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ABSTRACT 

We present a social media crisis mapping platform for 

natural disasters. We take locations from gazetteer, street 

map and volunteered geographic information (VGI) sources 

for areas at risk of disaster and match them to geo-parsed 

real-time tweet data streams. We use statistical analysis to 

generate real-time crisis maps. Geo-parsing results are 

benchmarked against existing published work and evaluated 

across multi-lingual datasets. We report two case studies 

comparing 5-day tweet crisis maps to official post-event 

impact assessment from the US National Geospatial 

Agency (NGA) compiled from verified satellite and aerial 

imagery sources. 
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INTRODUCTION 

In today's society the ubiquitous use of mobile 

communication devices has seen social media sites, such as 

Facebook, Twitter and YouTube publishing microblogs, 

images and videos in real-time from people experiencing 

natural disaster events often live and in-situ. In the 

humanitarian sector this has sparked great interest [1] in 

developing innovative approaches to utilize social media 

for events such as earthquakes, floods and tornados to both 

inform the public and assist civil protection authorities in 

focussing response efforts. 

Recent natural disaster events have seen humanitarian 

organizations and networks of volunteer's setup live web-

based manual crisis mapping sites [1] such as for the Haiti 

2010 earthquake, Russian 2010 wild-fires, New York's 

2012 hurricane Sandy and Oklahoma's 2013 tornado. These 

organizations check and filter crowd-sourced information 

from news reports, social media and civil protection agency 

alerts, and present it live on web-based crisis maps for the 

general public to see. Challenges [1] for these organizations 

include automating the huge task of real-time data fusion of 

large volumes of multi-source heterogeneous information 

and maintaining the trust & credibility in this data. 

In this article we present a real-time crisis mapping 

platform capable of geoparsing Tweet content. Our novel 

approach exploits readily available location information 

from gazetteers, street maps and volunteered geographic 

information sources. Our goal is to improve geoparsing 

precision of street-level tweet incident reports and 

empirically quantify how accurate resulting social media 

crisis maps can be during natural disaster events. To our 

knowledge this is the first time an analysis has been 

published which directly compares street-level Twitter-

based crisis maps to a verified ground truth based on post-

event expert assessment. Such results are needed to help 

disaster management agencies assess the value of social 

media crisis mapping. 

Currently real-time Geospatial Information Systems (GIS) 

[2] mostly map social media microblog reports using geotag 

metadata with long/lat coordinates. This approach turns 

social media into a crowd-sourcing virtual sensor network, 

allowing maps of twitter messages to be plotted. According 

to the US Geological Survey (USGS) [3] the main benefit 

of Twitter-based detection systems over sensor-based 

systems is their fast detection speed and low cost. Social 

media GIS systems can be combined with conventional GIS 

systems deploying hardware-based sensors, such as in-situ 

seismic sensors or remote sensing aerial photography & 

satellite imaging. Overall the aim is to build up a coherent 

situation assessment picture [3] [4] [5] and present it to 

emergency responders, civil protection authorities and the 

general public to help coordinate response efforts and 

improve overall awareness. 

Unfortunately only about 1% of all tweets actually contain 

geotag metadata, see figure 1, and of this 1% the geotags 

are a mixture of genuine mobile devices (using GPS) and 

Twitter's default of the user's home location. In addition the 

tweeted text can contain references to one or more locations 

geospatially distant to the location of the device sending the 

tweet; this does not matter when mapping course-grained 

earthquake regions but does matter for finer grained maps 

such as flood inundation or tornado damage. Figure 1 

shows the tweet breakdown during 48 hours of the 2012 

hurricane Sandy which we recorded using our Twitter 

crawler. We have observed from our crawled tweet datasets 

that during events people tweet about flooding/damage to 

specific buildings, roads and geographic features such as 

local parks, rivers and beaches. Tweet reports are a mixture 

of a few first-hand reports and many re-tweets and 

comments on third party incident reports. 

Geo-parsing systems [6] [7] [8] can parse text documents to 

extract likely geographic tokens or 'named entities' (e.g. 

places or regions such as 'New York'). When coupled with a 

geocoder, which can lookup location names on a map and 

return their geotag, this provides a way to associate geotags 



for locations mentioned in microblog reports. Such systems 

often use a technique called named entity recognition. First 

the text is tokenized to extract sentences and words. Each 

token (i.e. word) is classified using a language-specific 

parts of speech (POS) classifier, identifying a lexical 

category (e.g. 'ADJ' adjective, 'N' noun, 'NP' proper noun). 

Lexical patterns can then be used to identify groups of 

tokens that are likely to refer to named entities. Challenges 

[6] for named entity recognition include acquiring enough 

labelled training data, handling poorly structured text from 

sources like Twitter and multi-language scalability. 

REAL-TIME CRISIS MAPPING PLATFORM 

We are interested in mapping real-time tweet flood reports 

for 'at risk' coastal areas near known geological fault lines 

which have the potential to cause a Tsunami. Real-time 

monitoring is important as early wave impact assessments 

can be used to warn people on coastline further away 

allowing them to get to safety. Another key issue for 

decision makers in early warning control centres [9] is 

keeping crisis map false alarm rates to a minimum, since 

this undermines credibility in the data source. 

To evaluate how accurate geo-parsing of locations from 

Twitter data can be we compare location matches from our 

platform against expert manual labels for tweet datasets 

covering disaster zones located in the US, New Zealand, 

Italy and Turkey. To evaluate how social media crisis maps 

compare to expert impact assessments we directly compare 

both our flood tweet crisis map, for hurricane Sandy 2012, 

and our tornado tweet crisis map, for the Oklahoma tornado 

2013, to official US National Geospatial Agency (NGA) 

post-disaster impact assessment maps compiled from 

verified satellite and aerial imagery. 

