values

As explained in Section 4.2.2 improved performance is gained using the SVD for LSI

when projection is performed using only the singular vectors with high singular values,

i.e. a rank reduced version of U and V. What remains is the selection of this rank.

In Fig. 4.2 we show some example distributions of singular values in our 6 datasets. It

can be seen that in most datasets roughly 70% of the variance can be represented using

only it’s largest 100 or so singular values and associated singular vectors. In Fig. 4.3 we

show how the summed i-mAP of each trait is affected by the selection of ranks. We note

that extremely small ranks result in erratic results while large ranks seem to introduce
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error and damage retrieval results. With these results in mind we choose to perform the

experiments in this section with a rank 100, though it is has been shown that better

results can be expected through careful selection of rank using a validation set [42].

(a) Average Face (b) Average Face Histogram

(c) Projected Gait (d) Projected Non-Norm Gait

(e) HIDDB Average Silhouette (f) HIDDB Average Colour Silhouette

Figure 4.2: Subfigures (a)-(f) showing the singular values for the first 1000 singular
vectors of each dataset
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(a) Average Face (b) Average Face Histogram

(c) Projected Gait (d) Projected Non-Norm Gait

(e) HIDDB Average Silhouette (f) HIDDB Average Colour Silhouette

Figure 4.3: Subfigures (a)-(f) showing summed i-mAP compared to selected singular
values
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4.3.1 HIDDB Gait Retrieval

In this section we present the i-mAP for each semantic trait against the Average Sil-

houette and Average Colour Silhouette gait signatures gathered from the Southampton

Large (A) HumanID Database (HIDDB). For this test, all 115 subjects of the dataset

were used. 50 subjects were annotated by at least 5 annotators where the rest were

annotated by at least 1 annotator. Table 4.3 presents some example generated query

signatures and the related results while Fig. 4.4 shows the i-mAP of each trait across

the 20 random training configurations.

4.3.1.1 Results

Figure 4.4: The mean average precision improvement for each semantic trait. Each
trait’s mAP is the average summed difference of its associated semantic terms

Here we use AvgSili-mAP to denote the Average Silhouette i-mAP and AvgColi-mAP to

denote the Average Colour Silhouette i-mAP. The results show some merit and produce

both success and failure, as expected. It has been shown in previous work for example

that Sex (AvgSili-mAP = 0.13 and AvgColi-mAP = 0.11) for Average Colour Silhouette) is

decipherable from average silhouettes alone [75], achieved by analysing the separate parts

of the human silhouette. Some physical metrics such as Height (AvgSili-mAP = 0.07 and

AvgColi-mAP = 0.08), Figure (AvgSili-mAP = 0.05 and AvgColi-mAP = 0.059) and Neck

Length (AvgSili-mAP = 0.06 and AvgColi-mAP = 0.06) were also relatively successful, as
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Query HIDGaitGrey-minmaxNorm HIDGait-minmaxNorm-64x64x3

Sex: Male

Sex: Female

Age: Pre+Adolescence

Height: Tall

Hair Length: Long

Hair Colour: Blond

Table 4.3: Some Example Retrieval Results. The first image in each set is the image
generated for a semantic query as part of the method explained in Section 4.2.2. The
next 3 images are video keyframes of the 3 top ranked subjects from a particular

experiment.
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Significant Features

Trait p-value
Ethnicity p � 0.0001
Neck Thickness 0.0001
Hair Length 0.0001
Skin Colour 0.0006
Shoulder Shape 0.0120
Weight 0.0302
Sex 0.0321

Insignificant Features

Trait p-value
Hair Colour 0.0741
Leg Length 0.2853
Proportions 0.3740
Arm Length 0.4845
Facial Hair Colour 0.4847
Neck Length 0.5123
Muscle Build 0.5424
Figure 0.6849

Insignificant Features

Trait p-value
Leg Direction 0.0517
Hips 0.1454
Chest 0.2329
Age 0.2677
Facial Hair Length 0.3137
Height 0.3577
Arm Thickness 0.3814
Leg Thickness 0.8449

Table 4.4: The i-mAP p-values treating HIDGaitGrey-minmaxNorm and HIDGait-
minmaxNorm-64x64x3 signatures as seperate classes for each physiological trait. Here

we use the significance value of p ≤ 0.05

was expected, because the average silhouette maintains a linear representation of these

values in the overall intensity of pixels.

In Table 4.3 we see example orderings provided by our scheme and an anecdotal compar-

ison of the ability of colour signatures against monochrome silhouettes. The examples

aid to show the potential merits and pitfalls of using the different signatures. Both

configurations perform well with Sex, though for our example Sex Female query, colour

signatures incorrectly correlate light coloured clothing with gender. The colour of cloth-

ing is ignored by the standard average silhouettes as the whole body silhouette of the

individual is used and the internal detail ignored. The average colour signature has a

similar problem with the example Age query. The opposite performance is evident for

queries which inherently correlate with colour. In Table 4.3 we see that for the Hair

Colour the average colour silhouette achieves more favourable results, correctly finding

a correlation with light shades in the head area with blond hair (as can be seen on the

automatically generated Hair Colour query signature)

Fig. 4.4 shows the relative merits of the two approaches. Table 4.4 shows the significance

of these differences across all random training set selections; the significance is calculated

using a one-way ANOVA (See Section 3.5.1.1). It can be seen that whilst performing

relatively poorly in both configurations, Hair Colour (p = 0.0006); Ethnicity (p �
0.0003) and Skin Colour (p = 0.0006) perform significantly better when colour average

silhouettes are used. It should be noted however that, for Sex (p = 0.0321) and Hair

Length (p = 0.0001), all mAPs are significantly lower on the average colour silhouettes.

