

Social Media Verification

Extracting Attributed Verification and Debunking Reports from Social Media: MediaEval-2015 Trust and Credibility Analysis of Image and Video

Stuart E. Middleton

University of Southampton IT Innovation Centre

sem@it-innovation.soton.ac.uk @stuart_e_middle @IT_Innov @RevealEU www.it-innovation.soton.ac.uk

UoS-ITI Team

Overview

- Problem Statement
- Approach
- Results
- Discussion
- Suggestions for Verification Challenge 2016

Problem Statement

Verification of Images and Videos for Breaking News

- Breaking News Timescales
 - Minutes not hours its old news after a couple of hours
 - Journalists need to verify copy and get it published before their rivals do
- Journalistic Manual Verification Procedures for User Generated Content (UGC)
 - Check content provenance original post? location? timestamp? similar posts? website? ...
 - Check author / source attributed or author? known (un)reliable? popular? reputation? post history? ...
 - Check content credibility right image metadata? right location? right people? right weather? ...
 - Phone the author up triangulate facts, quiz author to check genuine, get authorization to publish
- Automate the Simpler Verification Steps
 - Empowering journalists
 - Increases the volume of contextual content that can be considered
 - Focus humans on the more complex & subjective cross-checking tasks
 - Contact content authors via phone and ask them difficult questions
 - Does human behaviour 'look right' in a video?
 - Cross-reference buildings / landmarks in image backgrounds to Google StreetView / image databases
 - ... see the VerificationHandbook » http://verificationhandbook.com/

Approach

Attribute evidence to trusted or untrusted sources

- Hypothesis
 - The 'wisdom of the crowd' is not really wisdom at all when it comes to verifying suspicious content
 - It is better to rank evidence according to the most trusted & credible sources like journalists do
- Semi-automated approach
 - Manually create a list of trusted sources
 - Tweets » NLP » Extract fake & genuine claims & attribution to sources » Evidence
 - Evidence » Cross-check all content for image / video » Fake/real decision based on best evidence
- Trustworthiness hierarchy for tweeted claims about images & videos
 - Claim = statement that its a fake image / video or its genuine

 - Claim attributed to untrusted source
 - Unattributed claim ☑

Approach

Regex patterns

Named Entity Patterns

@ (NNP|NN) # (NNP|NN) (NNP|NN) (NNP|NN) (NNP|NN)

Attribution Patterns

<NE> *{0,3} <IMAGE> ...
<NE> *{0,2} <RELEASE> *{0,4} <IMAGE> ...
... <IMAGE> *{0,6} <FROM> *{0,1} <NE>
... <FROM> *{0,1} <NE>
... <IMAGE> *{0,1} <NE>
... <IMAGE> *{0,1} <NE>
... <IMAGE> *{0,1} <NE>
... <RT> <SEP>{0,1} <NE>

Faked Patterns

... *{0,2} <FAKED> <REAL> ? <NEGATIVE> *{0,1} <REAL> ...

Genuine Patterns

... <IMAGE> *{0,2} <REAL> <REAL> *{0,2} <IMAGE> <IS> *{0,1} <REAL> <NEGATIVE> *{0,1} <FAKE> ... e.g. CNN BBC News @bbcnews

e.g.

FBI has released prime suspect photos ...

... pic - BBC News

... image released via CNN

... RT: BBC News

e.g.

... what a fake! ... is it real? ...

... thats not real ...

e a

 \dots this image is totally genuine \dots

... its real ...

