
A Feature-Augmented Grammar for Automated Media Production

Freddy Choi, Richard Beales, Jonathan
Hearn, Stuart E. Middleton and Matthew

Addis
IT Innovation Centre

2 Venture Road, Chilworth Science Park
Southampton SO16 7NP

United Kingdom
{fc,rmb,jrh,sem,mja}@

it-innovation.soton.ac.uk

Christos Mangos
Cinegram Film & TV Productions

43 Gounari street
153 43 Agia Paraskevi

Athens Greece
mngs@mangos.gr

Abstract

The IST Polymnia project aims to create a fully
automated system for personalised video generation.
Film production involves content creation, selection
and composition. Technological advances have
automated parts of the process, however video editing
continues to be a bottleneck in the production chain as
constant human interaction is required in the process.

 This paper presents a linguistically motivated
solution that uses context-free feature-augmented
grammar rules to describe editing tasks, thus video
editing can be automated by a novel rule application
algorithm. The solution is media and application
independent. Performance analysis results have
suggested that the solution is applicable to near real-
time applications.

1. Introduction

The IST Polymnia project aims to develop a fully
automated film production system that can be
configured to produce personalised videos for fun park
and museum visitors. The system uses cameras to
record the experience of all the visitors. The video
streams are analysed and segmented according to
content. For each visitor, video clips of their
experiences are selected and arranged to produce a
personalised film which is recorded onto a DVD. The
system must operate in near real-time in order to
produce souvenir DVDs in time for delivery to visitors
as they leave the venue. This implies automation in
every step of the process. This paper focuses on the

automatic selection and arrangement of video clips for
personalised film production.

1.1. The roller coaster scenario

Cameras are strategically placed on a roller coaster
ride to record the visitors and their experiences, i.e. (1)
close up of visitor in the roller coaster chariot, (2)
embarking/disembarking, (3) sitting on the chariot and ,
(4,5) experiencing the two main drops.

Figure 1. The roller coaster filming scenario.

Automatic content analysis is applied to the video

streams to detect and identify the different visitors.
Sensors are used to detect events such as the location
of a roller coaster chariot on the track. The information
is added to each video stream as annotation in MPEG-7
format. The MPEG-7 document is fed to an automatic
media editing system that uses the information to select
the relevant video segments for each visitor and
produces a personalised film of their experience. The
film is recorded onto a DVD and made available as a
souvenir for each visitor.

Figure 2. Automatic film production in Polymnia.

1.2. Film production

The placement of cameras, the selection of video
clips and how they are arranged to produce a short film
are designed and specified by a professional film
director. Video clips are edited according to the time of
real-world events or other shots. For instance, in the
roller coaster scenario, shot 2 (S2) is a 30 seconds long
video clip extracted from camera 1 (Cam 1) with start
time equal to the time when a visitor was detected in
Cam 1 (Event A). Shot 1 (S1) is a 20 seconds long
video clip extracted from camera 2 (Cam 2) with end
time equal to the start time of S2. This shows how shot
generation is event triggered and can involve footage
captured both before and after an event.

Figure 3. Video clip selection in the roller coaster

scenario.

This paper is about the automatic video editing
module in Polymnia. The module automates video clip
selection and shot arrangement thus enabling the
overall system to automate the entire film production
process. It takes an automatically generated MPEG-7
document as input. The document contains annotation
about the identity, location and time of appearance of
each visitor and object in each video stream, e.g. visitor
Andrea was detected by Cam 1 at 12:21pm. The film
director’s ideas are implemented as a set of editing

rules that are triggered by annotation. These rules
create the shots and combine the shots according to the
director’s specification to produce a MPEG-7 film
script.

Figure 4. The automatic video editing module.

The automation of video editing implies that the

film director only needs to be involved in designing the
shooting scenario and the film production plan. Once
the director’s ideas have been implemented as editing
rules, the system is able to automatically produce a
personalised film for every visitor.

2. Automated video editing

A simple approach to personalised film production
uses a film template with slots for inserting the
personal video segments. This is the same as mail
merging where the recipient name is changed to
personalise a letter. A template cannot cope with
exceptions, e.g. it cannot produce a film if any of the
required segments is missing. This work introduces a
rule-based approach that offers a level of flexibility
which is crucial in any real-world system.

Figure 5. An aggregation approach to media editing.