This result was expected as the colour signature allows for misleading correlations with

clothing, a failure which can be seen in the example query projections of Sex Female

and Hair Length Long in Table 4.3 both showing correlation with light coloured clothing.

Such errors cannot be avoided easily using the holistic colour signatures; they could

potentially be avoided by considering only pertinent regions such as the head area.
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4.3.2 TunnelDB Gait Retrieval

In this section we present the i-mAP for each semantic trait against the normalised

and non-normalised projected gait signatures of the TunnelDB. To increase the sample

set size against which queries are made and to allow the growth of the training set

all subjects collected in the TunnelDB are used. This means that as well as using

the 60 subjects which had self annotations, we incorporate subjects who are only self

annotated. Given the healthy correlation of self annotations with ascribed annotations

shown in Section 2.5.3 we still expect acceptable results. The total number of subject

in this set is 227, 60 of whom are annotated by other subjects while the rest are only

self annotated. This results in training sets of roughly 110 individual subjects. Table 4.5

presents some example generated query signatures and the related results while Fig. 4.5

shows the i-mAP of each trait across the 20 random training configurations.

4.3.2.1 Results

Figure 4.5: The mean average precision improvement for each semantic trait. Each
trait’s mAP is the average summed difference of its associated semantic terms

Here we use GaitNormi-mAP to denote the Projected Gait i-mAP and GaitNonNormi-mAP

to denote the Non-Normalised Projected Gait i-mAP. In this configuration, both sig-

natures show promise in some features and fail in others. Both display ability in

Sex (GaitNormi-mAP = 0.178 and GaitNonNormi-mAP = 0.175) and Height (GaitNormi-mAP =
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Query Gait-minmaxNorm GaitNonNorm-minmaxNorm

Sex: Male

Sex: Female

Height: Short

Height: Tall

Hair Length: Long

Hair Length: Short

Table 4.5: Some Example Retrieval Results. The first image in each set is the image
generated for a semantic query as part of the method explained in Section 4.2.2. The
next 3 images are video keyframes of the 3 top ranked subjects from a particular

experiment.
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Significant Features

Trait p-value
Arm Length p � 0.0001
Neck Thickness p � 0.0001
Height 0.0017
Figure 0.0078
Muscle Build 0.0209
Neck Length 0.0235
Hair Colour 0.0299
Facial Hair Length 0.0366
Facial Hair Colour 0.0428
Hair Length 0.0480

Insignificant Features

Trait p-value
Age 0.1102
Skin Colour 0.1944
Sex 0.6360
Weight 0.8778
Shoulder Shape 0.9166
Chest 0.9869

Insignificant Features

Trait p-value
Leg Thickness 0.1156
Hips 0.5615
Arm Thickness 0.5852
Ethnicity 0.5932
Leg Length 0.7585
Proportions 0.9255
Leg Direction 0.9680

Table 4.6: The i-mAP p-values treating Gait-minmaxNorm and GaitNonNorm-
minmaxNorm signatures as seperate classes for each physiological trait. Here we use

the significance value of p ≤ 0.05

0.101 and GaitNonNormi-mAP = 0.135 ), a result we have come to expect from gait signa-

tures. Also some ability can be seen in bulk features such as Weight (GaitNormi-mAP =

0.034 and GaitNonNormi-mAP = 0.033), Arm Thickness (GaitNormi-mAP = 0.047 and

GaitNonNormi-mAP = 0.040) and Neck Thickness (GaitNormi-mAP = 0.019 and GaitNonNormi-mAP =

0.034), though the features in this dataset achieve significantly worse results than the HIDDB

gait signatures. Unexpectedly the Hair Length (GaitNormi-mAP = 0.017 and GaitNonNormi-mAP =

0.013) was not retrieved at all effectively, regardless of its known ability as portrayed

by the HIDDB gait signatures. This is arguably related to the lesser quality of the

projected gait signatures in TunnelDB with regards to upper body visual features. The

signatures are of a generated viewpoint of the volumetric carved individual. This volu-

metric model has been shown to lose some details of the upper body and therefore lose

features in the head region where hair length features could be discovered. Such features

have been shown to be important in discovering identity [123]; therefore Seely et al. [112]

compensated for the lack of these with upper body features by involving multiple novel

viewpoints in feature fusion in their recognition experiments. This approach could also

be used to aid our retrieval scenario. Also it goes without saying that colour based

features such as Skin Colour, Ethnicity and Hair Colour completely fail due to the lack

of colour in these signatures. This goes further towards showing that latent attributes

of race are not efficiently encoded in gait alone, rather skin pigmentation is by far the

best signifier of race.

We note that there are significant benefits gained by using non normalised gait signa-

tures when compared to normalised. Several features such as Height (p = 0.0017) and

Figure (p = 0.0078) which describe the shape of the individual are retrieved significantly

more efficiently with non-normalised gait signatures. This is expected as, while the nor-

malised gait signature keep only minimal information in latent aspects of the gait with

regards to body shape, the non-normalised gait signatures more directly encode features

relating to body shape. This can be seen anecdotally in the example signatures returned
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in Table 4.5. It should be noted here that the video still representing the example of any

given subject is taken at the same point in the individual’s walk, making their height

with reference to the top of the door frame in the background a meaningful comparison.

