
Processes for Adhesive Rewriting Systems?

Paolo Baldan1, Andrea Corradini2, Tobias Heindel3,
Barbara König3, and Pawe l Sobociński4

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany
4 Computer Laboratory, University of Cambridge, United Kingdom

Abstract. Rewriting systems over adhesive categories have been re-
cently introduced as a general framework which encompasses several
rewriting-based computational formalisms, including various modelling
frameworks for concurrent and distributed systems. Here we begin the
development of a truly concurrent semantics for adhesive rewriting sys-
tems by defining the fundamental notion of process, well-known from
Petri nets and graph grammars. The main result of the paper shows
that processes capture the notion of true concurrency—there is a one-to-
one correspondence between concurrent derivations, where the sequential
order of independent steps is immaterial, and (isomorphism classes of)
processes. We see this contribution as a step towards a general theory of
true concurrency which specialises to the various concrete constructions
found in the literature.

1 Introduction

Many rewriting theories have been developed in order to describe rule-based
transformations over specific classes of objects: words (formal languages), terms,
multi-sets (Petri nets) and graphs (graph rewriting). The recently introduced
categorical foundation for double-pushout (dpo) rewriting theory based on ad-
hesive categories [13] encompasses rewriting on words, multi-sets and (typed)
graphs. Indeed, adhesive categories satisfy practically all the High-Level Replace-
ment conditions [8], which ensure the validity of several standard theorems.

As a consequence of the relatively simple axioms and closure properties of
adhesive categories, it is not difficult to show that a wide range of structures
form the objects of an adhesive category. For instance, the categories of graphs
with second-order edges or graphs with scopes are adhesive. Because of their
generality, adhesivity and related concepts have begun to be exploited in the
area of graph transformation (see e.g., [9]).

The view of adhesive rewriting systems as a general, unifying setting into
which several models of concurrent and distributed systems can be embedded,
? Partially supported by EPSRC grant GR/T22049/01, DFG project SANDS, EC

RTN 2-2001-00346 SegraVis, MIUR project PRIN 2005015824 ART and EU IST-
2004-16004 SEnSOria.

calls for a generalization of the concurrency theory already developed for specific
formalisms like Petri nets and graph rewriting to this framework. The first steps
in this direction were already taken in [13] where the notions of sequential and
parallel independence of two rewriting steps, i.e. conditions under which they
can be switched or applied concurrently, were studied.

In this paper we continue the development of a truly concurrent semantics for
adhesive rewriting systems by generalizing the fundamental notion of process,
well-known from the theory of Petri nets [11]. A process describes a possible
computation of a given rule-based system taking into account the dependencies
between the rewriting steps. The fact that two events are concurrent is modeled
by the absence of dependencies between them. Intuitively, a process provides a
canonical representation of a class of derivations (sequences of rewriting steps)
which differ only in the order of independent rewriting steps.

The theory of processes and their correspondence with suitable equivalence
classes of derivations has been generalized from nets to graph transformation sys-
tems in [6, 4, 1]. These approaches rely on the set-theoretical concept of items—
tokens in the case of Petri nets, nodes and edges in the case of graph rewriting.
For example, a transition t is said to be a cause of another transition t′ if it
produces a token in the pre-set of t′, while in dpo-graph rewriting a rule cannot
be applied to a graph if it deletes a node without deleting all edges incident to
it (the so-called dangling condition).

In the abstract setting of adhesive categories, a concept related to the notion
of item is that of subobject of an object X. A subobject is an isomorphism class
of monomorphisms into X. For example, in the category of sets and functions,
the subobjects of a set are (in 1-1-correspondence with) its subsets, while in the
category of graphs and homomorphisms, a subobject of a graph is a subgraph.
When working with subobjects of an object X in adhesive categories, we benefit
from the fact that they form a distributive lattice [13]. However, we have no
notion of “atoms” that can be consumed or produced. As a consequence, the
techniques involved in the development of our theory are significantly different
from those used in the setting of nets or graph rewriting and an original ap-
proach is needed in order to deal with the relevant concepts such as causality,
concurrency, and negative application conditions for rules.

From a theoretical perspective, the central merit of our development lies in
readdressing in the abstract setting of adhesive categories the concept of pro-
cess that has so far been defined only in concrete cases. This is in contrast to
related notions such as parallel and sequential-independence which are tradition-
ally defined at the abstract level. The advantages of understanding processes at
a general level are clear: we are able to prove theorems without resorting to the
use of low-level structure.

The theory in this paper provides the foundations for the development of
partial order verification methods that are applicable to rewriting systems over
general “graph-like” structures, including, for instance, uml models, bigraphs
and dynamic heap-allocated pointer structures.

Structure of the paper. We recall the definition of adhesive categories as well as
some of their properties in §2. Adhesive grammars and derivations are introduced
in §3 followed by a study of the possible relations among the rules and their
connections with concurrency. The notion of occurrence grammars (on which the
notion of process is based) is developed in §4. Finally, in §5 we define processes
and show that processes and switch-equivalence classes of typed derivations are
in 1-1-correspondence.

