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Teaching Computational Fluid Dynamics (CFD) to Design Engineers 
 

 

Abstract 

 

Computational Fluid Dynamics (CFD) can provide detailed thermal flow information, such as 

temperature field, pressure field and velocity field, in equipment and process in various 

industries. Due to the recent rapid growth of powerful computer resources and the development 

of commercial CFD software packages, CFD has been proven a useful tool for mechanical 

design engineers.  

 

CFD has also gained broad acceptance in the engineering education. It has been adopted in both 

undergraduate and graduate level courses in many universities. The teaching of CFD in current 

engineering education can be classified into two types, one is to focus on the numerical methods 

with little emphasis on using the software and the other is to introduce a CFD software as a 

virtual reality laboratory in Fluid Mechanics class without emphasis on teaching software. In the 

first type, students need strong mathematical background to succeed in the class and also need 

further training to effectively use modern commercial software for real industrial application. 

While in the second type, students only learned an abstract form of CFD processes, thus they will 

not be able to use CFD commercial software without further training in this area.  

 

This paper is about the use of CFD in teaching graduate students at this university who were in a 

two year design track program. Many of these students did not have a good background in 

mathematics, fluid dynamics, heat transfer, and programming, however, most of them were good 

at computer aided design in ProE and were very interested in learning CFD as a design tool in 

industries. STAR-CCM+ was chosen as the CFD software to teach students the entire CFD 

process in a single integrated software environment. After building a geometry model in ProE, 

students learned to import the CAD model, set up mesh model, physical model and solver, and 

postprocess the results in STAR-CCM+. Based on projects, CFD numerical methods and 

fundamentals of heat transfer and fluid flow were introduced to help students understand the 

CFD process, interpret, and validate simulation results. 

 

Introduction 

 

Computational fluid dynamics was introduced in the early 1960s as a specialized engineering 

tool for the aerospace, defense and nuclear power industries. In the 1970s, CFD spread to the 

automotive industries and in the ensuing decade grew into a common tool in many commercial 

applications
1
. Due to the rapid growth of powerful computer resources and the development of 

general purpose CFD software packages, the last two decades have seen an expanding growth of 

CFD application in engineering analysis and design. CFD has proven to be a valuable tool to 

complement experimental findings in flow structure studies
2
. While part of this growth has been 

within large traditional fluids engineering industries like the aerospace and nuclear industries, a 

large part of the growth has been in smaller industries or industries that are not necessarily in the 

fluids engineering mainstream
1,2

. For example, CFD technology is now being used to aid in the 

design of subway tunnels, cooling systems for densely packed electronic enclosures, helping 



surgeons to understand the fluid flow in human body in hospital, and designing home 

appliances
1,2

. 

 

Early CFD programs developed before 1980s were almost exclusively for aerospace applications 

and could be only run on mainframe computers by specialized analysts. These engineers were 

trained in graduate schools to provide CFD development and application expertise. In 1990s, a 

host of improved CFD programs with features such as advanced mesh generators, simplified user 

interfaces, and sophisticated graphics, were developed for new applications in product 

development and manufacturing
3
. From then, CFD began to be used outside of the research lab 

by engineers who were not specialists in CFD. Besides the increasing number of industries 

which adopt CFD in aid of their product design, CFD has played a more important role in the 

design process. CFD has been used only in the late design stage before final prototyping, but it is 

a new trend to include CFD within the early design process. Many software developers are now 

integrating their CFD software with CAD technology to enable design engineers to analyze fluid 

flow and heat transfer during their design. With minimal training or experience in CFD, design 

engineer are now required to determine fluid flow, heat transfer, thermal or structural stress, or 

other physical phenomena in their design process. With the profusion of “easy to use” and “push-

button” CFD codes for designers, it is easy to get wrong or unphysical CFD predictions without 

being aware of it
4
. There is a rising issue with the quality and reliability of industrial CFD 

simulations when more and more companies are integrating their CFD tools into their design 

processes. 

 

CFD has also gained broad acceptance in the engineering education. It has been adopted in both 

undergraduate and graduate level courses in many universities. The traditional CFD education 

has been focused on training specialized analysts with emphasis on algorithms and code 

development. This was appropriate for training CFD specialist in early days when the 

commercial codes were less advanced and developed for CFD experts. With the rapid 

development of commercial packages in the recent twenty years, more CFD analysts are using 

commercial CFD packages. According to a survey conducted by NAFEMS
4
, 80% of the CFD 

analysts are using commercial CFD packages, which can simulate many physics and have 

advanced feature for complex geometry and mesh generation abilities. Students need strong 

mathematical background to succeed in the traditional CFD class and also need further training 

to effectively use modern commercial software for real industrial application. Recent 

developments in CFD curriculum have included commercial packages such as Fluent, Star-CD, 

CFX as part of the class
5-9

. As the learning curve of commercial packages is steep, many 

undergraduate curricula
10-15

 introduced teaching CFD software such as FlowLab in Fluid 

Mechanics class. These teaching software packages have served as a virtual reality laboratory 

which helped students to understand fluid flow and the internal structure of CFD. However, they 

cannot prepare students to use commercial CFD software for real application as the teaching 

software is a much simplified version. 