4.3.3 TunnelDB Face Retrieval

In this section we present the i-mAP for each semantic trait against the Average Face

and Average Face Histograms of the TunnelDB. As with the TunnelDB gait signatures,

the whole sample set is used including some samples with only self annotations. Table 4.7

presents some example generated query signatures and the related results while Fig. 4.6

shows the i-mAP of each trait across the 20 random training configurations.

4.3.3.1 Results

Figure 4.6: The mean average precision improvement for each semantic trait. Each
trait’s mAP is the average summed difference of its associated semantic terms

Here we use AvgFacei-mAP to denote the Average Face i-mAP and AvgFaceHisti-mAP to

denote the Average Face Histogram i-mAP. Both approaches display ability in many fea-

tures which most gait signatures found challenging. We see high i-mAP values for traits

such as Skin Colour (AvgFacei-mAP = 0.165 and AvgFaceHisti-mAP = 0.107), Ethnic-

ity (AvgFacei-mAP = 0.107 and AvgFaceHisti-mAP = 0.068), Hair Colour (AvgFacei-mAP =

0.049 and AvgFaceHisti-mAP = 0.025) and Facial Hair Colour (AvgFacei-mAP = 0.060
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Query Face-minmaxNorm FaceHist

Skin Colour: Black

Skin Colour: White

Sex: Male

Sex: Female

Figure: Small

Height: Tall

Table 4.7: Some Example Retrieval Results. The first image in each set is the image
generated for a semantic query as part of the method explained in Section 4.2.2. The
next 3 images are video keyframes of the 3 top ranked subjects from a particular

experiment.
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Significant Features

Trait p-value
Sex p � 0.0001
Facial Hair Length p � 0.0001
Skin Colour 0.0001
Hair Colour 0.0001
Hair Length 0.0002
Arm Length 0.0002
Facial Hair Colour 0.0002
Height 0.0004
Ethnicity 0.0040
Muscle Build 0.0050
Age 0.0067
Hips 0.0077
Leg Length 0.0124
Weight 0.0137
Leg Thickness 0.0162
Proportions 0.0315
Figure 0.0328

Insignificant Features

Trait p-value
Neck Length 0.3566
Neck Thickness 0.8228
Shoulder Shape 0.9549

Insignificant Features

Trait p-value
Arm Thickness 0.0889
Chest 0.3371
Leg Direction 0.9152

Table 4.8: The i-mAP p-values treating Face-minmaxNorm and FaceHist signatures
as seperate classes for each physiological trait. Here we use the significance value of

p ≤ 0.05

and AvgFaceHisti-mAP = 0.020). We also see an ability for the face signature to distin-

guish Sex (AvgFacei-mAP = 0.162 and AvgFaceHisti-mAP = 0.055), a result which has

been noted by several other approaches in the past [134]. A surprisingly highly rated

feature is Height (AvgFacei-mAP = 0.105 and AvgFaceHisti-mAP = 0.016) given the fact

that only face information is being analysed. However, we can see that only the average

face signature and not the histogram can accurately gauge height. Through inspection

of the generated query face for Height: Tall, it is clear that a miss correlation was mea-

sured between Height and Male Sex. This problem can be addressed with more training

information, namely more women of varying heights.

It is to be expected that for several features the Average Face signature performs signifi-

cantly better than the Average face histogram. The Average face holds some information

with regards to the positioning of key face components which clearly holds substantial

information with regards to many of our semantic features. More surprisingly however,

colour histograms significantly beat the average face signatures on features regarding

overall bulk such as Figure (p = 0.0328) and Weight (p = 0.0137). Through close

inspection of the generated query signatures, it is clear that the overall area of the

colour histogram is smaller for small bulks, and larger for large bulks. This gives colour

histograms a better chance of correlation than overall face signatures, which can get

confused through the correlation of misleading facial details that hold less information

with regards to bulk than does overall pixel intensity.
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Query Projected
Query

Hair Colour: Blond
AND
Sex: Female

Sex: Female AND
Hair Colour: Brown

Sex: Male AND
Hair Colour: Brown

Hair Colour: Blond
AND
Sex: Male

Skin Colour: Oriental
AND
Sex: Male

Query
Projected
Query

Skin Colour: Oriental
AND
Sex: Female

Skin Colour: Oriental
AND
Hair Colour: Blond
AND
Sex: Female

Skin Colour: Black
AND
Sex: Male

Skin Colour: Black
AND
Sex: Female

Hair Colour: Blond
AND
Skin Colour: Black
AND
Sex: Male

Table 4.9: Some example average face signatures generated by projecting selected
semantic queries into a semantic visual space of the average face signature.

4.3.3.2 Compound Queries

Given that the features of the human face are more immediately comprehensible than

those of gait, we take this opportunity to present some of the other capabilities of

our LSA approach, namely in novel compound queries. The SVD approach provides the

unique ability to represent the position of each feature separately in the concept space.

By projecting individual semantic features into the space it is possible to generate the

visual signatures most accurately representing those queries; this is the technique which

has been presented so far. The next logical step is compound queries. By projecting

documents with multiple semantic attributes set to different weightings it is possible

to retrieve against multiple semantic terms efficiently; generating some very interesting

novel query images in the process. This can include semantic feature combinations

that were never actually recorded in combination, rather their effect on pixels has been
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measured separately and can therefore be mixed. A few interesting examples of such

compound queries are presented in Table 4.9.

