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Abstract - We have benchmarked a novel knowledge-

assisted kriging algorithm that allows regions of spatial 

cohesion to be specified and variograms calculated for 

each region. The variogram calculation itself is 

automated and spatial regions are created via offline 

automated segmentation of either expert-drawn Google 

Earth polygons or NASA altitude data. Our use-case is to 

create wind interpolation grids for input into a bathing 

water quality model of microbial contamination. We 

benchmark our knowledge-assisted kriging algorithm 

against 7 other algorithms on UK met-office wind data 

(189 sensors). Our wind estimation results are 

comparable, but not better than ordinary kriging, but the 

kriging error maps are much sharper and reflect the 

known spatial features better. These results are very 

promising when considering it is an automated approach 

and allows on-demand datasets to be selected and thus 

real-time interpolation of previously unknown 

measurements. Automation is important in progressing 

towards a pan-European interpolation service capability. 

Keywords: Data Fusion, Kriging, Spatial Interpolation, 

Wind Speed, Wind Direction, OGC, WPS 

1 Introduction 

In-situ meteorological sensor measurements are generally 

recorded by sensor hardware at point locations, requiring 

some form of spatial interpolation if estimates at other 

locations are needed. Many spatial interpolation methods 

exist, both deterministic and geo-statistical, with 

accuracies dependent on the nature of the observed 

phenomena, spatial density of sensors, temporal frequency 

of sampling and the consistency and accuracy of 

measurement. 

In the SANY project [6] we have developed a 

interpolation algorithm for handling wind measurements. 

Our use case is to generate spatial grids of estimated wind 

measurements for continual input into a bathing water 

quality model [13] and subsequent live prediction of 

microbial contamination levels of bathing water at specific 

beaches. Microbial contamination is important information 

for coast guards when making the decision as to if, and 

when, to close public beaches. Our algorithms are 

phenomena independent, and in SANY we have also 

successfully applied them to air pollution and ground 

displacement measurements. 

We present a knowledge-assisted kriging algorithm 

applied to historical wind measurements from the UK 

meteorological office (UKMO) dataset archives [9]. We 

report cross-validated results for wind speed mean error 

(ME), root-mean squared error (RMSE) and the range of 

estimated values. These results are compared directly to 

results for seven alternative interpolation methods 

reported in [7] on the same dataset. 

Our knowledge-assisted kriging algorithm takes as input 

known areas of spatial cohesion, either identified by an 

expert or automatically calculated from the CGIAR-CSI 

GeoPortal SRTM (90m resolution) Digital Elevation 

Dataset [8]; multi-region kriging is then used to compute 

variograms for each region. This algorithm is hosted 

within an Open Geospatial Consortium (OGC) sensor 

service framework [5], showing how sensor processing 

services can be setup to 'play and process' different sensor 

measurement datasets on-demand. 

We outline in section 2 relevant related work, describe our 

algorithm in section 3 and experimental results in section 

4. We discuss and conclude in sections 5 and 6. 

2 Related work 

In addition to ordinary kriging [1], which is outlined in the 

next section, there are a number of variants such as 

universal kriging [3], where a trend in data is assumed, 

and co-kriging [11], where covariates are provided in the 

same area as the primary sampled measurement to assist in 

prediction. Our novel multi-region kriging approach is 

another kriging variant, making use of expert knowledge 

about the spatial cohesiveness in known regions to 

improve prediction accuracy.  

Many general spatial interpolation techniques [12] exist, 

with most relevant ones including trend surface analysis, 

inverse distance weighting, local polynomial interpolation 

and thin plate spline. Until [7] few works had 

benchmarked these techniques thoroughly for wind 

measurement interpolation, and our work builds on these 

results for direct comparison. 
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3 Knowledge-assisted ordinary kriging 