For the roller coaster scenario, three shots (S1, S2,

S3) are combined to produce a film about a visitor
embarking and starting the ride. Two short films of the
climb and drop sequences are produced by
concatenating shots S4, S5, S6 and shots S7, S8. These

are combined to make a film about the ride. Finally, a
film about the entire roller coaster experience video is
created by concatenating the short films about
embarking, the ride and disembarking.

This rule-driven aggregation approach to video
editing makes it easy to offer alternatives and make the
video editing system more robust against unexpected
input. For instance, a recursive rule can be defined to
make the ‘embark’ short film use any combination of
the three shots in the film to cope with cases where the
visitor was obscured in one of the videos and thus not
detected by the analysis module. Although the same
can be achieved using fixed templates, one will have to
create templates for all possible combinations of
situations, thus making the system hard to maintain and
cumbersome to manage.

2.1. What is video editing?

Given a collection of videos, video editing is about
the selection and arrangement of video clips according
to a set of artistic preferences to produce a coherent
film. The selection of video clips involves watching a
video to analyse the content such as what appears in the
video and at what time. The selection of video clips is
based on this semantic information, e.g. the roller
coaster film is made up of shots about a particular
visitor sitting on a particular roller coaster chariot.

The arrangement of shots is also based on the
semantic information such as camera location and
recording time. More specifically, the arrangement of
shots is based on the relationships between different
video clips. For instance, in the roller coaster scenario,
the shots are defined and arranged according to time
constraints between the shots to ensure that only video
clips from the same ride are used to produce a short
film, i.e. the visitor can go on the ride twice to produce
two films, one for each ride, as opposed to a single film
that uses video clips from two different rides.

In abstract terms, the selection and arrangement of
video clips is entirely feature driven. A feature, in this
context, can refer to any property about a video
segment, e.g. the start/end time of a video, the name of
the visitor/camera or the lighting condition. A feature
value is anything that is comparable, i.e. name, time
and number. Selection is therefore automated by
pattern matching, e.g. the existence of an event with
label =‘A’ means the creation of a shot with label=‘S2’,
end time=’start time of event A’ and start time=’end
time – 20 seconds’. Arrangement is similar except the
pattern matching condition is more complex, e.g. the
existence of three shots with labels ‘S1’, ‘S2’ and ‘S3’
implies the creation of a short film with label

‘EMBARK’ if S2 starts when S1 ends and S3 starts
within 30 seconds of S2 ending.

2.2. A linguistically motivated solution

The challenge presented here is similar to syntactic

parsing and sentence generation in computational
linguistics [1] where the grammatical structure of a
sentence is described by context-free rules that define
valid word and phrase combinations according to their
part-of-speech tags, e.g. verb, noun, article, verb
phrase, noun phrase. A grammatically correct sentence
is generated by applying the rules to a set of words to
produce phrases which are aggregated to produce a
complete sentence. This is the same as the video
editing problem except text generation uses non-
overlapping complete words to produce a sentence
whereas video editing can use overlapping video clips
in the final result.

The solution presented in this paper was inspired by
previous work in computational linguistics [1] and
expert systems [7,9]. The primary distinctions are,
firstly, the proposed grammar is designed for video clip
aggregation as opposed to word ordering as in text
generation. A video clip can be parts of multiple
aggregated short films. Secondly, the grammar allows
the use of mutually dependent conditions as opposed to
independent conditions as in most expert systems. Two
conditions can define tests that reference the properties
of elements that are matched by the other condition.

Figure 6. Describing a combination of two elements

with mutually dependent conditions.

2.3. Context-free feature-augmented grammar

The proposed grammar operates on elements. The
grammar describes the creation of elements based on
other elements. An element is a collection of properties
where a property is a key-value pair. The key is a
textual name and a value can be anything that is
comparable, e.g. number, text and time. For instance, a
video clip is an element with properties such as camera
name, start/end time, duration, object type and object
name.

Figure 7. Example video elements.

A grammar is a set of rules where a rule defines the

creation of an element based on the existence of other
elements. A rule has two parts, an element definition
and a list of conditions. The former defines the
properties of an element that is created by the rule. The
latter defines the set of elements that must exist in
order to activate the rule. For instance, the rule for
creating a short film about a visitor embarking on the
roller coaster has three conditions describing the three
shots required to produce the film.

A condition describes a group of elements by their
properties. A condition consists of a collection of
property tests where a test is a triplet of property name,
test operator and test value, e.g. (label, equals, S1). An
element satisfies a condition if it satisfies all the tests.
A condition can optionally define a set of references to
the property values of matched elements which may be
used by other conditions in their test statements or in
the element definition.