Note specifically example of “Skin Colour Black AND Hair Colour Blond”. Obviously

no blond haired black individual was ever annotated, but the correlation of “Hair Colour

Blond” with light upper pixels and the correlation with “Skin Colour Black” with an

overall darker complexion was measured, and therefore can be combined. This is another

example of the potential power of LSA.

4.4 Conclusions

We have introduced the use of semantic human descriptions as queries in CBIR against

human gait and face biometric signatures from two datasets. Using an LSA technique

we construct an ordered list of un-annotated subjects against a set of semantic queries

based on the similarity of their biometric signatures through their projection into a

trained linear algebraic semantic space.

Our results confirm those of previous work with regards to certain semantic traits, such

as Sex, in their ability to correlate with gait and face biometrics. We also note the

capability of retrieval using other traits, previously unexplored, such as Ethnicity, Age

and some build attributes. We go on to demonstrate the potential capabilities of our

semantic dataset and analysis technique through the construction of novel compound

query signatures, showing generated query samples constructed from with previously

unseen feature combinations.

This chapter goes further towards exploiting the capabilities of the semantic biometric

signatures designed and gathered in this thesis. By showing that the collected semantic

datasets portray some merit in CBIR, we argue for their power as biometric signatures

in general. In the next chapter we extend this argument through by combining the

analysis of the previous 3 chapters. By ordering the semantic terms with regards to

their combined effectiveness against a variety of metrics, we present a final ordered list

of semantic biometric traits and terms, giving us further insight into their individual

scope and usefulness.



Chapter 5

Feature Significance

5.1 Introduction

Throughout this thesis we have explored the ability of using semantic human descriptions

in a variety of scenarios. We started by exploring internal correlations found both within

self annotations and ascribed annotations, as well as the correlation between them. Next

we attempted to explore the ability of the semantic features to separate individuals as

well as the stability of the semantic terms used to describe the given traits of an indi-

vidual subject. Later in Chapter 3 we explored a more practical rating, showing the

performance gain noticed when adding given annotations in a biometric LoO classifica-

tion scenario. Finally in Chapter 4 we explored the value of each trait when incorporated

in a semantic Content Based Information Retrieval (CBIR) across 6 biometric signatures

from 2 datasets.

In this chapter, we collate this work. By using two simple majority voting schemes

and treating each ordering strategy highlighted in the thesis as a separate classifier we

provide an overall rating for each physiological trait and its associated semantic terms.

By definition, this final rating will incorporate various aspects of what makes a trait

powerful with regards to its ability to be described semantically. In Section 5.2 we

briefly summarise the ordering schemes to be used as well as what meaning they add to

final ordering. Once these ordering schemes are outlined in Section 5.3 we will discuss

how their orderings are to be combined into a final trait ordering. We present this final

ordering and discuss its implications.

106
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5.2 Vote Gathering Procedure

In this section we will outline the approaches taken to transform each chapter’s contri-

bution into a ranked list of physiological traits and explain what meaning each ranked

list incorporates into the final trait ordering.

5.2.1 Correlation Analysis

In Section 2.5.3 we presented a set of correlation matrices showing the the Pearson’s

r correlation coefficient for each trait against each other trait. We looked at how self

annotations and ascribed annotations of traits vary between themselves and each other.

For each of these sets of correlation coefficients we take the summation of the absolute

correlation score of a given trait against each other trait as a measure of its worth.

In this approach we take negative correlations as having as much meaning as positive

correlations by taking the absolute. By summing absolute correlation coefficients we

obtain some idea of how consistent a trait’s annotations are.

Here we assume that at least some physiological traits should reliably vary together and

that traits which do so consistently between annotators are more stable and thus more

susceptible to effective semantic description. An inconsistent or erratic trait would show

less correlation than one annotated consistently with respect to the changes of other

traits. Each set of correlations, namely: subject autocorrelations; self autocorrelations

and ascribed-vs-self correlations for each dataset were taken as different classifiers.

5.2.2 ANOVA and Pearson’s r Ordering

In Section 3.5.1 we presented two feature subset selection schemes. These schemes

attempted to order the significance of the traits by judging their ability to distinguish

individuals and by judging the stability of the annotations ascribed across separate

subject groups. By incorporating orderings obtained through such analysis we inherently

incorporate ability to separate individuals and stability of terms into the final ordering.

Also, given that these schemes were initially used to provide an ordering of the traits

no further analysis needs be performed to obtain an ordering. Both ordering schemes

applied to both datasets are treated as a separate classifiers.
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5.2.3 Retrieval Capability

In Section 4.3 we presented a set of retrieval experiments aimed at gauging the ability

of each trait to be used in the process of Content Based Information Retrieval (CBIR)

of unannotated images using LSA. This ability was gauged across 6 biometric features

across 2 datasets, measuring the improvement of mAP results as compared to the mAP

of completely random orderings, the improved mean Average Precision (i-mAP). By

using these scores as a metric to order traits, we include in the final ordering some

notion of a trait’s ability to be used in retrieval tasks in general, and therefore its ability

as a query-able feature in CBIR.