Kriging [1] is a statistical technique for interpolation or 

random phenomenon that uses a linear combination of 

observed values at observed spatial locations to estimate 

the value at an unobserved location of interest. In contrast 

to other interpolation techniques like inverse distance 

weighting and thin plane spline, it uses a model of the 

phenomenon’s spatial correlation encoded as a 

corrrelogram of a semi-variogram. Also, kriging is an 

exact interpolator, i.e. it respects the observed values at 

the observed locations, which differentiates it from 

interpolation techniques like local polynomial 

interpolation and trend surface analysis. For the purposes 

of our work we have used ordinary kriging with a semi-

variogram phenomenon correlation model. When using a 

semi-variogram, the spatial correlation between 

measurement points is quantified by means of a semi-

variance function (1) where N(h) is the number of pairs of 

measurement points at distance h apart and z(si) is the 

observed value. 
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The semi-variance can be a function of both distance and 

direction, and so it can account for direction-dependent 

variability (anisotropic spatial pattern). For kriging, a 

smooth semi-variogram is required and for this purpose a 

parametric function is used to model the semi-variance for 

different values of h [2]. These models are fitted to the 

semi-variance function, or to the experimental semi-

variogram obtained by averaging the semi-variance 

function over a set of distance lags, and after a goodness 

of fit analysis the best model is selected [3] [4]. We refer 

to this function as a variogram model and the experimental 

semi-variogram just as experimental variogram. In our 

kriging implementation with automated variogram model 

selection we use eight different families of variogram 

models, namely: spherical, exponential, Gaussian, linear, 

power, generalised Bessel, sine hole-effect and cosine 

hole-effect.  

It is usual that a phenomenon expert will select a particular 

variogram model depending on the modeled phenomenon 

characteristics and fit the selected model to the available 

observation. This kind of human expert intervention in the 

interpolation process is expensive and makes the 

interpolation process phenomena specific. In our solution, 

ordinary kriging with automated variogram model 

selection (AVMS), we tackle this problem by automating 

the variogram model selection. 

3.1 Overall kriging workflow 

The various offline and real-time stages of our knowledge-

assisted kriging process is shown in figure 1.  

Data Pre-processing

Ordinary Kriging

Data Post-processing

Experimental Variogram(s) Creation

Variogram Model Selection

Model Optimisation

Phenomenon 

Sensor Data

Phenomenon 

Metadata

Phenomenon 

Spatial Estimates

Region

Data

A
u

to
m

a
ti

c
 S

e
g

m
e

n
ta

ti
o

n
 (

o
ff

li
n

e
)

KML Polygons

ASC Altitude map

 

Figure 1. ordinary kriging with automated variogram 

model selection procedure. 

The first stage is the data pre-processing stage, where data 

cleansing, normalisation and necessary data 

transformations are performed. The pre-processing stage 

includes input of knowledge-based descriptions of regions 

of spatial cohesion, prepared offline using segmentation 

techniques prior to run-time. In the data post-processing 

stage, data de-normalisation and reverse transformations 

are performed. The core ordinary kriging with AVMS 

stages are the experimental variogram creation, variogram 

model selection, model optimisation and ordinary kriging. 

A variogram is created for each region of spatial cohesion. 

Phenomenon metadata is setup by an expert in a profile 

configuration. 

3.2 Offline identification of spatially 

coherent regions 

Region calculation is performed automatically from either 

expert drawn Google Earth spatial polygons (KML 

format) or from NASA altitude data (ASC format) from 

the CGIAR-CSI GeoPortal SRTM (90m resolution) 

Digital Elevation Dataset [8]. The polygons / altitude 

maps are rendered as greyscale images and standard image 

processing techniques (colour reduction, binary mask per 

colour, pixel blur, labelling and edge identification) used 

to segment maps into unique regions suitable for input into 

the kriging process. Region segmentation is executed 



offline, via an automated web service, as part of the initial 

configuration stage prior to on-demand kriging. 

We expect over mountainous grounds the mean daily wind 

will have lower levels of spatial correlation than over flat 

land. The land/sea boundary will also have an effect, 

especially since our sensors are land-based. Figure 2 

shows the altitude segmentation, which we found to be 

somewhat over-segmented and too fine-grained for our 

wind phenomena. Figure 3 shows the region segmentation 

for the expert drawn polygons, which produced the best 

results and are used in the experiments later in this paper. 

 
Figure 2. Region segmentation based on CGIAR-CSI 

GeoPortal SRTM altitude data 

 

The output of the offline region segmentation process are 

a set of comma separated variable (CSV) maps containing 

region labels for every interpolation point, and inter-

region neighbour linkage which is used by the knowledge-

assisted ordinary kriging algorithm. 