 

It was challenging to teach CFD to graduate students in a two year design track program at this 

university. Many of these students did not have a solid background in mathematics, fluid 

dynamics, heat transfer and computer programming, which are the knowledge required for a 

traditionally CFD analyst. To effectively teach CFD as a design tool in industries, the class was 

designed to include lectures, labs, and projects in a commercial code STAR-CCM+. Figure 1 



shows an industrial design process in STAR-CCM+, which is capable of obtaining CFD solution 

in a single integrated software environment. After building geometry in ProE, students learned 

the entire CFD process in STAR-CCM+, from importing the CAD geometry, surface wrapping 

and cleaning-up, generating surface mesh and volume mesh, choosing physical models, 

monitoring CFD solution, to postprocessing the results. In parallel to the projects in STAR-

CCM+, CFD numerical methods and fundamentals of heat transfer and fluid flow were 

introduced to help students understand the CFD process and interpret and validate simulation 

results. This course was not intended to produce CFD specialist, teach only thermal fluids, or use 

particular commercial software. The purposes of this course were to help students gain 

understanding of the CFD application in industrial design, the internal structure and operation of 

CFD solvers, build up their knowledge of fluid mechanics and heat transfer, interpret and 

validate CFD results, and be aware of the pitfalls of CFD simulations. 
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Fig. 1 An application of CFD in industrial design process
16

. 

 

 

Commercial CFD software STAR-CCM+ 

 

STAR-CCM+ is a new product from CD-adapco, the same company which developed STAR-

CD. STAR-CCM+ is known as the next generation CFD software which was built from scratch 

with latest software technologies such as client-server architecture, object-oriented 

programming, scalable parallel performance and supported platforms. It was first released in 

2004 and it currently has advanced automated meshing ability, a wide range of physics models, 

an extensive selection of turbulence models, and powerful post-processing tools. Due to its 

unique polyhedral cells capability, STAR-CCM+ can be embedded in CAD and PLM 

environments such as SolidWorks, CATIA V5, Pro/Engineer and NX through its STAR-CAD 

series products. Compared to other commercial software, STAR-CCM+ is very easy to use in its 



integrated software environment. After geometry generated in CAD is imported into STAR-

CCM+, mesh generation, physical model and solver set-up, iterative design studies, and post 

processing are all done in STAR-CCM+. 

 

10 free license seats of STAR-CCM+ were given to the Department of Mechanical Engineering 

in exchange of user reports, classroom outlines and/or manuscripts in Spring 2007. 35 license 

seats were purchased for Spring 2008 at academic price. STAR-CCM+ can be easily installed in 

PCs and licenses can be managed in floating or fixed formats. The user manual, tutorials and 

help files are well-documented for easy access on each PC. A good set of tutorials is available to 

guide new users to simulate various industrial fluid flow in a step-by-step format. 

 

Lecture content 

 

The structure of the lecture was similar to that of Aung
7
. Three textbooks

17-19
, online materials

20-

21
, and STAR-CCM+ user manuals

16
 were used as lecture materials in class. The book by John 

Anderson
17

 was chosen for the first part of the class, including the philosophy of CFD, governing 

equations, and finite difference method. The book by Patankar
18

 and the book by Versteeg and 

Malalasekera
19

 were used for finite volume method and solution algorithms. The book by 

Versteeg and Malalasekera was also used for turbulence modeling and grid generation. Although 

three books were used by the instructor to develop lecture slides, only the book by Versteeg and 

Malalasekera was recommended to students. The other two books were reserved in library as 

references for students. Online lecture slides
20,21

 saved the instructor a lot of time on creating 

slides, even though many hours were spent on modifying the slides to tailor them to the needs of 

the class by the instructor. STAR-CCM+ user manual was extensively used in this class, 

especially on grid generation and turbulence modeling, which currently are the two main issues 

troubling CFD analysts in the field
4
.  

