Capturing knowledge of user preferences with recommender systems

Stuart E. Middleton
David C. De Roure, Nigel R. Shadbolt
Intelligence, Agents and Multimedia Research Group
Dept of Electronics and Computer Science
University of Southampton
United Kingdom

Email: sem99r@ecs.soton.ac.uk
Capturing knowledge of user preferences with recommender systems

- Introduction to recommender systems
- Knowledge capture of user profiles
- Quickstep architecture and approach
- Issues arising from Quickstep evaluation
- Foxtrot architecture and approach
- Future work
Capturing knowledge of user preferences with recommender systems

- **Introduction to recommender systems**

 WWW information overload

 Recommender systems
 - Collaborative filters (several commercial examples)
 - Content-based filters
 - Hybrid filters

 A real world problem domain
 - On-line research paper recommendation for researchers
 - Evaluation of users in a real work setting

 Knowledge acquisition must be unobtrusive
 - System must not interfere with normal work practice
 - Monitoring should be unobtrusive
 - Feedback requested only when recommendations checked

 Foxtrot seminar 18.1.2002
Capturing knowledge of user preferences with recommender systems

• **Knowledge capture of user profiles**

 Binary class profile representation
 ‘Interesting’ and ‘not interesting’ examples
 Time-decay function favours recent examples
 Machine learning classifies new information (e.g. TF-IDF)
Capturing knowledge of user preferences with recommender systems

- **Knowledge capture of user profiles**

 Binary class profile representation

 User A
 - Interesting: Doc
 - Not Interesting: Doc

 User B
 - Interesting: Doc
 - Not Interesting: Doc
Capturing knowledge of user preferences with recommender systems

- **Knowledge capture of user profiles**

 Binary class profile representation
 - ‘Interesting’ and ‘not interesting’ examples
 - Time-decay function favours recent examples
 - Machine learning classifies new information (e.g. TF-IDF)

 Collaborative similarity
 - Behaviour correlation finds similar users (e.g. Pearson r)
 - New information comes from similar users
Capturing knowledge of user preferences with recommender systems

- **Knowledge capture of user profiles**

Collaborative similarity

- User ratings
- Groups of similar users

Ratings vector space
Capturing knowledge of user preferences with recommender systems

- Knowledge capture of user profiles

 Binary class profile representation
 - ‘Interesting’ and ‘not interesting’ examples
 Time-decay function favours recent examples
 Machine learning classifies new information (e.g. TF-IDF)

Collaborative similarity
 - Behaviour correlation finds similar users (e.g. Pearson r)
 - New information comes from similar users

Our approach - Multi-class profile
 - Classes explicitly represent using domain ontology
 - Domain knowledge can enhance profiling
 - Examples of classes can be shared
 - Accuracy decreases with number of classes
Capturing knowledge of user preferences with recommender systems

- Knowledge capture of user profiles

Multi-class profile representation

User A
- Interesting: Topic A, B
- Not interesting: Topic C

User B
- Interesting: Topic B, C
- Not interesting: Topic A
Capturing knowledge of user preferences with recommender systems

- **Quickstep architecture and approach**

 Research papers
 - TF vector representation
 Classifier
 - k-nearest neighbour
 Users can add examples
Capturing knowledge of user preferences with recommender systems

- **Quickstep architecture and approach**

 K-Nearest Neighbour - kNN

 TF vector representation

 Examples exist in an n dimensional space

 New papers are added to this space

 Classification is a function of its ‘closeness’ to examples

- n-dimensional space

 (n = number of terms)

Example paper (class1)

Example paper (class2)

Unclassified paper

Foxtrot seminar 18.1.2002
Capturing knowledge of user preferences with recommender systems

- **Quickstep architecture and approach**

 Research papers
 - TF vector representation
 Classifier
 - k-nearest neighbour
 Users can add examples
 Classified paper database
 - Grows as users browse
 Profiler
 - Feedback and browsed papers give time/interest profile
 - Time decay function computes current interests
Capturing knowledge of user preferences with recommender systems

- **Quickstep architecture and approach**

Profiling
- Time/Interest profile
- Is-a hierarchy infers topic interest in super-classes
- Time decay function biases towards recent interests

![Diagram showing time interest profile and subclass hierarchy](image)

Foxtrot seminar 18.1.2002
Capturing knowledge of user preferences with recommender systems

- Quickstep architecture and approach

 Research papers
 - TF vector representation
 Classifier
 - k-nearest neighbour
 Users can add examples
 Classified paper database
 - Grows as users browse
 Profiler
 - Feedback and browsed papers give time/interest profile
 Time decay function computes current interests
 Recommender
 - Recommends new papers on current topics of interest
Capturing knowledge of user preferences with recommender systems

- **Issues arising from our empirical evaluation**

 Experimental evaluation
 Two trials, 24 and 14 users, 1.5 months each trial
 Evaluate use of an is-a hierarchy and dynamic flat-list

 What advantages does an ontology bring to the system?
 Adding super-classes ‘rounded’ out profiles
 Ontology gave a consistent conceptual model to users
 Ontology users had more interesting recommendations

 Does using domain knowledge compensate for the reduced accuracy of the multi-class classifier?
 Classifier accuracy was lower than a typical binary classifier
 When wrong, k-NN chose a topic in a related area
 Recommendations best for reading around an area
Capturing knowledge of user preferences with recommender systems

- **Issues arising from our empirical evaluation**

 Is the recommender system useful as a workplace tool?
 - About 10% of recommendations led to good jumps
 - Users felt system was moderately useful
 - Topic classes were too broad for some users

 How does Quickstep compare to other recommender systems?
 - There is a lack of trials with real users
 - There is no standard metric to measure ‘usefulness’
 - Performance compared reasonably with other systems

 Work published in the K-CAP2001 conference
Capturing knowledge of user preferences with recommender systems

• **Foxtrot architecture and approach**

 Searchable database of papers
 - Title, content, topic, quality and date search supported
 - HTML support in addition to PS, PDF and zip, gz, Z

 Ontology and training set
 - 96 classes, based on CORA paper database hierarchy
 - 5-10 example papers per class (714 training examples)

 More collaborative recommendation
 - Quality feedback used to rank recommendations
 - Pearson r correlation to find similar users

 Profile visualization
 - Users can provide explicit feedback on their interest profile

Foxtrot seminar 18.1.2002
Capturing knowledge of user preferences with recommender systems

• Foxtrot empirical evaluation

Experiment currently running
 Run over this academic year
 All 3rd and 4th year UG’s, staff and PG’s can use Foxtrot
 70+ registered users
 15,000+ research papers
Two groups, random subject selection
 One group can provide explicit profile feedback
 One group cannot (just relevance feedback)

Sign up!
 Just email me with your username and I will register you
 sem99r@ecs.soton.ac.uk
Future work

Short paper for WWW conference with Harith
 Looking at synergies between Quickstep and COP
 Could result in a full paper

Foxtrot experiment
 Full results in July, written up in a journal article
 Will also appear in my Thesis

Profile algorithm analysis on log data
 Run profile algorithms on 1 year’s worth of URL logs
 Log data could become an IAM resource