3.3 Real-time automated variogram model 

creation 

The most critical part of the experimental variogram 

creation stage is the selection of lags. Lags need to be 

selected so they contain an optimal number of points in 

such a way that physical phenomenon characteristics are 

not smoothed out but that noise is avoided. Generally the 

initial slope of the variogram carries the most information 

so the first few lags shall contain smaller number of 

points. If no hole-effect is expected the following lags may 

contain a large number of points, but if hole-effect is 

expected the lags shall contain a lower number of points 

so the effect is not smoothed out. The relative number of 

points in a lag is specified in the metadata supplied to the 

interpolation procedure by setting the percentile of the 

semi-variogram function points to be preceding each lag 

of the experimental variogram. For our experiments with 

average daily wind speed interpolation we set these 

percentiles to be as follows: 5, 10, 15, 20, 30, 40, 50, 60, 

70, 80, 90, 100. 

In the next stage, the variogram model selection, we fit the 

eight variogram models pointed out above to the 

experimental variogram. The model shape is governed by 

a subset of the following parameters: nugget, correlation 

range, power, hole and sill. We use a weighted least-

squares fitting method to select a model that best fits the 

experimental variogram. We introduce phenomenon 

knowledge by constraining the fitted model types and the 

parameter values and then, in effect, a variogram model 

reflecting the characteristics of the phenomenon of interest 

will be selected.  

 
Figure 3. Region segmentation based polygons drawn by 

an expert for land/water and flat/hilly areas 

 

For daily mean wind speed we expect low levels of noise 

to be present in the observations because of the averaging 

used to calculate the means (see section 4.1) and low level 

of rapid phenomenon fluctuations. So, in the phenomenon 

metadata we set the nugget to be constrained to maximum 

of 20% of the sill. We expect the spatial correlation of the 

daily mean wind speed to decrease very slowly with 

increasing the distance, so in the phenomenon metadata 

we set the lower and upper bounds of the correlation range 

parameter to be relatively high, respectively 25% and 75% 

of the maximum distance in the experimental variogram. 

We don’t expect a hole effect, so the models with hole 

effect are not selected. 

After selecting the variogram model, parameter 

optimisation is performed by minimising the the mean 

error (ME, see equation (2)) and the root mean square 

error (RMSE, see equation (3)) calculated over 10-folds of 

cross-validation. We use simplex optimisation with a loss 

function the sum of ME and RMSE. The phenomenon 

constraints are reflected in the loss function by adding a 

high penalty value when the model parameters are outside 

the specified range. 

After the variogram model optimisation stage ordinary 

kriging with a moving neighbourhood is performed using 



the optimised variogram model and estimate’s mean and 

kriging error is computed. The kriging mean is the 

estimated value of the phenomenon at the location of 

interest. The kriging error is a measure of how good the 

observations’ location configuration is for estimation.  

Ordinary kriging with a moving neighbourhood is able to 

pick variations of the phenomenon mean along the 

interpolated area. As the interpolated area is relatively 

large in respect to the phenomenon scale we expect 

variations in the mean and in the phenomenon metadata 

we have specified; a constrained moving neighbourhood 

consisting of the 11 closest observations is used. Looking 

at the observations configuration we inferred that the 

neighbourhood shall be constrained to about 10 and 

through experimentation established that the best value is 

11. This process can be automated by including an 

additional parameter to be optimised in the model 

optimisation stage, which we intend to implement in future 

versions. 

A point map showing region labels for the interpolated 

area is supplied to our ordinary kriging procedure so we 

know which region every interpolated point belongs to. 

The observations belonging to a particular region are used 

for working out the variogram of that region. If there are 

not enough observations available for a given region, 

observations from the neighbouring regions are pulled in 

order to build the raw variogram. In our ordinary kriging 

we have the requirement of minimum number observations 

for variogram estimation to be argmin(n*(n-1)/2>3* 

Nlags), where n is the number of observations and Nlags is 

the number of lags in the variogram, i.e. we have 

minimum of 3 raw variogram points per lag. Next, when 

estimating values at unobserved location in e.g. region A, 

for all the observations values used from region A we use 

the variogram of region A, and for all the observations 

values used from e.g. region B we use a variogram which 

is the average of variograms A and B. Additionally in the 

phenomenon metadata we have an inter-region correlation 

factor, r, ranging between 0 and 1, where 0 indicates 

minimal correlation between the regions and 1 indicates 

high correlation. We modulate the averaged inter-region 

variogram by increasing the variogram values by a 

quantity equalling 1-r times the variogram sill, but up to a 

value not larger than the sill. If the variogram doesn’t have 

a sill, e.g. the power model, variogram values are increase 

by a quantity equalling 1-r times the current variogram 

value. In this way we introduce additional knowledge of 

factors influencing the phenomenon spatial correlation.  