 

The first week of the course was the introduction of the philosophy of CFD
17,20

. The discussion 

included what is CFD, why and where it is used, CFD processes, CFD commercial codes, and 

how CFD works together with analytical fluid dynamics (AFD) and experimental fluid dynamics 

(EFD) to study fluid mechanics.  

 

Three weeks of the class was devoted to the governing equations of fluid dynamics
17

. The 

governing equations in partial differential form for the conservation of mass, momentum, and 

energy were derived in Cartesian coordinates for three dimensional flow. The governing 

equations were given to students in cylindrical coordinates as well. The physical meaning of 

each term in the equations was explained and the effects of these terms on the solution procedure 

of the PDEs were discussed. The governing equations were classified for different types of flows 

such as viscid, inviscid, Newtonian, Nonnewtonian, compressible, incompressible, transient, and 

steady flows. The general behavior of the PDEs and their solution methods were discussed based 

on the mathematical classifications of the governing equations as hyperbolic, parabolic, and 

elliptic equation. The physical meaning and the importance of boundary and initial conditions in 

solving each type of the PDE equation were presented.  

 

Five weeks of class were on the discretization of PDEs
17-19,21

, and solution algorithms of 

discretized equations. Finite difference was introduced first because it could be very easily 



understood by students. A one-dimensional unsteady state diffusion equation was used as an 

example to illustrate the truncation error, explicit and implicit schemes, and stability associated 

with discretization. As finite volume method is used in STAR-CCM+ and many other 

commercial codes, it was introduced in the class despite its difficulty to students. A steady state 

diffusion equation was used as an example to introduce finite volume method and TDMA was 

introduced as a solution algorithm for discretized equations. A one-dimensional steady state 

convection-diffusion problem was used as an example to introduce the different discretization 

schemes of convection term. Generalized governing equations were then discretized on a 

staggered grid and SIMPLE algorithm was introduced for the pressure-velocity corrections. 

Other types of solution algorithms were also introduced to students. 

 

One week of the class was on the grid and mesh generation
19

. The state of art of CFD grid 

generation was introduced. Structured grid methods, unstructured grid methods, and hybrid grid 

methods were discussed. STAR-CCM+ user manual on mesh generation was used to help 

students generate quality mesh. Project was assigned for students to generate different types and 

sizes of mesh. 

 

Two weeks of the class were on the turbulence modeling
19

. Turbulent flow and turbulence 

boundary layers were introduced. Turbulence models, including RANS models, LES, DES, and 

DNS were surveyed. Three RANS models, which are K-i model, V
2
f model and RSM model, 

were studied and compared. STAR-CCM+ user manual on turbulent modeling was referred for 

their applications, wall treatment, and wall function. The study of the three models was also 

included in projects.  

 

One week was used to discuss errors and uncertainty in CFD modeling
19

. Roundoff errors, 

iterative convergence errors, discretization errors, input uncertainty in domain geometry, 

boundary conditions and fluid properties, and physical model uncertainty were discussed. 

Verification and validation of CFD simulation and guidelines for best practice in CFD was also 

introduced. 

 

Other lecture time was used to help students with their projects, including providing the 

theoretical background related to the projects and interpreting simulation results. 

 

Laboratories and projects 

 

In the first lab, an introduction demo was shown to students using the Introduction to STAR-

CCM+ Tutorial. This tutorial does not include mesh generation. A polyhedral mesh file of a 

symmetric blunt body was imported and used to set up, run, and post-process a transonic flow 

over a symmetrical blunt body in a wind tunnel. As STAR-CCM+ is a multi-physics continuum 

based modeling with its unique way to handle physics and mesh, there are some new 

concepts/terms related to the software. With the help of the user manual, the concepts of 

continuum, region, boundary, and interface were explained. Students were also directed to the 

user manual and encouraged to refer to the manual often for understanding, choosing different 

models, and general problems with operating the software. 

 



The first project was then assigned to simulate a steady state laminar flow in a pipe and its 

verification with theoretical results. As meshing models had not been introduced to students, a 

two-dimensional (2-D) mesh file was provided for running the simulation. In their reports, all 

students simulated the flow in a pipe as a 2-D flow with wall boundary at both the top and 

bottom surfaces, as in Fig. 2 (a), which actually simulated a flow between two parallel plates. 

The problem arose from lack of knowledge in four areas: CFD modeling of space, software 

operation skills, flow physics, and verification of simulation. Some students were not aware of 

the difference between the 2-D and axisymmetrical models. While others tried to use the 

axisymmetric model, but they had troubles with using it in STAR-CCM+. The axisymmetric 

model in STAR-CCM+ is only for 2-D meshes with restriction on the orientation of the mesh. 