The following example presents a grammar with
four rules. The first rule defines an ‘Embark’ shot
based on the detection of a visitor in Cam 1. The shot
uses video from Cam 2 and starts 3 seconds before the
detection. The bind statements define references for use
in the element definition. The second rule defines a
‘Start’ shot with start time equal to the end time of the
‘Embark’ shot and end time defined by the detection of
the roller coaster chariot in Cam 3. The third rule
define the ‘Drop’ shot based on the end time of the
‘Climb’ shot and the detection of the roller coaster
chariot dropping in Cam 4. The last rule concatenates
the three shots to produce a film.

Figure 8. Example video editing rules.

To summarise, the proposed grammar is based on

the manipulation of elements where an element is
simply a bundle of properties. A property is described
by a name and a constant value. New elements are
created by a rule if all its conditions are satisfied by a
set of elements. A new element is created for every
combination of matching elements. Property references
can be defined in a condition to facilitate the
expression of cross-referencing conditions and property

<elements>
 <element>
 <property key="type" value="event"/>
 <property key="camera" value="Cam1"/>
 <property key="objectType" value="Visitor"/>
 <property key="object" value="Andrea"/>
 <property key="startTime" value="12:10:36"/>
 <property key="endTime" value="12:10:39"/>
 <property key="duration" value="00:00:03"/>
 </element>

 <element>
 <property key="type" value="event"/>
 <property key="camera" value="Cam3"/>
 <property key="objectType" value="Chariot"/>
 <property key="object" value="Chariot_A"/>
 <property key="startTime" value="12:12:09"/>
 <property key="endTime" value="12:12:14"/>
 <property key="duration" value="00:00:05"/>
 </element>

 <element>
 <property key="type" value="event"/>
 <property key="camera" value="Cam4"/>
 <property key="objectType" value="Chariot"/>
 <property key="object" value="Chariot_A"/>
 <property key="startTime" value="12:12:14"/>
 <property key="endTime" value="12:12:20"/>
 <property key="duration" value="00:00:06"/>
 </element>
</elements>

<grammar>
 <rule>
 <define key="type" value="shot"/>
 <define key="name" value="Embark"/>
 <define key="camera" value="Cam2"/>
 <define key="startTime" value="$ST-3s"/>
 <define key="endTime" value="$ET"/>
 <define key="duration" value="$D+3s"/>
 <condition>
 <test key="type" op="eq" value="event"/>
 <test key="camera" op="eq" value="Cam1"/>
 <bind key="startTime" ref="$ST"/>
 <bind key="endTime" ref="$ET"/>
 <bind key="duration" ref="$D"/>
 </condition>
 </rule>

 <rule>
 <define key="type" value="shot"/>
 <define key="name" value="Start"/>
 <define key="camera" value="Cam3"/>
 <define key="startTime" value="$ET2"/>
 <define key="endTime" value="$ET1"/>
 <define key="duration" value="$ET2-$ET1"/>
 <condition>
 <test key="type" op="eq" value="event"/>
 <test key="camera" op="eq" value="Cam3"/>
 <bind key="endTime" ref="$ET1"/>
 </condition>
 <condition>
 <test key="type" op="eq" value="shot"/>
 <test key="name" op="eq" value="Embark"/>
 <bind key="endTime" ref="$ET2"/>
 </condition>
 </rule>

 <rule>
 <define key="type" value="shot"/>
 <define key="name" value="Drop"/>
 <define key="camera" value="Cam4"/>
 <define key="startTime" value="$ET2"/>
 <define key="endTime" value="$ET1"/>
 <define key="duration" value="$ET2-$ET1"/>
 <condition>
 <test key="type" op="eq" value="event"/>
 <test key="camera" op="eq" value="Cam4"/>
 <bind key="endTime" ref="$ET1"/>
 </condition>
 <condition>
 <test key="type" op="eq" value="shot"/>
 <test key="name" op="eq" value="Start"/>
 <bind key="endTime" ref="$ET2"/>
 </condition>
 </rule>

 <rule>
 <define key="type" value="film"/>
 <define key="name" value="RollerCoaster"/>
 <condition>
 <test key="type" op="eq" value="shot"/>
 <test key="name" op="eq" value="Embark"/>
 </condition>
 <condition>
 <test key="type" op="eq" value="shot"/>
 <test key="name" op="eq" value="Start"/>
 </condition>
 <condition>
 <test key="type" op="eq" value="shot"/>
 <test key="name" op="eq" value="Drop"/>
 </condition>
 </rule>
</grammar>

inheritance in the element definition. Values in the
element definition and tests can be constants, variables
or a combination of the two (e.g. addition and
subtraction).

