

Advanced Fluent Training Turbulence Apr 2005

Advanced Fluent Training Turbulence Apr 2005

2d Backstep

- Experiments conducted at NASA Ames (Driver and Seegmiller, 1985)
- $Re_{H} = 3.74 \times 10^{4}, \ \alpha = 0 \text{ deg.}$
- The flow features re-circulation, reattachment, and re-developing BL
- Computed using SKE, RNG, RKE, and k- ω models on a fine mesh

2D Backstep - Skin Friction Coefficient

3 / 47

Advanced Fluent Training Turbulence Apr 2005

• Re = 5,100

- Comparison with DNS data of Le and Moin (1994)
- Comparison of Standard *k*-ε + 2-layer, Yang-Shih low-Re model and V2F low-Re model

Advanced Fluent Training Turbulence Apr 2005

www.fluentusers.com

Low-Re Backstep

- Pressure coefficient and x-component of skin friction
- 2-layer model less accurate than V2F and Yang-Shih

Advanced Fluent Training Turbulence Apr 2005

© Fluent Inc. 6/7/2005

Advanced Fluent Training Turbulence Apr 2005

- ϵ and v_t prescribed algebraically for 2-layer model in region where $Re_y < 200$
- For low Re, much of the flow is in this region
- 2-layer model is not always a good substitute for a low-Re model

Advanced Fluent Training Turbulence Apr 2005

Comparison with experimental data of Monson et al. (1990)

Advanced Fluent Training Turbulence Apr 2005

www.fluentusers.com

Streamwise Velocity Comparisons

www.fluentusers.com

Advanced Fluent Training Turbulence Apr 2005

Pressure Coefficients

www.fluentusers.com

Advanced Fluent Training Turbulence Apr 2005

Stream Function Contours

Lessons from 2-D U-Bend

- Only the RSM correctly predicts the effects of streamline curvature
- Standard k- ε does not predict any separation
- RNG k- ε predicts slight separation
- Both RSM and Spalart-Allmaras predict significant separation

Turbulent Vortex Breakdown

- Comparison with experimental data of Sarpkaya (1999)
- 2D axisymmetric calculation
- Simulation courtesy of R. Spall, Utah State University

Comparisons of Axial Velocity Profiles

Comparisons of Swirl Velocity Profiles

Lessons from Turbulent Vortex Breakdown

- k- ε model cannot predict vortex breakdown
 - in high strain rates, turbulent kinetic energy increases and increases turbulent viscosity
 - RNG *k*-ɛ model is better (additional strain-rate term, and an ad hoc swirl correction, reduce the turbulent viscosity) but not acceptable
- RSM results show significant improvement for this and many other swirling flow cases

Axisymmetric Underwater-Body

- Experiments conducted (Huang *et al.*, 1976) at DTNSRDC
- High-Re ($Re_L = 5.9 \ge 10^6$), incompressible BL flow with a separation at around x/L = 0.92, and reattachment at x/L = 0.97
- SKE, RNG, RKE, SA, SKO, SST, RSM and Low Re models tried
 - Different near-wall treatments tried

www.fluentusers.com

Advanced Fluent Training Turbulence Apr 2005

www.fluentusers.com

Advanced Fluent Training Turbulence Apr 2005

www.fluentusers.com

Advanced Fluent Training Turbulence Apr 2005

Advanced Fluent Training Turbulence Apr 2005

Axisymmetric Underwater-Body (2)

• Pressure (C_p) predictions

Skin-friction predictions

- Static pressure in the separated region is over-predicted by *k*-ε models
- The experiment shows the flow separates at x/L = 0.92 and reattaches at x/L = 0.97
- $k \omega$ models gives too large a separation

- Spalart-Allmaras gives consistent results on both meshes
- Separation not predicted by Standard k-ε on either mesh
- RSM separates on both meshes
 - C_p on body somewhat overpredicted on coarse mesh
 - "Wall reflection" term, or quadratic pressure-strain term, necessary to obtain coarse mesh separation
- Subtle separation illustrates effect of near-wall treatment
 - Realizable k-ε has smaller separation bubble on fine mesh
- Difficult to get grid-independent solutions using wall functions. Would a low-Re formulation work?

Advanced Fluent Training Turbulence Apr 2005

- Low-Re models using damping functions do not predict the separation
- Durbin's V2F (4-equation) model predicts separation

Turbulent Heat Transfer Over a Blunt Plate

Ota & Kan

151x75 quad mesh

Advanced Fluent Training Turbulence Apr 2005

Blunt Plate

 The standard *k*-ε model gives spuriously large turbulent kinetic energy on the front face, underpredicting the size of the recirculation

