## Best-Practices for Large Eddy Simulations (LES) in FLUENT

## **General Tips**

- 1. Mesh
  - a. Hex mesh is an ideal choice for accuracy
  - b. Avoid abrupt change in grid spacing (cell size) or too aggressive stretching in eddy-congested regions (e.g., boundary layer, near-wake)
  - c. Take advantage of hybrid mesh and local mesh refinement capability (e.g. wall boundary layer, near-wake)
- 2. Spatial discretization
  - a. The "node-based gradient" option is preferred for unstructured (e.g., tet) meshes
  - b. Stick with central differencing or bounded central differencing for momentum equations
  - c. When undershoot/overshoot of the solution fields becomes a critical issue, consider using high-order upwind schemes (QUICK, MUSCL, SOU) for scalars
- 3. Time-discretization
  - a. Use the second-order scheme (default)
  - b. Use the NITA/fractional-step method for incompressible flows
  - c. With the iterative scheme, SIMPLEC has been found best choice
    - i. When the mesh quality is not bad, jack up the URF (0.9 1.0) for pressure and momentum equations
- 4. SGS modeling
  - a. Dynamic Smagorinsky's model is recommended
  - b. Dynamic TKE model can potentially benefit highly non-equilibrium flows and reacting flows

## **Recommended Procedure**

- Compute the mean flow with steady RANS k-ε model is sufficient
  - The RANS solution doesn't have to be fully converged
- 2. Superimpose the synthesized turbulence on the mean flow Use TUI ("/solve/initialize/init-instantaneous-vel")
- 3. Switch to LES, select the SGS turbulence model of your choice

GUI (Define/Model/Viscous...)

4. Select the solver algorithm (e.g., ITA/NITA, FSM/PISO/SIMPLEC) and the discretization schemes

Define/Model/Solver... Solve/Controls/Solution...

- Set the time-step (Δt) and adjust the solver parameters if needed (e.g., URF's, convergence criteria) Solve/Iterate... Solve/Controls/Solution...
- Set the monitors for relevant global (e.g., forces/moments) and local quantities (e.g., velocity, pressure) of your choice Solve/Monitors/Force... Solve/Monitor/Surface... Solve/Monitor/Volume...
- 7. Set the autosave of the data files (e.g., every a few hundreds time-steps)

File/Write/Autosave...

- 8. Start the transient run and continue until a statistically stationary state is reached
- Monitoring integral and/or local quantities will help you judge this
  9. Save the viewgraphs of your choice for animation (contours of pressure, iso-surfaces of vorticity, second-invariant, etc.)
- Solve/Execute Commands...
   Start sampling the data (to compute mean and r.m.s. values) Solve/Initialize/Reset Statistics Solve/Iterate (Click on the "Data Sampling for Time Statistics" button)
- 11. Continue sampling for a sufficiently long period of time Several flow-through times (L/U<sub>0</sub>) Until the mean fields recover any homogeneity (e.g., axisymmetry, 2-D)
- 12. Post-process the results

Display/Contours...(Vectors...)/Unsteady Statistics Plot/XY Plot... Plot/FFT...