Figure 9. A feature-augmented grammar for video

editing.

2.4. Rule application algorithm

The rule application algorithm has an element pool
which is initialised with elements describing the
observed events, e.g. visitor Andrea was detected by
Cam 1. Every rule is applied to the pool to create a new
set of elements which are added back to the pool, e.g.
the shots, the short films and finally the complete film.
The process repeats until either no new elements are
created or the process has repeated too many times, i.e.
all the possible films have been created or an erroneous
recursive rule is continuously creating elements that
trigger the rule again.

Rule application consists of three distinct steps.
First, candidate elements for each of the rule conditions
are discovered by filtering the element pool using only
the tests that refer to constant values, e.g. find all the
video clips about Andrea.

Second, the candidate set for each condition is
further reduced by examining the candidate group
context and applying tests that only refer to group
variables, e.g. given a set of candidates, select the
longest video clip.

Finally, every combination of candidates for each
condition is examined to instantiate all the references
and apply all the remaining tests to identify the
combinations that satisfy all the conditions. A complete
match implies the creation of a new element based on
the element definition using the reference values for the
particular candidate combination, e.g. given a

particular combination of shots 1, 2 and 3, apply tests
to ensure that each shot starts just after the previous
shot; if all the tests are satisfied, create the ‘embark’
short film with property ‘visitor’ equal to that of shot 2.

Figure 10. A naïve algorithm for rule application.

To summarise, the rule application algorithm uses

set refinement to find all possible combinations of
elements that satisfy the rule conditions in three steps.
The first step applies the context-free tests to eliminate
clearly non-matching elements. The second step
analyses the candidates for each condition to establish
the range of property values in each group, thus
enabling the application of context-dependant tests to
further reduce the candidate set. The final step applies
the remaining tests to each candidate combination to
identify complete matches which result in the creation
of new elements. The application of rules and the
creation of elements are recorded by the algorithm to
ensure that a rule is only applied once to the same set
of elements thus creating only one new element.

2.5. Implementation

The algorithm adopts a naïve approach to rule
application. Its implementation incorporates several
optimisation methods that make the algorithm
practically applicable. Every rule, rule condition and
element is associated with a unique integer identifier.
This facilitates the use of a memory and
computationally efficient hash tree structure for
caching the analysis results from step one and three of
the algorithm thus reducing redundant computation.

One instance of the cache structure is used to record
the result of applying the context-free tests of a
condition to each element, i.e. step one of the
algorithm. The information is reused in subsequent
applications of a rule to bypass the first step for known
elements. Another instance of the cache structure is
used for recording combinations of elements that
satisfy a rule, i.e. the creation of a new element. The
information is reused in subsequent applications of a
rule to bypass the third step of the algorithm. The

information is also used to ensure that only one new
element is created for a combination of elements that
satisfy a rule.

3. Evaluation

The proposed solution has been applied to a real
problem, personalised video souvenir generation for a
fun park. The evaluation procedure assumes that
information about the presence of a visitor or object in
a video footage is complete and accurate. A grammar
was developed to generate personalised films about a
roller coaster ride (Figure 1).

The grammar uses five rules to define the five key
events (Figure 3). Nine rules are used to define the nine
shots (S1 to S9) based on these events or other shots.
Five rules are used to concatenate these nine shots into
a complete film (Figure 5), thus the grammar has a total
of 19 rules.

The scalability of the proposed solution was
assessed by applying the grammar to an increasing
number of events and measuring the computation time.
Every ride on the roller coaster generates five events
which trigger the generation of a film. The addition of
an event increases computational complexity as it
introduces ambiguity in associating events from
different rides to a film. A theoretical analysis of the
algorithm has revealed that it has a complexity of order
O(nc) where n refers to the number of input elements
and c is the average number of conditions in each rule.

A quantitative analysis of speed performance used
varying number of events from 5 to 120 in steps of 5,
representing 1 to 24 rides on the roller coaster. Each
ride increases the number of pool elements by 24, thus
the maximum number of elements was 576. The test
was repeated 35 times to estimate the average
computation time for different number of events. All
the experiments were carried out on an AMD Athlon
XP 1700+ (1.47GHz) desktop PC with 1GB RAM (a
maximum of 250MB for the Java virtual machine).

