

CFD Best Practice Guidelines: A process to understand CFD results and establish *Simulation versus Reality*

Judd Kaiser ANSYS Inc. judd.kaiser@ansys.com

Overview

- Definition of sources of error in CFD
- Best practice guidelines
- Validation example:
 - Impinging jet
- Demonstration example:
 - Cavitation in fuel injection system

Sources of Error

- Numerical errors
 - Round-off error
 - Iteration error
 - Solution error
 - Spatial discretization
 - Temporal discretization

3

- Model errors
- Application uncertainties
- User errors
- Software errors

Numerical: Round-Off Error

- Error due to machine round-off
- Procedure:
 - Define target variables
 - Calculate with single-precision version
 - Calculate with double-precision version
- Check:
 - Compare target variables
 - Grid aspect ratio
 - Large differences in length scales
 - Large variable range

Numerical : Iteration Error

- Error due to level of convergence
 - Differences between current and 'infinitely converged' solution, on same mesh
- Procedure:
 - Define target variables (head rise, efficiency, ...)
 - Plot target variables vs convergence
- Check:
 - Adequate convergence: when target variables become independent of convergence criterion
 - For global balances, monotonic convergence

Iteration Error

Quality : Solution Error

- Error due to mesh resolution
- Difference between current and "infinitely fine" mesh
- Procedure:
 - Minimize by using 2nd order numerics
 - 1^{st} order numerics: error is $\frac{1}{2}$ when grid nodes x 2
 - 2nd order numerics: error is ¹/₄ when grid nodes x 2
- Check:
 - Error indicator: solution differences between two different numerics schemes, same mesh (easy)
 - Error level: solution differences between two different meshes, same numerics scheme (hard)

Test Case VAL01

- Impinging jet flow with heat transfer
- 2-D, axisymmetric
- Grids:
 - 50 × 50 → 800 × 800
- ANSYS CFX
- SST turbulence model
- Discretization schemes:
 - Upwind differencing
 - Upwind differencing + second order correction

- Target quantity:
 - Heat transfer
 - Maximum Nusselt number

Solution Error Example

Error Estimation

Richardson extrapolation

 Error estimated using:

- f₁: Fine grid solution
- f₂: Coarse grid solution
- r: Refinement ratio
- p: Truncation error order

- Practically:
 - Grids must be in the asymptotic range
 - Use three different mesh densities to confirm trends

Model Errors

- Model errors remain, even after all numerical errors have become insignificant
- Inadequacies of mathematical models:
 - Base equations (Euler, RANS, steady, unsteady...)
 - Turbulence models
 - Multi-phase flow models, …
- Difference between good data and calculations
- <u>Check only after numerical errors have been</u> <u>quantified</u>

Model Error: Example

Application Uncertainty

- Systematic errors:
 - Approximations of geometry
 - Component vs. machine
 - Approximation of boundary conditions
 - Turbulence quantities
 - Profiles vs. constant values
 - Approximation of unsteady-state flow behaviour
 - Fluid and material properties
 - Setup error
 - Uncertainty in comparison data
- Discrepancies remain, even if numerical and model errors are insignificant

User Errors

- Examples:
 - Geometry oversimplification
 - Poor geometry, mesh generation
 - Incorrect boundary conditions (locations, values)
 - Selection of incorrect models
 - Incorrect solver parameters
 - Acceptance of non-converged solutions
- Avoidance:
 - Training, documentation
 - Solve relevant validation cases
 - Process management: adhere to best practice guidelines
 - Increasingly, software automation

Software errors

- Examples:
 - Coding bugs
 - Errors in interface or documentation
 - Incorrect support information
- Avoidance:
 - Automated testing
 - Validation and verification cases
 - QA guidelines

- The original presentation included a summary of a CFD study performed by Robert Bosch, involving cavitation in a diesel fuel injector
- All images and data were property of Robert Bosch, and have been removed from this presentation

CFD Simulation

- Multiphase model
 - Homogeneous model
 - Cavitation: Rayleigh-Plesset model
 - Isothermal
- Turbulence model
 - SST model with automatic wall treatment
 - Detached Eddy Simulation (DES)

Simulation Timeline

- Validation
- Throttle Flow
 - 2-D steady state simulation
 - 3-D steady state and transient simulation
 - 3-D DES simulation

Validation: Circular Throttle

19

Summary of RANS

- 2D steady state: Over-simplification
- 3-D simulation:
 - Steady state: Cavitation inside the throttle
 - Transient: Same as steady state
- Need to resolve the large scale turbulence
 - LES: works well for free shear layer but computationally expensive in the wall layer
 - DES model: hybrid of RANS in the near field and LES in the free shear layer

Overview

- Definition of sources of error in CFD
- Best practice guidelines
- Validation example:
 - Impinging jet
- Demonstration example:
 - Cavitation in fuel injection system
- References:
 - Roach, P.J., Verification and Validation in Computational Science and Engineering, Hermosa, 1998
 - ERCOFTAC Best Practice Guidelines
 - <u>www.ercoftac.org</u>