4 Experiments and results 

In the SANY project we have used our ordinary kriging 

with AVMS for interpolating micro-scale phenomena, e.g. 

ground displacement caused by underground tunnelling, 

and mini to meso-scale phenomena, e.g. wind speed and 

direction, yielding meaningful results.  

In this paper we directly compare the performance of our 

algorithm against 7 well known algorithms and 

implementations on a benchmark data set. A definitive 

work in this context is [7], where the performance of seven 

interpolation methods are compared on a dataset of daily 

mean wind speeds obtained from sensor data supplied by 

the UK meteorological office (UKMO).  

Similarly to [7] we have used leave-one-out cross 

validation and calculated the mean error (ME) and root 

mean square error (RMSE) as follows: 
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where N is the number of validation folds, 
isz

^

 is the 

estimated value and z(si) is the observed value. 

4.1 Data 

For out wind speed experiments we used the dataset used 

in [7] for 27
th

 of March 2001, which was originally 

obtained from the UKMO. At this date 189 sensors in 

England, Wales, South of Scotland and Northern Ireland 

reported at least 12 times, the readings were averaged to 

obtain daily mean wind speeds. The daily mean wind 

speeds vary from 2.2 to 13.6 m/s. Figure 4 depicts the 

locations and magnitudes of the daily mean wind speed 

observations, where the size of the dots is relative to the 

magnitude of the speed. 

 
Figure 4. Locations of daily mean wind speed 

observations for 27
th

 of March 2001. 

 

For our wind direction experiments we used 27
th

 March 

2001 data from the UKMO dataset archive [9]. It contains 

157 observations with daily mean wind directions. Figure 

5 depicts the locations of the daily mean wind directions 

observations, where the vectors point into the direction of 

the wind. 



In our experiments we apply our ordinary kriging with 

AVMS to this data an interpolate on a grid covering 

England, Wales, South of Scotland and Northern Ireland, 

having resolution of 5km by 5km. For daily mean wind 

speed we compare our results against the results published 

in [7]. In [7] there are no results present for daily mean 

wind directions so we just state the results from our 

experiments and show the relevant visualizations. 

 
Figure 5. Locations of daily mean wind direction 

observations for 27
th

 of March 2001. 

4.2 Daily mean wind speed estimates 

benchmarking 

In this experiment we compare our base ordinary kriging 

with AVMS algorithm against the 7 algorithms evaluated 

in [7]. We set the algorithm with the following parameters:  

1. Experimental variogram lags percentiles: 5, 10, 

15, 20, 30, 40, 50, 60, 70, 80, 90, 100. 

2. Nugget boundaries: 0 to 20% of the sill. 

3. Correlation range boundaries: 25% to 75% of the 

maximum variogram distance. 

4. Variogram models to use: spherical, exponential, 

Gaussian, linear, power or generalised Bessel. 

 

Ordinary kriging (no regions) 

The surface produced is consistent with the input values 

over land, see figure 6. Looking at the surface over land, 

where the sensors are located, high wind speeds are 

accurately estimated over the north, the north-east and 

north-west of England, and also over the Isle of Man. 

Places of low wind speed are accurately estimated over the 

Midlands, and the west and south-east of England. The 

estimated surface is very similar to the surfaces shown in 

[7]. Similarly, the kriging error map over land matches 

closely the corresponding maps in [7]. The kriging error is 

small where we have high concentration of observations 

and larger where there are smaller number of observations.  

The RMSE, ME and the min and max interpolated values 

suggest that the performance of ordinary kriging with 

AVMS is slightly worse than the ordinary kriging in [7] 

and slightly better than universal kriging and local 

polynomial (see Table 1). It should be noted that ordinary 

kriging with AVMS needs only a minimal setup from the 

user, unlike [7].  

 
Figure 6. Estimated daily mean winds speed - ordinary 

kriging with AVMS and no region 

 
Figure 7. Kriging error of estimated wind speed - ordinary 

kriging with AVMS and no region 

 

Ordinary kriging (coastline regions) 

Over the sea the estimates are in all probability not 

reliable as this area is not covered by any of the 

observations. Supplying expert-drawn regions can help in 

this case. Expecting different behaviour of the interpolated 

phenomenon over land and over sea we can perform land-

sea segmentation and supply region information to our 

ordinary kriging algorithm.  