2 Adhesive Categories

Adhesive categories were introduced in [13]. Roughly, they may be described as
categories where pushouts along monomorphisms are “well behaved”. Here we
only give a minimal introduction, concentrating on the algebra of subobjects of
a given object T .

Definition 1 (Adhesive category). A category C is said to be adhesive if

1. C has pushouts along monomorphisms; C ′

tthhhhhhhh
&&LL

L

��

A′

��

&&MM
M B′

��

tthhhhhhhh

D′

��

Cm
hhhh

sshhhh &&MMM

A
&&MMM B
sshhhhhhhhh

D

2. C has pullbacks;
3. Given a cube diagram as shown to the right

with: (i) m : C → A mono, (ii) the bottom
face a pushout and (iii) the back faces pull-
backs, we have that the top face is a pushout
iff the front faces are pullbacks.

The archetypal adhesive category is the category Set of sets and functions.
Adhesive categories enjoy useful closure properties, for example if C is adhesive
then so is any functor category CX, any slice category C ↓ C and any co-slice
category C ↓C. Therefore, since the category of graphs and graph morphisms is
a functor category Graph ∼= Set•⇔•, it is adhesive, and given a type graph T ,
the category of typed graphs Graph ↓ T is adhesive.

A subobject of a given object T is an isomorphism class of monomorphisms
to T . Binary intersections of subobjects exist in any category with pullbacks.
Adhesive categories enjoy also the existence of binary subobject unions which are
calculated in an intuitive way by pushing out along their intersection. Moreover,
the lattice of subobjects is distributive.

Theorem 2 ([13], Theorem 17 and Corollary 18). For an object T of an
adhesive category C, the poset Sub(T) of subobjects of T has joins: the join
of two subobjects is (the isomorphism class of) their pushout in C over their
intersection. Furthermore the lattice Sub(T) is distributive.

3 Adhesive Grammars

We start by introducing rules and grammars. Rules consist of three objects: a left-
hand side, a right-hand side and a common “read-only” part that is preserved,
called the interface, which is a subobject of both the left- and the right-hand
side.

Definition 3 (Rules and grammars). Let C be an adhesive category that we
assume to be fixed for the rest of the paper. A rule is a span of monomorphisms
L

α�−� K
β�−� R in C. It is called consuming if α is not an isomorphism.

A grammar is a triple G = 〈S, P, π〉, where P is a set of rule names, π is a
function which maps any q ∈ P to a rule Lq

αq�−−� Kq
βq�−� Rq and S ∈ ob(C) is

the start object. The grammar G is called consuming if all its rules are consuming.

A direct derivation is a diagram representing a single application of a rewrit-
ing rule. Applying several rules in sequence gives us a path through the state
space of the grammar. The diagram consisting of the corresponding sequence
of direct derivations can be reconstructed from a given path, and together they
form a derivation.

Definition 4 (Direct derivations and paths). Let G = 〈S, P, π〉 be a gram-
mar, let q ∈ P , A,B ∈ ob(C), and f : Lq �−� A be a monomorphism. Then q

rewrites A to B at f in G, written A
〈q,f〉===⇒G B, if there exists a diagram (1)

consisting of two pushouts. If it exists, we shall refer to such a diagram as a
direct derivation along 〈q, f〉, to D as pushout complement of αq and f , and to
f as a (q-)match.

Lq

f
��

Kq
αqoo

g
��

βq // Rq

h
��

A

�_
Dγ

oo
δ
// B

_� (1)

A G-path is a sequence τ = 〈qi, fi〉i∈[n], so that A0 = S and Ai
〈qi,fi〉====⇒G Ai+1

for i ∈ [n].5 Given a G-path τ , let dτ be the diagram which results from including
the direct derivations of all of τ ’s individual steps:

L0

f0

����
��
��

K0
α0oo

g0

��

β0 //R0

h0

��/
//

//
/ L1

f1

����
��
��

K1
α1oo

g1

��

β1 //R1

h1

��/
//

//
/ · · ·

· · ·

Ln−1

fn−1

����
��
��

Kn−1
αn−1oo

gn−1

��

βn−1//Rn−1

hn−1

��-
--

--
-

S = A0

�_
D0︸ ︷︷ ︸
dτ

0

γ0
oo

δ0

//A1

� �
D1︸ ︷︷ ︸
dτ

1

γ1
oo

δ1

//A2

_�
· · · An−1

�_
Dn−1︸ ︷︷ ︸
dτ

n−1

γn−1
oo

δn−1

//An

_�

Then dτ is said to be a diagram of τ and a witness of A0
τ=⇒ An and the pair

〈τ,dτ 〉 is called a G-derivation. For each i ∈ [n] we write dτ
i for the sub-diagram

of dτ that witnesses Ai
〈qi,fi〉====⇒ Ai+1, and dτ

[i] for the sub-diagram containing the
first i steps of the derivation diagram. Each sub-diagram Li

αi�−� Ki
βi�−� Ri is

said to be an occurrence of qi.

In the sequel we will consider typed grammars, as introduced in [6], which
are grammars where every component is endowed with a morphism into a fixed

5 For each n ∈ N, we denote by [n] the set {0, . . . , n− 1}.

object T ∈ ob(C). Roughly, the type object T is intended to provide the pattern
which any possible system state must conform to, and the existence of the typing
morphism a : A→ T ensures that the state A conforms to the type.