Contours of TKE production

Advanced Fluent Training Turbulence Apr 2005

Blunt Plate

Heat Transfer Over a Blunt Plate

Advanced Fluent Training Turbulence Apr 2005

Example: Ship Hull Flow

- Experiments: KRISO's 300K VLCC (1998)
 - Complex, high Re_L (4.6 × 10⁶) 3D Flow
 - Thick 3D boundary layer in moderate pressure gradient.
 - Streamline curvature
 - Crossflow
 - Free vortex-sheet formation ("open separation")
 - Streamwise vortices embedded in TBL and wake
- Simulation
 - Wall Functions used to manage mesh size
 - $y^+ \approx 30 80$
 - Hex mesh $\Rightarrow \sim 200,000$ cells
- Contours of axial velocity compared with simulations

Comparing Contour Plots of Axial Velocity

SKO and RSM models capture characteristic shape at propeller plane

Comparing Wake Fraction and Drag

- Though SKO (and SST) were able to resolve salient features in propeller plane, not all aspects of flow could be accurately captured
 - Eddy viscosity model
- RSM models accurately capture all aspects of the flow
- Complex industrial flows provide new challenges to turbulence models

Flow in a Rotating Channel

- Represents flows through rotating internal passages (e.g. turbomachinery applications)
- Rotation affects mean axial momentum equation through turbulent stresses
- Rotation makes mean axial velocity asymmetrical
- Computations are carried out using SKE, RNG, RKE and RSM models are with the standard wall functions

Flow configuration:

Advanced Fluent Training Turbulence Apr 2005

Flow in a Rotating Channel

Predicted axial velocity profiles ($Re_H = 11.500, Ro = 0.21$)

2-D Hill

- Measured by Baskaran *et al.* (JFM, Vol. 182, 1987)
- High-Re (Re_L = 1.33 x 10⁶/m) incompressible BL subjected to pressure gradient, streamline curvature
- The main interests are the skin-friction, static pressure, and extent of the BL separation (x=1.1 m)
- Computed using SA, SKE, RKE, and k- ω models

Two-Dimensional Hill of Baskaran et al. (1987)

Pressure and Skin Friction Distribution

Pressure distribution

 The k-ω models predict the C_p plateau very closely The k-ω models give an earlier and larger separation than other models

Skin-friction distribution

Advanced Fluent Training Turbulence Apr 2005

Axisymmetric Bump

- Measured by Bachalo and Johnson (1986)
- Transonic BL flow with a standing shock and a pocket of BL separation behind the shock
- Ma = 0.875, $Re_c = 13.6 \times 10^6$ at freestream
- Computed using S-A, SKE, RKE, KO, SST models

Axisymmetric Bump (2)

Wall pressure predictions

x/c

Advanced Fluent Training Turbulence Apr 2005

RAE 2822 Airfoil

- RAE2822 Transonic airfoil
- Measured by Cox (1981) (Case 9 in Stanford database)
- The corrected $\alpha = 2.79$ deg., Ma = 0.73, Re = 6.5 x 10⁶
- Computed using SA, SKE, RKE, and *k*-ω models on a wall function (coarse) mesh

Advanced Fluent Training Turbulence Apr 2005

www.fluentusers.com

Advanced Fluent Training Turbulence Apr 2005

www.fluentusers.com

RAE 2822 C_f Predictions

Advanced Fluent Training Turbulence Apr 2005

www.fluentusers.com

RAE 2822 Airfoil Summary

Forces and moment predictions

 $(\alpha = 2.79, Re = 6.5 \times 10^{6}, Ma = 0.73)$

Flow	S-A	SKE	RKE	SST k-ω	Wilcox k-w	Exp.
CL	0.811	0.835	0.820	0.772	0.774	0.803
CD	0.0180	0.0198	0.0189	0.0172	0.0172	0.0168
CM	-0.1093	-0.1063	-0.1092	-0.1068	-0.1072	-0.099

- The shock location predicted k- ω models is slightly upstream of the measured one and the prediction by other models
- The two k- ω models gives a slightly lower lift coefficient, but their results are almost identical

www.fluentusers.com

Advanced Fluent Training Turbulence Apr 2005

• 40,000 cell hexahedral mesh

- High-order upwind scheme was used
- Computed using SKE, RNG, RKE and RSM models with the standard wall functions
- Represents highly swirling flows $(W_{\text{max}} = 1.8 U_{\text{in}})$

Advanced Fluent Training Turbulence Apr 2005

Flow in a Cyclone

• Tangential velocity profile at 0.41 m below the vortex finder

© Fluent Inc. 6/7/2005

LES Example - Dump Combustor

- A 3-D model of a lean premixed combustor studied by Gould (1987) at Purdue University
- Non-reacting (cold) flow was simulated with a 170K cell hexahedral mesh using second-order temporal and spatial discretization schemes

LES Examples - Dump Combustor

• Simulation done for:

$$\operatorname{Re}_{d} = 10^{5} \left(\operatorname{Re}_{\lambda} \approx 150 \right)$$

 Computed using RNG-based subgrid-scale model Mean axial velocity prediction at x/h = 5;

Mean axial velocity at x/h = 5

LES Examples - Dump Combustor

• RMS velocities predictions at x/h = 10