<u>Key</u>

<NE> = named entity (e.g. trusted source)
<IMAGE> = image variants(e.g. pic, image, video)
<FROM> = from variants(e.g. via, from, attributed)
<REAL> = real variants (e.g. real, genuine)
<NEGATIVE> = negative variants (e.g. not, isn't)
<RT> = RT variants (e.g. RT, MT)
<SEP> = separator variants (e.g. : - =)
<IS> = is | its | thats

Results

Fake & Real Tweet Classifier

fake classification			real classification				
Р	R	F1	Р	R	F1		
faked & g	jenuine patte	rns					
1.0	0.03	0.06	0.75	0.001	0.003		
faked & genuine & attribution patterns							
1.0	0.03	0.06	0.43	0.03	0.06		
faked & genuine & attribution patterns & cross-check							
1.0	0.72	0.83	0.74	0.74	0.74		

Fake & Real Image Classifier

fake clas		real classification					
Р	R	F1	Р	R	F1		
faked & genuine & attribution patterns & cross-check							
1.0	0.04	0.09	0.62	0.23	0.33		

Results

Fake & Real Tweet Classifier

fake clas	sification		real clas	sification		
Р	R	F1	Р	R	F1	
faked &	genuine patte	rns				No mistakes classifying
1.0	0.03	0.06	0.75	0.001	0.003	fakes in testset
faked &	genuine & attı	ribution patt	erns			
1.0	0.03	0.06	0.40	0.03	0.06	Low false positives import
faked &	genuine & att	ibution patt	erns 2 cross	-check		for end users like journalis
1.0	0.72	0.83	0.74	0.74	0.74	Tor one doors like journalis

Fake & Real Image Classifier

fake clas		real classification					
Р	R	F1	Р	R	F1		
faked & genuine & attribution patterns & cross-check							
1.0	0.04	0.09	0.62	0.23	0.33		

www.revealproject.eu

Results

Fake & Real Tweet Classifier

ake class	ification		real clas	sification	
)	R	F1	Р	R	F1
aked & ge	enuine patte	rns			
1.0	0.03	0.06	0.75	0.001	0.003
aked & ge	enuine & attr	ibution patt	erns		
1.0	0.03	0.06	0.43	0.03	0.06
aked & ge	enuine & attr	ibution patt	erns & cross	s-check	
1.0	0.72	0.83	0.74	0.74	0.74

Performance looks good when averaged on whole dataset

Fake & Real Image Classifier

www.revealproject.eu

Discussion

Application to our journalism use case

- Classifying tweets in isolation (fake and real) is of limited value
 - High precision (89%+) but low recall (1%)
- Cross-check tweets then ranking by trustworthiness
 - No false positives for fake classification using testset
 - High precision (94%+) with average recall (43%+) looking across events in devset and testset
 - Typically viral images & videos will have 100's of tweets before journalists become aware of them so a recall of 20% is probably OK in this context
- Image classifiers
 - Fake image classifier » High precision (96-100%) but low recall (4-10%)
 - Real image classifier » High precision (62-95%) but low recall (19-23%)
- Classification explained in ways journalists understand & therefore trust
 - Image X claimed verified by Tweet Y attributing to trusted entity Z
 - We can alert journalists to trustworthy reports of verification and/or debunking
- Our approach does not replace manual verification techniques
 - Someone still needs to actually verify the content!

Suggestions for Verification Challenge 2016

Focus on image classification not Tweet classification

- The long term aim is to classify the images & videos NOT the tweets about them
 - Suggestion » Score image classification results as well as tweet classification results
- End users usually wants to know if its real, not if its fake
 - Classifying something as fake is usually a means to an end (e.g. to allow filtering)
 - Suggestion » Score results for fake classification & real classification

Improve the Tweet datasets to avoid bias to a single event

- Suggest using leave one event out cross validation when computing P/R/F1
- Suggest removing tweet repetition
 - Some events (e.g. Syrian Boy) contain many duplicate tweets with a different author
 - A classifier might only work well on 1 or 2 text styles BUT score highly as they are repeated a lot
- Suggest evenly balancing number of tweets per event type to avoid bias
 - Devset Hurricane Sandy event has about 84% of the tweets
 - Testset Syrian Boy event has about 47% of the tweets

Many thanks for your attention!

Any questions?

Stuart E. Middleton

University of Southampton IT Innovation Centre

email: sem@it-innovation.soton.ac.uk

web: www.it-innovation.soton.ac.uk

twitter:@stuart_e_middle, @IT_Innov, @RevealEU