Formally, typed grammars can be seen as grammars in the slice category
C ↓T , which is adhesive when C is (see [13]). However having an explicit typing
will be useful when defining the process of a grammar G, which describes a
concurrent computation in G by representing the rules and the resources used in
such a computation. Explicitly working with this type object will enable us to
view all left-hand sides, right-hand sides and interfaces as subobjects and work
in the subobject lattice Sub(T).

To describe the typed setting formally it shall be convenient to consider an
“identity” rule for the start object of a grammar. Given S ∈ ob(C), we shall
adopt the convention of letting S denote the rule π(S) = S id←− S id−→ S.

Definition 5 (Typed grammars and typed derivations). A typed gram-
mar is a tuple G = 〈G′, T, t〉 where G′ = 〈S, P, π〉 is a grammar, T ∈ ob(C) is the
type object and t is the (rule) typing, which assigns to each rule name q ∈ P ·∪{S}
a cocone (span in C ↓ T) for π(q) to T as depicted in the commutative diagram
below.

Lqπ(q)
{

t(q)
{

lq ,,

Kq
αqoo βq //

kq��

Rq

rqrrT

A rule q is called mono-typed if lq and rq are monos; G is called mono-typed if
all q ∈ P ·∪ {S} are mono-typed.

Let G = 〈G′, T, t〉 be a typed grammar, where G′ = 〈S, P, π〉; then a typed
G-derivation is a triple ρ = 〈τ,dτ , c〉 where 〈τ,dτ 〉 is a G′-derivation and c is a
cocone to T for dτ that coincides with t(q) on each rule occurrence of q in dτ

for each q ∈ P ·∪ {S}.

��

Li

li

??

��?
?

fi

����
��
��
��
��
��

Ki

ki

yy

||yyy

αioo

gi

��

βi // Ri
ri

iii

iiiiii

ttiiiiii
hi

��3
33

33
33

33
33

3

��

· · · ...
,, 33 T

...qq mm · · ·

// Ai

aiooooo

77ooooo

Di

di DD

bbDDD

γi

oo
δi

// Ai+1

ai+1 XXXXXXXXX

XXXXXX
kkXXXXXX

oo

The grammar G is called safe if all objects reachable from the start object are
mono-typed.

Consider two rules qm−1, qm which can be applied in sequence and rewrite
Am−1 to Am and then to Am+1, as shown in the next diagram. Furthermore
assume that the left-hand side of qm is already present in Dm−1 and the right-
hand side of qm−1 can still be found in Dm. This means that these rules do

not interfere with each other and their applications can hence be switched, lead-
ing to the same result Am+1. Pairs of direct derivations of this kind are called
sequential-independent.

Definition 6 (Sequential independence [7]). Let 〈τ,dτ 〉 be a derivation.
Then, fixing m ∈

[
|τ |

]
, m > 0, the direct derivations dτ

m−1 and dτ
m are sequential-

independent if there are morphisms u : Lm → Dm−1 and w : Rm−1 → Dm such
that the diagram below commutes, i.e., δm−1 ◦ u = fm and γm ◦ w = hm−1.

· · ·
��

oo

��

// Rm−1

w

&&hm−1 ��?
??

??
? Lm

u

xx fm����
��

�
oo

��

//

��
· · ·

Am−1 Dm−1︸ ︷︷ ︸
dτ

m−1

oo
δm−1

// Am Dm︸ ︷︷ ︸
dτ

m

γm

oo // Am+1

We shall now introduce certain relations between the rules of a mono-typed
grammar, and the resulting connections with sequential independence and the
classical Local Church-Rosser Theorem. In the following, the inclusion (or partial
order) v, union (or join) t and intersection (or meet) u are interpreted in the
subobject lattice Sub(T).

Definition 7 (Rule relations). Let G =
〈
〈S, P, π〉, T, t

〉
be a mono-typed

grammar and let q, q′ ∈ P be rule names. We define four rule relations:

< : q directly causes q′, written q < q′, if Rq u Lq′ 6v Kq

� : q can be disabled by q′, written q � q′, if Lq u Lq′ 6v Kq′

<co : q directly co-causes q′, written q <co q′, if Rq u Lq′ 6v Kq′

�co : q can be co-disabled by q′, written q �co q′, if Rq uRq′ 6v Kq.

The following proposition gives a partial account of the relationship between
sequential independence and rule relations.

Proposition 8. Let 〈τ,dτ , c〉 be a typed derivation such that dτ witnesses
A0

〈q0,f〉
====⇒ C

〈q1,g〉
===⇒ A2 and suppose that C is mono-typed. Then:

1. If q0 ≮ q1 and q0 6� q1 then dτ
0 and dτ

1 are sequential-independent;
2. If dτ

0 and dτ
1 are sequential-independent then q0 ≮ q1 and q0 6<co q1.

As mentioned above, sequential-independent direct derivations can be
switched, giving us the first part of the following result. Moreover, when working
with mono-typed grammars and derivations, we identify a sufficient condition
making it possible to construct the “middle-object” of the switched derivation
as a subobject of the type object.