5.3 Ordering approach: Majority Voting

The order a trait exists in a particular scheme can be thought of as that scheme’s vote

for that rating of that trait. By taking a sum of all the positions of each trait we can

obtain an ordering of all traits taking into consideration information attained across all

the mentioned ordering schemes. This approach to vote collation is a form of majority

voting. That being the case, there are several known problems with such majority

voting [121]. The main issue which affects our approach is that of differing goals. There

is no pretence that all our ordering schemes work towards similar goals, nor that there is

a single ordering which is best suited to all scenarios. In some scenarios, the accuracy of

annotations may be paramount and therefore our two sets involving Pearson’s product-

moment correlation coefficient (Pearson’s r) would be the most telling notifier of a trait’s

importance. In other scenarios the general accuracy of the trait is irrelevant and only

its ability to recognise and separate individuals is important and therefore the ANOVA

or i-mAP orderings should be considered. For these disparate purposes in application

the appropriate ordering scheme should be selected and used in isolation. In this section

we show an average and aim to satisfy all criteria simultaneously to some degree, though

in doing so we may in fact achieve an ordering which satisfies no given criteria.

Another major problem with majority voting is the assumption of equal weighting. In

modern democratic systems all participants are equal, therefore any passion or fervour

in the argument of a given individual is rightfully ignored when counting votes [121].

However, in our scenario, all classifiers can also provide estimates of confidence, as

represented by the various scores each scheme produces. Therefore, the position in

the ranks of any given trait is not all that matters, rather the confidence of a particular

positioning of a given annotation should also be taken into consideration. For example, it

was shown in Section 4.3 that the projected gait signatures, while proficient in detection
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of Sex, were notably worse at retrieval by features such as Hair Length; a feature which

the HIDDB Gait Signatures were notably more capable. To take such differing ability

into consideration we also present a normalised weighted voting scheme where each

classifier is given a single vote which is divided equally between its own ranks. The sum

of these weights are then used to order the traits. It should be noted that this approach

does not take into consideration the underlying distribution of any given scheme. This is

especially a problem for the F-ratio of the ANOVA ordering which are known to follow

the F-distribution. However, for purposes of simplicity a linear distribution is assumed.

Majority voting and weighted majority voting schemes are similar to decision fusion

and transformation based score fusion techniques. These are discussed in more detail

in Chapter 3.

5.4 Final Trait Ordering

Table 5.1: Majority voting for Majority set

Key Experiment

A0 ANOVA TunnelDB Experiment
A1 ANOVA HIDDB Experiment
B0 Pearson’s r TunnelDB Experiment
B1 Pearson’s r HIDDB Experiment
C0 i-mAP HIDDB-GaitAverageColour Experiment
C1 i-mAP TunnelDB-ProjectedGaitNonNorm Ex-

periment
C2 i-mAP HIDDB-GaitAverageGrey Experiment
C3 i-mAP TunnelDB-ProjectedGait Experiment
C4 i-mAP TunnelDB-FaceHist Experiment
C5 i-mAP TunnelDB-AverageFace Experiment
D0 Correlation HIDDB-ascrbed Experiment
D1 Correlation TunnelDB-selfVSascribed Experi-

ment
D2 Correlation HIDDB-self Experiment
D3 Correlation TunnelDB-self Experiment
D4 Correlation TunnelDB-ascrbed Experiment

In Table 5.2 and Table 5.3 we present the trait orderings for the Majority and Weighted

Majority voting approaches respectively. The tables show the final ordering of the fea-

tures and the scores used to achieve those orderings. Colour in the tables represent a

comparable normalised scale generated from the range of scores possible in each classi-

fication scheme. Green cells represent more significant scores whilst red cells represent

scores of lower significance. In Table 5.1 shows the mapping between the codes used in

the tables and the schemes which generated the orderings and normalised scores.
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Table 5.2: Voting results for Majority approach

Feature
Ordering

T A0 A1 B0 B1 C0 C1 C2 C3 C4 C5 D0 D1 D2 D3 D4

Sex 42 0 0 0 0 1 0 0 0 3 1 11 5 6 7 8
Weight 84 5 8 6 9 6 7 14 4 4 16 1 1 1 2 0
Height 85 6 7 8 6 3 1 3 2 9 3 8 6 5 9 9
Figure 99 8 9 11 8 11 8 7 20 2 13 0 0 0 1 1
Skin
Colour

101 3 1 1 1 4 11 9 5 0 0 12 9 19 16 10

Chest 115 9 10 9 10 14 10 5 6 10 19 2 2 7 0 2
Hair
Length

135 1 3 3 4 5 17 1 7 6 6 15 20 15 17 15

Age 136 4 4 4 2 0 5 2 11 13 7 9 18 22 21 14
Arm
Thick-
ness

136 15 13 16 14 16 4 12 3 5 15 3 11 3 3 3

Ethnicity 138 10 2 7 5 2 16 10 15 1 2 13 10 17 15 13
Leg Thick-
ness

145 11 16 13 11 10 13 6 16 15 12 7 4 2 5 4

Muscle
Build

145 16 15 17 12 15 3 17 1 14 10 4 8 4 4 5

Hips 161 13 17 12 16 9 9 8 9 20 14 6 3 12 6 7
Facial
Hair
Length

167 2 6 2 7 13 12 15 17 11 4 20 19 8 12 19

Hair
Colour

187 7 5 5 3 12 21 13 12 7 8 18 17 20 18 21

Neck
Thickness

188 14 12 14 18 8 6 20 19 19 21 5 7 11 8 6

Neck
Length

191 18 11 18 15 7 19 4 8 17 17 10 12 14 10 11

Leg
Length

208 17 14 15 13 20 15 18 10 12 9 14 15 13 11 12

Facial
Hair
Colour

221 12 19 10 17 18 18 21 22 8 5 17 13 10 13 18

Arm
Length

228 20 18 19 19 19 2 16 13 21 11 16 14 9 14 17

Leg Direc-
tion

286 21 20 21 20 17 20 11 18 18 22 19 21 18 20 20

Shoulder
Shape

293 19 22 20 22 21 22 19 21 16 20 21 16 16 22 16

Proportions 304 22 21 22 21 22 14 22 14 22 18 22 22 21 19 22

The tables give us several insights into the physiological traits we have outlined and

analysed in this thesis. First and foremost, it is clear that Sex is of key importance

for all classifiers in both voting schemes. This shows that as a feature it is stable, easy

to comprehend, performs well in retrieval tests and effectively separates the population.