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Roller coaster rides

M
ea

n
 e

la
p

se
d

 t
im

e
(m

s)

Figure 11. Speed performance analysis.

The test results show that the computation time of
the optimised implementation increases exponentially
with order O(e0.06n) where n refers to the number of
events. The 19 grammar rules has on average 1.44
conditions per rule, i.e. c = 1.44. The experimental
system took less than one second to analyse 40
ambiguous events and automatically select 72 video
clips to produce 8 films. In three seconds, the system
was able to analyse 120 ambiguous events and select
576 video clips to produce 24 films.

The speed performance analysis results suggest that
the automated solution can carry out video editing at a
speed that makes it applicable to near real-time
applications. For instance, a low-resolution streamed
version of a personalised video can be made available
to remote families and friends immediately after the
visitor has disembarked from the roller coaster. The
video can also be presented at a terminal at the venue
in much the same way as making recently captured
photos available for preview and purchase.

4. Related work

4.1. Video editing description languages

Previous works [5,10] have acknowledged the
importance of adopting an abstract representation for
media editing. The W3C synchronized multimedia
integration language (SMIL) standard [5] is a XML-
based description language for interactive multimedia
presentations. It defines a set of XML elements for
describing the temporal behaviour and the visual layout
of a multimedia presentation and also for associating
hyperlinks with media objects. SMIL has been created
as a media, platform and application independent
solution for multimedia authoring. It can be used to
describe a fixed film script but it cannot describe
alternative strategies such as what to do if a video clip
is missing.

Existing languages can describe fixed presentations
with predefined behaviour and known actions.
Polymnia requires a solution that can automatically
adapt a film script according to what video clips are
available. The work presented here uses simple rules to
describe different parts of a presentation. Multiple rules
can be used to create different short films using
different video clips. This rule-based approach makes
the encoding of alternative editing strategies
manageable. The same approach has been used in
computational linguistics to facilitate the description of
very large complex grammars.

4.2. Automatic media editing

Advances in content creation and storage
technologies have created an urgent need for
automation in content organisation and editing.
Commercial automatic video editing solutions for home
users [12,15,17] typically adopt a music video editing
approach where shots are selected, organised and
combined according to a piece of music. In general, the
process involves first selecting a video and manually
marking up the interesting and irrelevant parts. A piece
of music is then selected. These are analysed by an
automatic algorithm to determine the tempo and scene
changes. An edited video is created by concatenating
the interesting scenes and inserting scene transitions
according to the tempo. Video editing packages for
professionals and enthusiasts [2,14] tend to offer
simple functions for automating mundane tasks such as
scene detection and transition insertion thus enabling
the user to focus on film production.

Experimental automatic video editing systems are
typically developed for specific scenario such as
multiparty conversation in meetings [16] and
documentary generation [3,4,6,8,11]. The former
adopts a simple editing strategy that uses speaker
identification and head orientation detection to
determine how the video should be edited to show the
speaker and the reaction of the listeners. Documentary
generation is based on discourse theories that stem
from computational linguistics. Existing systems are
similar to that for textual story generation. Stock video
clips are manually annotated with semantic information
to enable an automatic system to generate a tailored
video by selecting and concatenating the clips
according to the annotation.

Previous work in the area of automatic media
editing and automatic video generation is progressing
naturally towards the creation of a domain independent
solution [3,13,18]. These systems aim to encode
common film editing and story generation rules to
make them generally applicable. The main challenge is
creating the complementary content analysis system
that can automatically extract the rich semantic
information required to activate the rules.

The work presented in this paper offers a generic
platform for encoding and executing media editing
rules. It introduces the concept of feature-based media
editing which stems from work in computational
linguistics. The method has been applied to a wide
range of problems in text processing and text
generation which have many parallels with media
editing.

5. Conclusions

Film production is a labour intensive and expensive
process. Even the production of a simple home video
involves many hours of manual labour to capture the
video clips, review the content, select the highlights,
edit the shots, compose the video, insert scene
transition effects, review the video and publish the
result. The process requires constant human input.
Tools have been developed to automate and speed up
most of the processes such as video content analysis for
object detection and identification, scene change
detection for storyboard generation, transition effect
insertion for media composition. However, video
editing is still a manual process that involves constant
human interaction.

The IST Polymnia project aims to create a fully
automated film production system. It uses automatic
content capture and analysis to acquire videos and
annotate the videos with semantic information. The
solution presented in this paper offers a rule-based
grammar for encoding a film director’s ideas about
how a film should be made and a rule-application
algorithm for implementing the ideas according to real
situations. It generates a personalised film script which
describes what video clips are used in what order to
produce a personalised film. An automatic video
production module fetches the video clips and
combines them according to the script. The result is
written to a DVD for delivery to the visitor, thus the
entire production chain is automated.