Theorem 9 (Local Church-Rosser). Consider the typed derivation diagram
below:

L0

~~~~~
f
~~~~~

K0
α0oo

��

β0 // R0
h
��>

>>
L1g
�����

K1
α1oo

��

β1 // R1
k
 AA

A

A0

d

{
t
{

a0 00

D0

++WWWWWWWW
γ0oo δ0 // C

c��
D1γ1oo δ1 //

sshhhhhhhh
A2

a2nnT

where t is a cocone for d to T and assume that the (untyped) direct derivations
are sequential-independent. Then the following hold:

1. There exist C ′, g′, f ′ and a witness d′ for A0
〈q1,g′〉
====⇒ C ′

〈q0,f′〉
====⇒ A2 such that

d′0 and d′1 are sequential-independent.
2. If both rules are mono-typed, a0, c and a2 are mono, and also L0 u R1 v

D0 uD1 in Sub(T), then C ′ = L0 t (D0 uD1) tR1.

Proof. For the the first part of the theorem see [12, 8, 13]. For the second half,
let w0 : R0 → D1 and u0 : L1 → D0 be such that h = γ1 ◦ w0 and g = δ0 ◦ u0.

We obtain the following four diagrams: square (1) by pullback, also yielding
pullbacks (2) and (3). Squares (4) and (5) by pushout, also yielding pushouts (6)
and (7). Finally, square (8) by pushout. Notice that all the morphisms in the
diagrams are mono.

L0

u1 ��

K0

(2)(4) ��

α0oo β0 // R0

w0��
E0

γ′1 ��

D0uD1

(1)(6) ��

oo // D1

γ1��
A0 D0γ0
oo

δ0

// C

L1

u0 ��

K1

(3) (5)��

α1oo β1 // R1

w1��
D0

δ0 ��

D0uD1

(7)(1)

oo //

��

E1

δ′0��
C D1γ1
oo

δ1

// A2

L1

u0 ��u0 ��

K1

(3) (5)

α1oo

��

β1 // R1

w1��
D0

γ0 ��

D0uD1

(8)(6)

oo

��

// E1

γ′0��
A0 E0

γ′1

oo
δ′1

// C ′

L0

u1 ��

K0

(4) (2)

α0oo

��

β0 // R0

w0��
E0

δ′1 ��

D0uD1

(8) (7)

oo

��

// D1

δ1��
C ′ E1

γ′0

oo
δ′0

// A2

Notice that E0 =
L0t (D0uD1) (because
a0 is mono) and E1 =
R1t (D0uD1) (since a2

is mono). It remains to
show that C ′ = E0 tE1

for which it suffices to
show that E0 u E1 =
D0 u D1. But by as-
sumption E0 u E1 =
(L0 uR1)t (D0 uD1) =
D0 uD1. ut

From a true concurrency point of view, we do not want to distinguish among
derivations which differ only in the order of sequential-independent direct deriva-
tions. This is formalized by the relation introduced next.

Definition 10 (Derivation switching). Let 〈τ,dτ 〉 be a derivation and as-
sume that the direct derivations dτ

m−1 and dτ
m are sequential-independent. Let

τ ′ be the path obtained from τ by switching these two direct derivations accord-
ing to Theorem 9. Finally let dτ ′ be a diagram of τ ′. Then we say that the two
derivations are switchings of each other and write 〈τ,dτ 〉 sw∼ 〈τ ′,dτ ′〉.

4 Occurrence Grammars

In this section we shall introduce the central notion of occurrence grammar which
will be used to describe the computation of a system modulo concurrency and
on which the notion of process—introduced in Definition 20—relies.

We begin by defining the asymmetric conflict relation. It arises in any com-
putational formalism where resources can be read without being consumed. The

notion of asymmetric conflict has been previously defined and used for similar
purposes in the concrete cases of Petri nets and graph transformation systems.
Note that in this paper we deal only with deterministic occurrence grammars.

In the general setting of adhesive grammars, asymmetric conflict can be de-
fined using the rule relations of Definition 7: rules p, q are in asymmetric conflict
(written p ↗ q) whenever either p is a (possibly indirect) cause of q or p is
disabled by q. In an occurrence grammar every rule occurs exactly once; thus p
must be executed before q.

Definition 11 (Asymmetric conflict, (co-)causes). Let G =
〈
〈S, P, π〉, T, t

〉
be a mono-typed grammar. Then↗ = <+ ∪ (� \ idP), where idP is the identity
relation on P , is called asymmetric conflict. For a subobject A ∈ Sub(T) we define

xAy = {q ∈ P | Rq uA 6v Kq} and pAq = {q ∈ P | Lq uA 6v Kq}

as the sets of (direct) causes and (direct) co-causes of A respectively.

We are now ready to define the notion of occurrence grammars. Technically
an occurrence grammar is a grammar with special properties which generalizes
the notions of deterministic occurrence nets [11] and grammars [4] defined in the
setting of Petri nets and graph grammars, respectively.