Indeed, intuitively it is clear that given any variable to separate individuals in the human

population, Sex is a key feature, a point also agreed upon in the literature [67].

Other global features such as Skin Colour, Ethnicity and Age are voted relatively highly

in both schemes; again showing these factors to be of key importance and value when

describing individuals. It should be noted that in the simple majority voting scheme

these secondary global features perform worse than some overall body shape variables

such as Weight and Figure. Here the increased reliability of the weighted voting scheme

can be seen. The reason global features such as Ethnicity and Skin Colour perform

worse in the simple Majority Voting scheme is that they do not correlate with other
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Table 5.3: Voting results for Weighted Majority approach

Feature
Ordering

T A0 A1 B0 B1 C0 C1 C2 C3 C4 C5 D0 D1 D2 D3 D4

Sex 2.09 0.37 0.37 0.05 0.06 0.09 0.23 0.13 0.27 0.11 0.16 0.04 0.06 0.05 0.05 0.05
Skin
Colour

1.06 0.07 0.14 0.05 0.05 0.07 0.02 0.04 0.04 0.21 0.17 0.04 0.05 0.03 0.04 0.04

Height 0.92 0.03 0.02 0.05 0.05 0.07 0.17 0.07 0.09 0.03 0.1 0.04 0.05 0.05 0.05 0.05
Ethnicity 0.81 0.02 0.09 0.05 0.05 0.08 0.02 0.04 0.02 0.13 0.11 0.04 0.05 0.03 0.04 0.04
Hair
Length

0.8 0.11 0.08 0.05 0.05 0.07 0.02 0.12 0.03 0.06 0.06 0.03 0.03 0.03 0.03 0.03

Weight 0.76 0.04 0.02 0.05 0.05 0.05 0.04 0.03 0.05 0.09 0.01 0.07 0.07 0.06 0.06 0.07
Age 0.75 0.04 0.05 0.05 0.05 0.13 0.05 0.11 0.03 0.02 0.05 0.04 0.03 0.03 0.03 0.04
Figure 0.74 0.03 0.02 0.05 0.05 0.04 0.03 0.04 0.01 0.12 0.02 0.07 0.07 0.06 0.06 0.07
Muscle
Build

0.68 0.01 0.01 0.04 0.05 0.02 0.06 0.02 0.15 0.01 0.02 0.06 0.05 0.06 0.06 0.06

Arm
Thick-
ness

0.66 0.02 0.01 0.04 0.04 0.02 0.05 0.03 0.07 0.08 0.02 0.06 0.04 0.06 0.06 0.06

Chest 0.65 0.03 0.02 0.05 0.05 0.04 0.03 0.06 0.03 0.03 0.0 0.07 0.07 0.05 0.06 0.06
Leg Thick-
ness

0.59 0.02 0.01 0.04 0.05 0.05 0.02 0.05 0.02 0.01 0.02 0.06 0.06 0.06 0.06 0.06

Facial
Hair
Length

0.58 0.08 0.02 0.05 0.05 0.04 0.02 0.03 0.01 0.03 0.07 0.03 0.03 0.05 0.04 0.03

Hips 0.56 0.02 0.01 0.04 0.04 0.05 0.03 0.04 0.03 -
0.0

0.02 0.06 0.06 0.04 0.06 0.06

Hair
Colour

0.52 0.03 0.05 0.05 0.05 0.04 0.01 0.03 0.02 0.05 0.05 0.03 0.03 0.03 0.03 0.02

Neck
Thickness

0.48 0.02 0.01 0.04 0.04 0.05 0.04 0.01 0.01 -
0.0

-
0.0

0.06 0.05 0.04 0.05 0.06

Neck
Length

0.46 0.01 0.01 0.04 0.04 0.05 0.01 0.06 0.03 0.0 0.01 0.04 0.04 0.04 0.04 0.04

Leg
Length

0.44 0.01 0.01 0.04 0.04 0.01 0.02 0.02 0.03 0.02 0.05 0.03 0.04 0.04 0.04 0.04

Facial
Hair
Colour

0.44 0.02 0.01 0.05 0.04 0.01 0.01 0.01 0.0 0.04 0.06 0.03 0.04 0.05 0.04 0.03

Arm
Length

0.42 0.01 0.01 0.04 0.03 0.01 0.08 0.02 0.02 -
0.01

0.02 0.03 0.04 0.05 0.04 0.03

Leg Direc-
tion

0.25 0.0 0.0 0.03 0.02 0.02 0.01 0.03 0.01 -
0.0

-
0.0

0.03 0.02 0.03 0.03 0.02

Shoulder
Shape

0.23 0.01 0.0 0.03 0.02 -
0.0

0.01 0.01 0.01 0.01 0.0 0.02 0.03 0.03 0.02 0.03

Proportions 0.16 0.0 0.0 0.02 0.02 -
0.01

0.02 -
0.01

0.02 -
0.01

0.0 0.02 0.01 0.03 0.03 0.02

features particularly; a result achieved from “D” range experiments. This is because,

apart from Skin Colour correlating with Ethnicity and possibly Hair Colour, there are

fewer correlation between Ethnic appearance and other features. This is correct and to

be expected; one can expect to find variations in Height, Build, Age and Sex regardless

of Ethnicity. Any correlation with such features would require much larger datasets.