For our next experiment we have performed coastline 

segmentation using Google Earth drawn polygons and 

supplied the resulting regions to our ordinary kriging with 

AVMS. The inter-region correlation factor r was set to 0.1 

to indicate that there are minimal similarities in the way 

the different regions, sea and land, influence the 

phenomenon behaviour.  

The wind speed estimates change only slightly as all of the 

observations are over land. The only notable difference 

here are the estimates over the Isle of Man, see figures 6 

and 8, where more accurate high values are predicted as 



the mainland observations interference is diminished by 

the low inter-region correlation factor. This is also 

reflected in the algorithm performance metrics in Table 1.  

The kriging error for the Isle of Man is very different from 

the kriging error without regions. Compare figures 9 and 

7. There is a clear jump in the kriging error on the land-

sea border indicating that, as we don’t have observations 

in the sea, the wind speed estimates over sea are 

unreliable. 

 
Figure 8. Estimated daily mean winds speed - ordinary 

kriging with AVMS and coastline regions 

 
Figure 9. Kriging error of estimated winds speed - 

ordinary kriging with AVMS and coastline regions 

 

Ordinary kriging (regions for flat/hilly areas) 

For our last experiment regarding wind speed we 

performed further segmentation to separate land areas with 

different terrain topology, i.e. flat land, hilly land, 

mountainous land. We used a higher inter-region 

correlation factor of 0.9 since regions are in-land.  

With this segmentation the performance of ordinary 

kriging with AVMS is improved and is comparable to 

ordinary kriging in [7] (see Table 1). The bias, ME, is 

decreased as is the RMSE (see figure 10). The minimum 

and maximum of the estimated values are closer to those 

present in the raw data. 

The kriging error map, figure 11, shows distinct pattern in 

the different regions. For example the kriging error over 

the Midlands, South and South-East region is very smooth, 

which we interpret as not needing very dense observations 

to achieve good estimates in this region. In contrast the 

spotty kriging error pattern in the northern region, and in 

Wales and south-west of England, we interpreted as 

needing much more dense observations to achieve good 

estimates in these regions. 

 
Figure 10. Estimated daily mean winds speed - ordinary 

kriging with AVMS with flat/hilly regions 

 

Method Number of 

Regions 

Inter-region 

correlation 

Exec-time 

(mins) 

Kriging_1 0 n/a 1 

Kriging_2 4 coastline 0.1 8 

Kriging_3 7 flat/hilly 0.9 10 

All methods use ordinary kriging with AVMS 

Computer spec : 2 CPU's (2.4 GHz) with 4 Gbyte RAM 

 

Method Min 

estimate 

m/s 

Max 

estimate 

m/s 

RMS

E 

m/s 

ME 

 

m/s 

Kriging_1 3.6 10.7 1.67 -0.03 

Kriging_2 3.6 11.6 1.67 -0.03 

Kriging_3 3.24 13.40 1.60 -0.01 

Cokriging [7] 2.6 13.6 1.47 -0.01 

Ordinary 

kriging [7] 

2.6 13.4 1.61 -0.01 

Local 

polynomial [7] 

0.1 11.9 1.69 0.01 

Universal 

kriging [7] 

3.2 9.8 1.71 0.01 

IDW [7] 3.1 12.1 1.74 -0.09 

TPS [7] 1.5 13.8 1.89 -0.05 

TSA [7] 4.6 9.2 1.93 -0.02 

Table 1. Comparison of knowledge-assisted kriging to 

benchmark interpolation results reported in [7] 

4.3 Daily mean wind direction estimation  

Using the same ordinary kriging with AVMS setup as for 

the wind speed experiments we ran ordinary kriging with 

AVMS (no regions) on the UKMO dataset for 27
th

 March 



2001. In our implementation of ordinary kriging we have a 

special procedure [10] for handling periodic values like 

wind direction, which includes vector rotation and 

Cartesian transformation and simulation. 