Definition 12 (Occurrence grammars). A grammar O =
〈
〈S, P, π〉, T, t

〉
is

a pre-occurrence grammar if it is mono-typed,

1. P is finite and the relation ↗ is acyclic,
2. the start object S has no causes, i.e. xSy = ∅,
3. there are neither forward nor backward conflicts, i.e., for all q 6= q′ ∈ P

(Lq′ u Lq) v Kq′ tKq and (Rq′ uRq) v Kq′ tKq.

A pre-occurrence grammar O is said to be an occurrence grammar if also:

4. there is an end object F ∈ Sub(T) such that pFq = ∅;
5. for all subobjects A ∈ Sub(T)

(a) A v
(

S t
⊔

q∈xAy

Rq

)
and (b) A v

(
F t

⊔
q∈pAq

Lq

)
.

The requirements of Definition 12 above can be motivated as follows: First,
↗ must be acyclic, since there is otherwise no valid execution order for all rules
of the occurrence grammar. Furthermore there are no forward conflicts, meaning
that the occurrence grammar is deterministic, and no backward conflicts which
roughly amounts to saying that “everything” is generated by at most one rule.
It can be shown that S and F are uniquely determined by the axiom 5 of
Definition 12.

Indeed, the axiom 5 is central for the following theory. It intuitively says
that “everything” is either in the start object or generated at some point and

that also the converse holds: “everything” is either in the end object or it is
consumed at some time. The first part is needed to show that when we put the
rules of an occurrence grammar into sequence according to asymmetric conflict
and apply an initial part of this sequence, we reach an object that contains the
left-hand side of the next rule. Then the second part is needed to prove that
also the pushout complement exists and thus the rule can actually be applied.
(See also the proof of Theorem 19.) Its role is further explained by the example
below.

Example 13 (Pre-occurrence grammar that is not an occurrence grammar). Con-
sider the adhesive category of graphs and graph homomorphisms, Graph. Now
take a grammar with the empty graph ∅ as start object S, and two rule names
p, q with associated rules and type graph as shown below.

S : ∅ T :
©v

e

�� ∅← ∅→©v︸ ︷︷ ︸
π(q)

©v

e

�� ←
©v

e

�� →
©v

e

��︸ ︷︷ ︸
π(p)

The typing is given by the obvious inclusions. This is clearly a pre-occurrence
grammar, but not an occurrence grammar since axiom 5(a) of Definition 12 is
violated. Indeed, xTy = {q} and thus T 6v S t

⊔
q′∈xTy

Rq′ = S tRq = Rq. Note
that this corresponds to the fact that the graph obtained after applying q is too
small to contain the left-hand side of p.

Similarly, when we consider the reversed pre-occurrence grammar (view rules
from right to left) with T as the start object, axiom 5(b) of Definition 12 does not
hold. In order to see this observe that now the end object is the empty graph and
that only (the reversed) q is a co-cause for T , which leads to T 6v F t

⊔
q′∈pAq Lq′ .

This is related to the fact that—after applying rule p (reversely) to T—q cannot
be applied since the pushout complement for ∅ �−� ◦ �−�

�

◦ does not exist, due
to the presence of the edge.

In previous approaches, the subobject inclusions followed indirectly from ax-
ioms about individual items. For instance [5] defines a deterministic occurrence
grammar O requiring that whenever a node v is deleted by a rule of O and an
edge e attached to v is created by O, then O must also delete e.

Example 14 (Graphs with scopes). In order to show that our theory applies to
a setting wider than standard graph rewriting, we consider graphs with scopes
where each node is contained in a set of scopes. These graphs can be viewed as
objects of the functor category Setfin

•←•→•⇔•, which is adhesive. Concretely,
every object consists of a set of nodes V , a set of edges E, a set of scopes S
and an auxiliary set X, used to relate nodes and scopes. We have functions
src, tgt : E → V , scS : X → S, scV : X → V . If there is an element x ∈ X with
scS (x) = s ∈ S and scV (x) = v ∈ V we say that v is contained in or within scope
s. A node may belong to several scopes and a scope may contain several nodes.
We draw the graph part of the objects in the usual way. Scopes are depicted by
labelled boxes around the nodes they contain (see below).

The following example grammar is inspired by scope extrusion in process
calculi. We want to model that a node is moved from one scope into another by
a reaction rule. The first rule (p1) can move the target of an edge within the
same scope, the second (p2) is a reaction where a node v is transferred from one
scope to another whenever there is a two-edge path from it to a node w within
the second scope, and the third (p3) models garbage collection of empty scopes.
Note that rule (p3) cannot be applied to non-empty scopes, since the pushout
complement of diagram (1) in Definition 4 would not exist, intuitively because
the removal of the scope would leave some dangling links.

S :

�� ���� ��A

©u ©v

���� ���� ��B
�� ���� ��C

©x

CK

©z

T :

�� ���� ��A

©u ©v

���� ���� ��B
�� ���� ��C

©x

CK CK

©z

�� ���� ��A

©u ©v

©x

CK
←

�� ���� ��A

©u ©v

©x

→

�� ���� ��A

©u ©v

©x

CK

︸ ︷︷ ︸
π(p1)

©v

���� ���� ��B
�� ���� ��C

©x

CK

©z
←

©v

�� ���� ��B
�� ���� ��C

©x ©z
→

©v

�� ���� ��B
�� ���� ��C

©x ©z︸ ︷︷ ︸
π(p2)

�� ���� ��B

← ∅→ ∅︸ ︷︷ ︸
π(p3)

By taking S and T above as the start and type graph respectively, and the
obvious inclusions as rule typings we obtain an occurrence grammar where p1 is
a cause for p2 (p1 < p2) and p2 is in asymmetric conflict with p3 (p2 ↗ p3).