Correlating ability is therefore a factor which makes Ethnicity and Skin Colour rank

lower, therefore decreasing their overall scores if correlation metrics are given an equal

weighting. However, by noticing that these features perform exceedingly well in some

“C” retrieval experiments and equally so in the “B” Pearson’s r stability experiments,

we can better estimate their worth as traits.

Build features portray some ability, and depending on the voting scheme they can be

shown to be better or worse than some global features. Both orderings show that
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some build features, especially the more global features such as Height, Weight and

Figure demonstrate real potential and usefulness as physiological traits to be described

semantically. However it is also clear that, although useful in some retrieval experiments,

low level build features such as Neck, Arm and Leg descriptions are less useful than more

general notions of build, or apparently any other feature except for those seemingly

useless descriptions of Shoulder and Proportion. Indeed, lower level build features were

shown to have clear correlations with Weight and Height in Section 2.5.3. This may

signify that, unless specially trained or lead to do so, humans are unlikely to have an

accurate or useable opinion on specific areas of another person’s body, opting instead to

use Leg and Arm descriptions as synonyms for more general descriptions of bulk.

Another explanation may be that there simply was no opportunity for annotators to

accurately describe limbs. It should be noted that such specific body features along with

descriptions of Facial Hair perform well in the “B” Pearson’s r experiments. This shows

that they are stable, and yet they perform poorly in “C” retrieval and “A” separation

analysis orderings. This along with the distribution seen in Section 2.5.2 may show

that there simply were not enough individuals with particularly noteworthy limbs or

facial hair. Given the subjective nature of the annotations gathered it is impossible to

gauge whether individuals were simply not noticing the variance in limbs that existed, or

whether the variance in limbs in the dataset was not high enough to be noticed. Another

experiment beyond the scope of this thesis will need to be performed to investigate this

matter further.

Overall, we see a preference of less precise features over specific features for purposes

of semantic description. The generally understandable and immediately recognisable

global features of Sex, Ethnicity and Age along with the global descriptions of bulk

seem to be powerful in retrieval, accurately annotated and stable. This is in contrast

with the more specific and more unclear features of limb description, shoulder shape and

proportions which perform unequivocally worse. There are evolutionary arguments one

can make to put these results in context. Indeed, there are several potential benefits to

be gained from being able to make accurate and speedy judgments with regards to any

given individual. Important questions can be answered, such as: is this person Male or

Female, and therefore are they a potential mate; are they young or old and therefore

can a status judgment be made; are they of my people or are they strangers and finally,

are they generally bigger or generally smaller in build and therefore, is there danger?

These decisions must be made quickly and accurately, a skill which our results seem to

confirm.
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5.5 Conclusions

In this chapter we have presented a collation of the analysis of the previous chapters.

We present a combination of the various ranking schemes highlighted in Chapters 2

through 3. Using two combination techniques, one taking raw ranking and another

incorporating a metric of confidence, we present a final ordering of our semantic traits.

The ordering highlights the power of less precise features over specific features, with

global features out ranking build features, and less specific build features out ranking

granular ones.

The following chapter concludes this thesis by presenting discussions of possible future

research directions.



Chapter 6

Future Work

6.1 Introduction

In this thesis we have explored semantic descriptions for a set of physical traits and

shown their utility in biometric fusion and information retrieval. In this section we

discuss future directions of this research and some of the open questions.

6.2 Semantic Terms

In this work we have outlined a set of descriptions useful for the purposes of human

description at a distance using semantic terms. However, this set is by no means ex-

haustive and certain features visible at a distance may not be represented. Subsequently

efforts should be made towards the expansion of the corpus of semantic traits identified

thus far to include other traits defining other physical appearances, and furthermore,

subject actions and environments.

Physical appearance traits such as clothing, piercings or distinguishing marks have yet

to be explored. Although such features are easily altered and changed over larger time

scale, they are often mentioned by witnesses of crime and help forge an annotators

perception of a subject. Clothes are also mentioned in the Police RMS investigated

in Chapter 2.

Semantic descriptions of actions could also be investigated. Action descriptions may in-

clude perceived mood, subject goals and social roles. These topics are difficult to explore

automatically in the general case, but are readily mentioned by humans semantically, for

example the concept of a suspicious action. Action features also complement dynamic
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aspects of gait, rather than the static aspects captured by physical descriptions studied

thus far.

A subject’s location and environment undoubtedly affect perception of subject features,

but also define the concept of outliers and “Unusual” behaviour. Questions such as

“Is this subject acting inappropriately?” or “Does this person look out of place?” are

inherently related to the environments within which the subject is observed. An explo-

ration into these semantic attributes, supported by this initial work, will facilitate the

involvement of human knowledge in biometric systems and also help bridge the semantic

gap.