 
Figure 11. Kriging error of estimated winds speed - 

ordinary kriging with AVMS with flat/hilly regions 

 

Estimated wind direction vectors are visualised in figure 

12. This is done on a 25 by 25 points grid to make 

visualisation easier. The ME and RMSE are given in 

Table 2. We find the ME of -0.60 degrees and RMSE of 

13.66 degrees in relative terms are very low considering 

worse case could be 180 degrees. The mean relative 

absolute error (MRAE) is 6%. For our wind speed 

experiments MRAE varies from 22% to 23%. For wind 

speed we calculate MRAE as: 
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and for wind direction we calculate MRAE as: 
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 is the 

estimated value, z(si) is the observed value, |.| is the 

absolute value and norm(.) yields a normalised wind 

direction in the range of -180 to +180. 

The wind direction kriging error is shown in figure 13, 

with higher absolute values since we do not normalize 

keeping a range of 0 to 360. Kriging error quantifies the 

suitability of the observations configuration for estimating 

at a particular location and is not a measure of the 

estimation error in itself. 

 

Method ME 

degrees 

RMSE 

degrees 

Ordinary kriging with AVMS -0.60 13.66 

Table 2. Estimated daily mean wind direction ME and 

RMSE values - ordinary kriging with AVMS. 

 
Figure 12. Estimated daily mean winds directions - 

ordinary kriging with AVMS no region 

 
Figure 13. Kriging error for estimated daily mean winds 

directions - ordinary kriging with AVMS no regions 

 

We are unaware of any other benchmark wind direction 

interpolation results so publish here in the hope that future 

work can compare against our results. 

5 Discussion 

Our experiments have investigated methods to 

automatically select variogram models and the impact 

using different levels of expert knowledge, about the 

phenomenology and the spatial area of interest, can have 

on estimation error. This automated approach is in 

contrast to existing methods [7] that rely on manual 

variogram tuning by experts. We think our approach offers 

a realistic route to providing on-demand kriging services 

that can interpolate measurement datasets selected by 

users that are unknown until run-time. This level of 

automation is becoming more important as we see 

European environment agencies sharing increasing 

amounts of sensor data under the INSPIRE directive [15]. 

Such automation, and a move away from manual tuning 

and configuration, increases scalability and could allow 



truly dynamic pan-European interpolation for wind 

measurements and other phenomenology. 

The performance of our ordinary kriging with AVMS 

algorithm is slightly worse than that reported by ordinary 

kriging in [7] with expert tuned variogram. Partly this is 

due to the experts skill in manually tuning the variogram. 

However our implementation is also only isotropic, which 

accounts for some of the performance compared against 

the anisotropic ordinary kriging algorithm in [7]. We 

intend to implement anisotropic kriging in future releases. 

Where our knowledge-assisted approach offers the most 

improvement, compared to basic ordinary kriging, is in the 

enhanced spatial definition, and therefore confidence, in 

the kriging error maps. This is most clear in areas where 

no sensors are located (i.e. offshore in the sea). This result 

can be applied more widely to other spatial features than 

hills and coastlines, at a variety of different spatial scales, 

such as building footprints and river outlets. Though not 

the focus of this wind interpolation paper we, have 

successfully interpolated measured phenomenon including 

ground displacement, water salinity and turbidity. 

6 Conclusion 

We have benchmarked a novel knowledge-assisted kriging 

algorithm that allows regions of spatial interest to be 

specified and variograms calculated for each region. The 

variogram calculation itself is automated and phenomenon 

specific metadata allows us to configure kriging for more 

than just wind phenomenon. Spatial regions are created 

automatically offline by segmentation of either expert-

drawn Google Earth polygons or NASA altitude data. 

Our use-case is to create wind interpolation grids for input 

into a bathing water quality model of microbial 

contamination, for subsequent decision support for beach 

attendants for bathing risk assessment. 

We benchmark our knowledge-assisted kriging algorithm 

against 7 other algorithms using the same UK met-office 

wind measurement dataset reported in [7]. Wind speed 

estimation results are comparable, but not better than 

ordinary kriging, but the kriging error maps are much 

sharper and reflect the known spatial features better. We 

provide results for wind direction interpolation also. 

These results are very promising when considering it is an 

automated approach and allows on-demand datasets to be 

selected and real-time interpolation of previously 

unknown measurements. Automation is important to move 

towards a pan-European interpolation service capability 

making use of European environment agency data shared 

in compliance with the European INSPIRE directive [15]. 

 

This work was funded by the European Commission’s IST 

Programme under contract FP6-IST 0033564 SANY [6] 
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