After these motivating examples, we will continue to develop the theory. First
we show that if every rule is applied at most once then the reached object is
mono-typed. A consequence of this is that any object reachable in a consuming
pre-occurrence grammar is mono-typed.

Proposition 15 (Quasi-safety and safety of consuming grammars).
Let O =

〈
〈S, P, π〉, T, t

〉
be a pre-occurrence grammar. Then for each path τ =

〈qi, fi〉i∈[n] and typed derivation ρ = 〈τ,dτ , c〉, with dτ witnessing S
τ=⇒ An, if

no rule occurs twice in τ then

1. An is mono-typed, i.e., cAn is a mono,
2. asymmetric conflict is respected, i.e. ∀i, j ∈ [n] . qi ↗ qj ⇒ i < j,
3. the inclusion cocone to S t

⊔
i∈[m] Ri for m ≤ n is a colimit of dτ

[m].

In particular, if O is consuming then any rule can be applied at most once in
each typed O-derivation and thus 1–3 above hold for any typed derivation.

Another fact that holds in the setting of pre-occurrence grammars is that
all typed derivations which apply the same rules, possibly in different order, are
equivalent when seen as truly concurrent computations. Formally, this involves
the notion of switch-equivalence for typed derivations.

Definition 16 (Switch equivalence). Let ρ = 〈τ,dτ , c〉 and ρ′ = 〈τ ′,dτ ′ , c′〉
be two typed G-derivations, with τ = 〈qi, fi〉i∈[n] and τ ′ = 〈q′i, f ′i〉i∈[n]. Then
ρ and ρ′ are isomorphic, written ρ ∼= ρ′, if qi = q′i for each i ∈ [n] and there
is a diagram isomorphism ι : 〈dτ , c〉 ∼= 〈dτ ′ , c′〉 that relates the start object,
rule-occurrences and the type objects by identities.

Moreover ρ
sw∼ ρ′ if 〈τ,dτ 〉 sw∼ 〈τ ′,dτ ′〉 and finally switch-equivalence

sw
≈ is the

union of the transitive closure of sw∼ and ∼=, in signs
sw
≈ = (sw∼)∗∪ ∼=.

Lemma 17 (Switch equivalence in pre-occurrence grammars). Let
O =

〈
〈S, P, π〉, T, t

〉
be a pre-occurrence grammar, and let ρ = 〈τ,dτ , c〉 and ρ′ =

〈τ ′,dτ ′ , c′〉 be typed O-derivations where τ = 〈qi, fi〉i∈[n] and τ ′ = 〈q′i, f ′i〉i∈[n] are
paths in which no rule occurs twice and

〈
qi

〉
i∈[n]

is a permutation of
〈
q′i

〉
i∈[n]

.

Then the two typed derivations are switch-equivalent, i.e., ρ
sw
≈ ρ′.

The above facts about pre-occurrence grammars have a premise about the
existence of some derivation. In the context of proper occurrence grammars we
can single out sufficient conditions for the existence of derivations, which can be
described in terms of asymmetric conflict ↗.

Definition 18 (Rule linearizations). LetO =
〈
〈S, P, π〉, T, t

〉
be a pre-process

and let P ′ ⊆ P and n = |P ′|. Then a sequence q =
〈
qi

〉
i∈[n]

∈ (P ′)∗ is a (rule)
linearization of P ′ if P ′ = {qi | i ∈ [n]} and ∀i, j ∈ [n] . qi ↗ qj ⇒ i < j. The set
of all linearizations of P ′ is denoted by lin(P ′) and qi = qi by convention.

We write S
q=⇒ A if S

τ=⇒ A and τ = 〈qi, fi〉i∈[n] is a path for some sequence
of matches

〈
fi

〉
i∈[n]

.

The next theorem gives two central results. Firstly, if O is an occurrence
grammar, then there exists a typed derivation which rewrites the start object
into the end object, applying all the rules in any order that respects asymmetric
conflict. Secondly, if the type object is not too large and there exists a lineariza-
tion of all rules that leads to a typed derivation then a pre-occurrence grammar
is an occurrence grammar.

Theorem 19. Let O be a pre-occurrence grammar.

1. If O is an occurrence grammar, then ∀q ∈ lin(P). S q=⇒ F , where F is the
end object of O.

2. If ∃q ∈ lin(P).∃F ∈ Sub(T). S q=⇒ F and T = S t
⊔

q∈P Rq, then O is an
occurrence grammar.

Proof (idea). The crucial point is the proof of the first part, i.e., of the fact that
any linearization of P gives rise to a typed derivation. Let q = pqp′ ∈ lin(P) and
assume that S

p=⇒ A. Then we have to show that Lq v A and that the pushout
complement for A �−� Lq

α�−� Kq exists.
By using axiom 5(a) of Definition 12 we can prove that A is the greatest

object with causes in p and co-causes in p′. Then Lq v A follows immediately.