Automation does not remove the human element
from media production. It enables a human operator to
provide all the information about a task which is then
executed and completed automatically, thus removing
the need for continuous interaction. The proposed
solution has been designed for video editing, however
it is applicable to any kind of media editing that
involves the selection, arrangement and aggregation of
content such as music clips, photographs and text. The
solution has been evaluated using a real scenario. The
speed performance analysis results suggest that the
solution is applicable to near real-time applications.

6. Future work

A novel rule development environment is currently
being created to offer an intuitive graphical interface
for rule authoring, testing and management. The
interface has been designed specifically for adaptive
video editing. The tool will streamline the rule
development cycle thus reducing the cost of

configuring, deploying and managing the Polymnia
system.

7. Acknowledgements

The POLYMNIA project is funded by the European

Commission in the Information Society Technologies
(IST) Programme under FP6-2003-IST-2 strategic
objective 2.3.2.7 Cross-media content for leisure and
entertainment - Project No. IST-2-004357. The
partners in Polymnia include ICCS/NTUA, IT
Innovation, Telefonica I+D, Hewlett Packard,
Joanneum Institute, Giunti Interactive Labs, Cinegram
S.A., Università Cattolica del Sacro Cuore
Description, and Hellenic Entertainment Park -
ALLOU. Full details of the Polymnia project can be
found at http://polymnia.pc.unicatt.it/.

8. References

[1] Allen, J. Natural Language Understanding, The
Benjamin/Cummings Publishing Company, Redwood City,
California, 1995.

[2] Apple Computer Incorporated, “iLife’06: iMovie HD”,
http://www.apple.com/ilife/imovie, 2006.

[3] Bocconi, S., “Semantic-Aware Automatic Video
Editing”, in Proceedings of MM’04, New York, USA, 2004.

[4] Bocconi, S. and Nack, F., “VOX POPULI: Automatic
Generation of Biased Video Sequences”, in Proceedings of
SRMC’04, New York, USA, 2004.

[5] Bulterman, D., Grassel, G., Jansen, J., Koivisto, A.,
Layaïda, N., Michel, T., Mullender, S. and Zucker, D.
(editors) “Synchronized Multimedia Integration Language
(SMIL 2.1) W3C Recommendation”, The World Wide Web
Consortium (W3C), http://www.w3.org/TR/SMIL2, 2005.

[6] Davenport, G. and Murtaugh, M., “ConText: Towards the
Evolving Documentary”, in Proceedings of ACM
Multimedia’95, 1995.

[7] Friedman-Hill, E., “Jess, the Rule Engine for the Java
Platform”, Sandia National Laboratories,
http://herzberg.ca.sandia.gov/jess, 2001.

[8] Houbart, G., Viewpoints on Demand: Tailoring the
Presentation of Opinions in Video, PhD Thesis, MIT, 1994.

[9] Jackson, P. Introduction to Expert Systems, Addison
Wesley, 1999.

[10] Macromedia Incorporated, “Macromedia Director MX
2004 Product Datasheet”, Adobe Systems Incorporated,
http://www.macromedia.com/software/director, 2003.

[11] Mateas, M. “Generation of Ideologically-Biased
Historical Documentaries”, in Proceedings of AAAI’00,
2000.

[12] Muvee, “Muvee autoProducer 5”,
http://www.muvee.com, 2006.

[13] Nack, F., AUTEUR: The Application of Video
Semantics and Theme Representation in Automatied Video
Editing, PhD Thesis, Lancaster University, 1998.

[14] Pinnacle Systems Incorporated, “Pinnacle Studio 10.5”,
http://www.pinnaclesys.com, 2006.

[15] Roxio, “Roxio VideoWave 7”, http://www.roxio.com,
2006.

[16] Takemae, Y., Otsuka, K. and Yamato, J. “Automatic
Video Editing System Using Stereo-Based Head Tracking for
Multiparty Conversation”, in Proceedings of CHI’05,
Oregon, USA, 2005.

[17] Ulead Systems Incorporated, “Ulead VideoStudio 9”,
http://www.ulead.com, 2006.

[18] Yip, S., Leu, E. and Howe, H., “The Automatic Video
Editor”, in Proceedings of MM’03, California, USA, 2003.