6.3 Practical Applications

Throughout this work we have concentrated on semantic description of traits regularly

collected by police in witness statements. Our work has shown the practical application

of these traits and associated terms in combination with biometric signatures both for

identification and retrieval. This analysis can in turn feed back into police procedure

and evidence analysis. By better understanding which features have potential for high

reliability across a population, police investigations and witness questioning can be per-

formed with more rigour. Furthermore, through the understanding of which biometrics

perform well with which semantic traits, surveillance strategies and querying systems

can be improved by recording appropriate details for the appropriate semantic features

and also cater for human semantic queries.

6.4 Trait and Term Validity

In this work we have attempted to suggest justifications for the traits and terms outlined

and we have also shown that if a subset of our terms are available, improvements in

recognition can be achieved and retrieval can be facilitated. Our research has gone

to great lengths to use a set of features that are consistently available in real world

scenarios, and that when available are accurate.

Our annotation gathering process was specifically designed to be interrogative to avoid-

ing defaulting issues. Therefore, a future study must be formulated to further explore the

validity of the semantic terms used. This can be readily achieved by gathering semantic

annotations from more individuals spanning a larger set of subjects being annotated. In

doing so we can better understand the discriminatory ability of our chosen traits and

terms.
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Furthermore our current research does not explicitly explore how common or prevalent

our chosen terms actually are in day to day human description. A study is required to

gauge whether our physical features are adequate to encapsulate descriptions given in

real world scenarios. This could be achieved through experiments performed in reverse

of those presented by MacLeod et al. [79], i.e. full text descriptions of individuals could

be gathered and our feature set used to encapsulate their descriptions. The utility of

our features would be measured against their ability to define descriptions given and

also on how many features in our set are actually consistently used.

In this thesis we prescribed a subset of semantic terms designed to encompass the broader

range of terms which could be used to describe an individual physically. Though useful

for an initial investigation, this approach could be broadened to incorporate a larger

set of terms through the construction of ontologies or the use of subsections of existing

ontologies of terms such as WordNet [29] or CYC [73]. The structures of such ontologies

allow the analysis of a large set of terms and specify their interconnected structure.

Ontologies allow the explicit consideration of inherently difficult aspects of dealing with

a larger corpus of terms such as synonyms (e.g. describing a Large individual as Huge,

Massive or Built) as well as terms describing multiple traits simultaneously (e.g. Gangly,

describing an individual who is simultaneously Tall, Thin and awkwardly built). Natural

language descriptions of physical traits could be subsequently analysed more efficiently

and incorporated readily in the retrieval and identification applications outlined in this

thesis.

6.5 Ground Truths

Throughout this work, while answering questions such as the retrieval and recognition

capability of the traits, we could only indirectly ascertain the accuracy of any given

annotation. This resulted in certain avenues of analysis being left untouched. In Chap-

ter 2.5.3.1 we could not fully understand the reason for the strong annotation correlations

between related descriptions of Weight and between related descriptions of Height. Sim-

ilarly in Chapter 2.5.2 it was impossible to understand why self annotation distributions

across two datasets were so similar. To explore this aspect of the problem, a ground

truth must be gathered of exact subject measurements. This includes measurements

of Ethnic Origin, Height, Weight, Limb Lengths, Hair Length and exact colour mea-

surements of Skin and Hair. Once these measurements are known their relationship to

semantic annotations can be analysed and therefore the accuracy of annotations and

variance of semantic annotations can be understood.
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6.6 Fusion Approaches

The fusion approaches used in our current research were relatively naive in their as-

sumptions, primarily due to the lack of large training sets required for more complex

density based approaches. An open area of study is the optimal fusion technique for the

new semantic biometric we have outlined. We propose that more semantic data should

be gathered so more rigorous density estimation based score fusion strategies can be

effectively investigated.

We also suggest the fusion of annotator self descriptions, or descriptions others have

given of the annotator, with the annotators response. Our system currently holds such

information, aiming to take into account subject variables. Improvements in both recog-

nition and retrieval could be achieved if annotations are normalised according to the

annotator themselves.

6.7 CBIR Refinement

Several interesting avenues of research were opened with the retrieval experiments un-

dertaken. Firstly, the LSI approach chosen is by no means the only approach avail-

able with regards to exploration of the correlation between semantic and visual spaces.

Probabilistic Latent Semantic Analysis (PLSA) uses a Bayesian model to calculate the

conditional probability of terms and documents belonging to underlying latent classes,

estimated using an iterative Expectation Maximisation (EM) method. The successful

use of PLSA in the past [85] for automatic image annotation as well as semantic be-

havioural inference [74], with some teams reporting improvements compared to SVD

based LSI, warrant an investigation of the use PLSA in biometric CBIR.



Chapter 7

Conclusion

Semantic descriptions are a natural way humans use to describe one another. In this

thesis, by formalising and collecting a set of semantic descriptions, we have shown their

use in biometrics and surveillance scenarios. In Chapter 2 we outline our set of semantic

descriptions and describe a novel dataset of semantic annotations gathered against two

existing biometric datasets. In Chapter 3, we explore the use of semantic annotations as

a soft biometric. We show their application in identification scenarios both in isolation

and in fusion where we achieve better results than existing biometric signatures in iso-

lation. In Chapter 4 we show the application of semantic annotations in a surveillance

retrieval scenario using LSI techniques. Finally, in Chapter 5 we explore which semantic

descriptions are most significant in the context of biometrics and retrieval tasks.
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