It remains to show that the pushout complement exists: the candidate is D̃ =
(S t

⊔
q∈p Rq) u (F t

⊔
q∈p′ Lq).

By using only facts about pre-occurrence grammars one can show that D̃
is the greatest subobject of A which forms a pullback together with the arrows
A �−� Lq

α�−� Kq. Finally, using axiom 5(b) of Definition 12 and some elementary
category theory we can show that D̃ is actually a pushout complement. ut

An interesting point of the proof is that the question about the existence of
pushout complements can be answered in lattice-theoretic terms only.

5 From Derivations to Processes and Back

We now come to the one-to-one correspondence between switch-equivalence
classes of derivations and processes. After introducing the notion of process (for
a given grammar), we show that such a process can be seen as a representative of
a full class of switch-equivalent typed derivations, all of which are linearizations
of the process. Vice versa, given a derivation, a colimit-based construction allows
to derive a corresponding process. The result states that these two constructions
are (essentially) inverse to each other.

We shall now define the notion of process, i.e., a truly concurrent computation
of a specific grammar G represented by an occurrence grammar.

Definition 20 (Processes). Let G =
〈
〈S, P, π〉, T, t

〉
be a grammar. Then a G-

process is a triple P = 〈O, v, fP 〉 where O =
〈
〈S′, P ′, π′〉, T ′, t′

〉
is an occurrence

grammar and

– v : T ′ → T is a morphism between the type objects, and
– fP : P ′ ·∪ {S′} → P ·∪ {S} is a function between rule names with fP (S′) = S

such that for all q′ ∈ P ′ ·∪ {S′}

1. π′(q′) = π(fP (q′))
2. and6 v } t′(q′) = t(fP (q′))

i.e. the diagram on the right commutes,
where π′(q′) = L

α�−� K
β�−� R = π(fP (q′)).

T ′

v

oo

L

l′
q′

44

oo α

lfP (q′)

**

K

k′
q′

OO

kfP (q′)

��

R

r′
q′

jj

//β

rfP (q′)

tt
T

Let P1 and P2 be two G-processes. An isomorphism 〈i, j〉 : P1
∼= P2 from P1

to P2 is a pair 〈i, j〉 such that (i)
〈
O1, i, j

〉
is an O2-process, (ii) i : T1 → T2 is

an isomorphism satisfying v2 ◦ i = v1, and (iii) j : P1 ·∪ {S1} → P2 ·∪ {S2} is a
bijection satisfying fP 1 = fP 2 ◦ j.

Intuitively, an occurrence grammar O only represents an “autonomous” con-
current computation, whereas the pair 〈v, fP 〉 provides a link back to a grammar.

6 For a cocone c to an object A and a morphism v : A → B we denote by v } c the
cocone to B obtained by composing every morphism in c with v.

The morphism v specifies how such a computation can be “typed” over the type
object of G, and fP specifies how the rule occurrences of O can be seen as
instances of rules in G.

Given a process P of a grammar G, we can obtain a corresponding typed
derivation in G by taking any linearization of the rules in O, applying each such
rule in the specified order (possible by Theorem 19) and retyping the generated
derivation over the type object of G.

Definition 21 (Drv—derivations of a process). Let P = 〈O, v, fP 〉 be a G-
process, where O =

〈
〈S, P, π〉, T ′, t′

〉
. Let q ∈ lin(P) be a linearization of P and

let ρ = 〈τ,dτ , c〉 be a typed derivation witnessing S
q=⇒O F . Then 〈τ,dτ , v}c〉 is

called a typed P-derivation. The set of all such derivations is denoted by Drv(P).

The next proposition shows that all derivations of a given process are “equiv-
alent” from a true concurrency point of view. Hence Drv induces a mapping from
(isomorphism classes of) processes to switch-equivalence classes of derivations.

Proposition 22. Let P and P ′ be processes such that P ∼= P ′. Then for all
ρ ∈ Drv(P) and ρ′ ∈ Drv(P ′) it holds ρ

sw
≈ ρ′.

Vice versa, given any derivation in a grammar G, we can generate a corre-
sponding process as follows. The colimit of the (untyped part) of the derivation
diagram is the type object of the process, while the rule instances of the deriva-
tion become the rules of the process. The morphism back to the type object of
G is given by the mediating morphism to the typed derivation cocone. The next
definition describes this procedure formally.

Definition 23 (Prc—processes of a derivation). Let τ = 〈qi, fi〉i∈[n] be a
path and ρ = 〈τ,dτ , c〉 be a typed derivation for a grammar G =

〈
〈S, P, π〉, T, t

〉
.

Let c̄ be a colimit cocone for dτ to T ′, whose components are the dotted arrows
below.