The restriction requires that the axis should be at y = 0 in the global coordinate and no part of the 

mesh can be below y = 0, as shown in Fig. 2 (b). When students had problem with the 

axisymmetric model, they used the 2-D model which could give them results. Students were 

easily satisfied with the parabolic velocity profile for a flow between two plates which was 

similar to that in a circular pipe. During the validation process, they compared the CFD results 

with the theoretical values of the maximal x-direction velocity and skin friction coefficient in 

fully developed region. They found there were 25% difference between the CFD results and 

theoretical results. However, they could not evaluate the error due to their limited understanding 

of the flow physics. From this project, we can see the potential problems in simulation quality 

and accuracy when more un-prepared CFD users use “easy to use” CFD packages.  
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Fig. 2 Laminar flow between two plates (a) and in a pipe (b). 

 

In the second lab, mesh models were explained and demonstrated using Meshing Tutorial and 

Meshing manual. Students were now assigned to simulate the steady state laminar flow between 

two parallel plates and in a pipe with a similar geometry in the first project. The geometry was 

required to be drawn in ProE and saved in IGS format. The IGS file was then imported into 

STAR-CCM+ for meshing and simulation. In the project, student needed to generate a quarter of 

a 3-D cylinder in ProE, imported it as a surface in STAR-CCM+, translated and rotated the 

geometry to the appropriate orientation to generate mesh for the axisymmetric model. A 3-D 



volume mesh was first generated after selecting mesh models and defining reference properties 

and boundary meshing properties. The 3-D volume mesh was then converted to 2-D mesh for the 

axisymmetric model, as shown in Fig. 3. From the report of the first project, we found students 

need detailed guidance with analyzing results and writing report. Before the project, the 

theoretical background in channel flow was explained and so were its important features, such as 

maximal velocity in x direction, skin friction coefficient, developing length, velocity profile, etc. 

With better understanding of the models and better capability to expect what will to be studied, 

students successfully finished the project and had a better understanding of the flow physics and 

the verification of the CFD results. 

 
Fig. 3 A 2-D polyhedral mesh for modeling flow in a pipe. 

 

The other four projects were taken from the class website of Stern
20

 at University of IOWA. 

Their detailed lab materials including lab instructions, lab report instructions, and experimental 

data were adopted in class. These four projects were well developed laboratory exercises 

designed to teach student CFD methodology with educational interface in FlowLab. Even though 

they were designed for FlowLab user in a much simplified interface, students benefited from the 

templates with better understanding of CFD process and flow physics. The lab materials served 

as a very good guidance for students in their labs and writing reports. These materials saved 

instructor time developing tutorials to enhance understanding of flow physics. As these lab 

instructions were prepared for FlowLab, extra efforts were needed from students in 

preprocessing, model selections, and postprocessing. These projects were also modified to fit 

with other part of the class, such as different turbulent models and mesh generation. 

 

The following are the names and project descriptions slightly modified from the four laboratory 

exercises taken from the website of Stern
20

:  

 

Project 1 Verification of laminar and validation of turbulent pipe flows 

Students will have “hands-on” experiences using STAR-CCM+ to compute axial velocity 

profile, centerline velocity, centerline pressure, and skin friction coefficient. Students will 

conduct verification studies for skin friction coefficient and axial velocity profile of laminar pipe 

flows, including iterative error and grid uncertainties, and effect of refinement ratio on 

verification. Students will use post-processing tools (streamlines, velocity vectors, contours, x-y 

plots, streamlines, and tables) to visualize and analyze the flow fields. Students will validate 

turbulent pipe flow simulation using EFD data and analyze the differences between laminar and 

turbulent flows. 

 

Project 2 Verification and validation of turbulent flow around a clark-y airfoil 



Students will have “hands-on” experiences using STAR-CCM+ to conduct verification and 

validation for lift coefficient and pressure coefficient distributions, including effect of numerical 

scheme. Students will manually generate the “O” type and “C” type meshes and investigate the 

effect of domain size and effect of angle of attack on simulation results. Comparisons between 

inviscid and viscous flows will also be conducted. Students will use post-processing tools 

(streamlines, velocity vectors, contours, x-y plots, streamlines, and tables) to visualize and 

analyze the flow fields. Students will analyze the differences between CFD and EFD and analyze 

possible source of errors. 

 

Project 3 Simulation of turbulent flow in an asymmetric diffuser 

Students will have “hands-on” experiences using STAR-CCM+ to conduct verification and 

validation for total pressure change, velocity and turbulent kinetic energy, skin friction 

coefficient, etc. Effect of turbulent models will be investigated, with/without separations. 