L0

f0

����
��
��

K0
α0oo

g0

��

β0 //R0

h0

��/
//

//
/ L1

f1

����
��
��

K1
α1oo

g1

��

β1 //R1

h1

��/
//

//
/ ···

···

Ln−1

fn−1

����
��
��

Kn−1
αn−1oo

gn−1

��

βn−1//Rn−1

hn−1

��-
--

--
-

S = A0

�_

a0 66

D0

d0 //

γ0
oo

δ0

//A1

� �

a1
&&

D1

d1

��

γ1
oo

δ1

//A2

_�

a2

��

··· An−1

�_

an−1

pp

Dn−1

dn−1

ff

γn−1
oo

δn−1

//An

_�

an

WWT
′

Define O =
〈
〈S′, P ′, π′〉, T ′, t′

〉
to be a grammar where:

– S′ = S;
– P ′ = {〈qi, i〉 | i ∈ [n] ∧ τi = 〈qi, fi〉} is a set that contains a rule occurrence

name for each rule occurrence of dτ, and
– π′ with π′(〈qi, i〉) = π(qi) assigns each rule occurrence name the rule of the

grammar G it originates from; and

– t′(〈qi, i〉) is a cocone for π(qi) to T ′, which gives the typing for each rule
occurrence 〈qi, i〉 ∈ P ′ as indicated below

Li
π′(〈qi, i〉)

{
t′(〈qi, i〉)

{
ai◦fi

++

Ki
αioo βi //

di◦gi��

Ri

ai+1◦hi
rrT ′

and t′(S′) is the cocone obtained by taking three times morphism a0.

Finally let v : T ′ → T be the mediating morphism from the colimit c̄ to the
cocone c. Then

P = 〈O, v, fP : P ′ ·∪ {S′} → P ·∪ {S}〉

with fP (〈qi, i〉) = qi and fP (S′) = S is a ρ-process. The set of all ρ-processes—all
of them being isomorphic to each other—is denoted by Prc(ρ).

The next proposition shows that starting from switch-equivalent derivations,
the construction described in Definition 23 produces isomorphic processes. Hence
Prc can be seen as a function from switch-equivalence classes of derivations to
isomorphism classes of processes.

Proposition 24. Let ρ and ρ′ be typed G-derivations such that ρ
sw
≈ ρ′. Then

P ∼= P ′ holds for all P ∈ Prc(ρ) and P ′ ∈ Prc(ρ′).

We conclude with the main result of this section, stating that Prc and Drv
can be seen as functions between switch-equivalence classes of derivations and
isomorphism classes of processes, and that they are inverse to each other.

Theorem 25. Let ρ be a typed G-derivation and P be a G-process. Then:

1. ρ′ ∈ Drv
(

Prc(ρ)
)

implies ρ′
sw
≈ ρ

2. P ′ ∈ Prc
(

Drv(P)
)

implies P ′ ∼= P

6 Conclusion

We have shown that the notion of process, originally introduced for Petri nets,
can be studied in the general setting of dpo rewriting systems over adhesive cat-
egories. This is theoretically pleasing, since it allows one to study this fundamen-
tal concept at the same abstract level as, for instance, the notion of sequential-
independence.

While the fact that processes can be studied in an abstract framework may
not seem surprising, the generalization is non-trivial to obtain. The reason is that
the previous definitions of occurrence grammars and processes, e.g. of Petri nets
and graph grammars, used the inherently set-theoretical concept of items: atomic
units that are consumed and produced. The absence of an analogous concept for
adhesive categories has required the development of original techniques, mainly
relying on the algebra of the subobject lattice of the type object.

As a consequence of its generality, the theory developed in this paper is
applicable to a wide range of rewriting systems. It enables us to handle various
graph-like structures which appear in the literature and are used in tools.

While starting the development of an encompassing theory of true concur-
rency, we have also laid the foundations for the use of partial order verification
techniques. Specifically, the generalization of methods developed for Petri nets
and graph transformation systems (see, e.g., [14, 10, 2, 3]) appears as a stimulat-
ing direction of research. In order to achieve this goal, future work will concern
unfoldings: non-deterministic (infinite) processes which fully describe the behav-
ior of a system.

References

1. P. Baldan. Modelling Concurrent Computations: from Contextual Petri Nets to
Graph Grammars. PhD thesis, Dipartimento di Informatica, Università di Pisa,
2000.

2. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR ’01, volume 2154 of LNCS, pages
381–395. Springer Verlag, 2001.

3. P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars:
an unfolding-based approach. In Proc. of CONCUR 2004, volume 3170 of LNCS,
pages 83–98. Springer Verlag, 2004.

4. P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes: relat-
ing processes and derivation traces. In Proc. ICALP’98, volume 1443 of LNCS.
Springer Verlag, 1998.

5. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In Proc. of FoSSaCS ’99, volume 1578 of LNCS,
pages 73–89. Springer Verlag, 1999.

6. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

7. H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars. In Proceedings
of the 1st International Workshop on Graph-Grammars and Their Application to
Computer Science and Biology, volume 73 of LNCS, pages 1–69. Springer Verlag,
1979.

8. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and con-
currency in high-level replacement systems. Mathematical Structures in Computer
Science, 1:361–404, 1991.

9. H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In Proc. of ICGT’04, volume 3256 of LNCS, pages 144–160.
Springer Verlag, 2004.

10. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20(20):285–310, 2002.

11. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

12. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

13. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. Theoretical
Informatics and Applications, 39(2):511–546, 2005.

14. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.