Students will manually generate meshes, solve the problem and use post-processing tools 

(contours, velocity vectors, x-y plots, streamlines, tables, and user defined filed functions) to 

visualize and analyze the flow field. Students will analyze the differences between CFD and 

EFD. 

 

Project 4 Simulation of turbulent flow over the ahmed body 

Students will have “hands-on” experiences using STAR-CCM+ to investigate the effect of slant 

angles (25 and 0 degrees), effect of meshes (coarse and fine) on simulation results by comparing 

with experimental data. Students will use post-processing tools (streamlines, velocity vectors, 

contours, x-y plots, streamlines, animations, and tables) to visualize and analyze the mean and 

instantaneous flow fields and compute the shedding frequency (Strouhal number). Students will 

analyze the differences between CFD and EFD. 

 

These four projects were assigned as term project to students. Each project was divided and 

assigned to two or three groups with each group working on one part. The submission of the 

project was also divided into five different phases, including deadlines for project proposal, 

geometry generation, mesh generation, simulation results, and final report. The problems 

revealed in the reports were discussed in the class. The final project was presented by each 

group, so students not only had hands on experience on the part they were working on, but also 

could learn a more complete picture of CFD techniques from the works of others.  

 

Discussions 

 

We observed that students could quickly obtain enough knowledge of STAR-CCM+ to 

investigate fluid flow with the guidance of the instructor. They could generate geometry in ProE, 

import the geometry as a surface, generate appropriate meshes, set up physical models, solve 

numerical problems, visualize and analyze the flow field with post-processing tools. However, it 

was still very difficult for students to model a new flow phenomenon alone. This was what we 

have expected at the beginning as we were not intended to produce experts. CFD experts should 

still be the ones to develop CFD models for new industrial applications, while design engineers 

will perform the simulation and interpret the results with guidance.  

 



Students preferred STAR-CCM+ as a teaching tool over FlowLab used in my fluid dynamics 

class because STAR-CCM+ is a commercial package used in industry. They were amazed by the 

ability of STAR-CCM+ in modeling different geometry, generating mesh, choosing physical 

models and postprocessing the results. They were glad that they gained experience in operating 

the software, especially in postprocessing results, but on the other side, they were overwhelmed 

by the complexity of choosing physical models. 

 

The lectures were prepared to help students understand the fundamental numerical techniques 

and models. From the tests on the lectures, we found students had more problems with the 

lectures than with the projects. The lectures were much simplified compared to those for the 

traditional CFD courses, but they were still similar in including all of the important fundamental 

numerical techniques. As the traditional CFD courses were designed for CFD developers, the 

similar lectures in this class were still difficult for beginners, especially those who did not have a 

good background in mathematics, fluid dynamics, and heat transfer. We will continue to modify 

the lectures to make them easier to understand while at the same help students grasp the essential 

CFD internal structures. 

 

A formal survey was not conducted for this class. However, discussions were often held with 

students on the effectiveness of the lecture contents and projects. From the feedbacks, we found 

the method of combining user manual with lectures and projects help students to understand the 

fundamentals. From the feedbacks, we found we had reached the purposes of this course, which 

were to help students gain understanding of CFD application in industry design, the internal 

structure and operation of CFD solvers, build up their knowledge of fluid mechanics and heat 

transfer, interpret and validate CFD results, and be aware of the pitfalls of CFD simulations.  

 

The instructor found this course was very time consuming in developing new lecture materials 

on grid generation and turbulence modeling, projects preparation, and helping students with 

projects. STAR-CCM+ was introduced very late – after 4 weeks of class. It should have been 

introduced at the beginning of class to give students more time to know the software and 

understand the modeling in the software with the lectures. It was also because the time limit that 

another project on heat transfer was not able to be covered in the class. We expect the teaching 

of this course in Spring 2008 would be more effective with some academic teaching modules
16

 

developed for STAR-CCM+ by the software developer. 

 

Conclusions 

 

This paper presents the design and implementation of Computational Fluid Dynamic (CFD) 

course in the Department of Mechanical Engineering at this university for graduate students in a 

two year design track program. With the combination of lecture, labs, and projects, we have 

introduced CFD as a design tool to students who did not have a good background in 

mathematics, fluid dynamics, heat transfer, and programming. We had also reached the purposes 

of this course, which were to help students gain understanding of CFD application in industry 

design, the internal structure and operation of CFD solvers, build up their knowledge of fluid 

mechanics and heat transfer, interpret and validate CFD results, and be aware of the pitfalls of 

CFD simulations. 
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