Our system differs from existing crisis mapping approaches 

in that we geo-parse tweet text in real-time rather than only 

using the tweet's geotag. This means we can access all 

crawled tweets rather than the 1% with a geotag. We avoid 

the need for language and location specific training sets by 

pre-loading available gazetteer, street map and volunteered 

geographic information (VGI) data for areas 'at risk' of 

disaster. This allows us to work at a building and street 

level resolution as opposed to only working with higher 

level administrative regions. Finally we make use of 

statistical analysis techniques to identify a 'baseline noise 

signal' and use this to reduce false positives in our crisis 

maps. 

 

Figure 1. Twitter Streaming API tweet traffic recorded using 'flood' keywords over 48 hours as hurricane Sandy made landfall 

between 29 & 30th Oct 2012. Peak tweet traffic was 18,000 tweets per hour, with 5% of tweets using the New York timezone, 1% of 

tweets containing a geotag and 0.3% containing a geotag located in New York / New Jersey
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SYSTEM ARCHITECTURE 

Our social media crisis mapping platform, see figure 2, is 

split into a set of offline and real-time services. The offline 

services prepare a geospatial database for the local region 

of interest and calculate baseline statistics during a 

historical period when no disasters occurred. The real-time 

services crawl tweets live from Twitter, identifying 

mentions of known locations and displaying them as a live 

street and/or region level crisis map. 

 

Figure 2. System Architecture and Information Flow 

During the offline phase we use a set of geospatial data 

extraction tools to download geospatial data. We use 

OpenStreetMap to access street level information. We use 

GooglePlaces API to access volunteered geographic 

information (VGI) such as buildings and local features. We 

use the global gazetteers Geonames and GEOnet Names 

(GNS), as well as local gazetteers, to get region names. 

This geospatial information is stored in a MySQL database, 

along with any OpenGIS shape data for later visualization 

on a map. When downloading geospatial data we request 

the language native to the local area of interest. 

A batch process geocodes each location's address, returning 

a well formed address string and a specific coordinate on a 

map. We use the GoogleGeocoding API for our geocoding. 

For place data (e.g. buildings, rivers) geocoding allows us 

to fill in blank address fields, or correct them where they 

contain an error or inconsistency. We have found building 

data uploaded by the general public varies greatly in its use 

of the name, street and address fields. For street data 

geocoding parses the address field into its sub-components, 

providing us with extra short name variants in addition to 

the official road name. This is important as people often use 

short names or abbreviations in Tweets. 

The last offline step is to create baseline match statistics for 

each location in the database over a historical period when 

no disaster event occurred. Baseline match statistics are a 

useful tool to reduce false positives associated with location 

names that pop up often in Twitter conversations (e.g. 

'Hollywood'). This baseline is used as a threshold above 

which location matches can be considered relevant. An 

ingest tool is used to import the historical dataset to a 

MySQL database. 

The real-time system is driven by a twitter crawler tasked 

with a set of keywords. We use a set of European multi-

lingual keywords for the event type we are looking to 

record (e.g. for flooding we use 'flood', 'tsunami', 

'inondation', 'sel', 'alluvione' etc.). The TwitterStreaming 

API is used to receive tweets and we continually store them 

into our MySQL database, splitting SQL tables into 1 

month blocks to ensure a fast table query response. We use 

regex expressions to check for retweets, looking for 

prefixes like 'RT', as the Twitter retweet metadata is 

unreliable.  

We filter tweets outside of the local region's timezone to 

help restrict our analysis to people located in the affected 

area, as opposed to people located in another state / country 

commenting on news reports. We also filter retweets, which 

usually do not report new information and thus tend to 

artificially inflate a locations frequency count. 

Our real-time location extraction service runs in parallel to 

the crawler, processing tweets as they arrive in the 

database. This service pre-loads locations for the spatial 

area of interest, tokenizes each of them and creates an in-

memory hashtable of tokens ready for efficient real-time 

matching. Baseline statistics are also pre-loaded into 

memory. As new tweets are read from the database they are 

cleaned, tokenized and named entity matching performed, 

matching location tokens to tweet text tokens. Location 

matches are logged to a rolling in-memory buffer of 

configurable size, usually between 6 and 24 hours long, 

which forms the basis of a rolling sample window. The 

sample period is usually between 1 and 5 minutes, ensuring 

we have up-to-date statistics in the database for map 

display. All match statistics are saved to the database as 

soon as they are ready along with the OpenGIS geometry to 

plot on the crisis map. 

We run a parallel geospatial clustering service to 

continuously cluster spatial areas of high activity and 

produce an easily visible polygon map overlay. This service 

applies a standard hierarchical clustering algorithm to 

compute clusters from location geometry. 

The mapping visualization is performed using Geoserver, 

an open source map server. Map layers are driven from the 

geometry columns in MySQL database tables, plotting 

buildings (points), streets (lines), regions (points) and 

clusters of activity (polygons). We render our maps using 

Google Earth, although Geoserver supports a variety of 
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mapping formats such as Web Mapping Service (WMS) 

and OpenLayers. Examples of our rendered crisis maps can 

be seen in figures 4 and 5. 

GEO-PARSING TWEETS TO GET LOCATIONS 

Both our real-time analysis and offline baseline location 

extraction services use the same geo-parsing algorithm. We 

support English, Italian, Portuguese and Turkish, languages 

native to the coastal regions in the North-Eastern Atlantic 

and Mediterranean region of our Tsunami early warning use 

case. Since we know a-priori the spatial region of interest 

we pre-load all possible location entities into an efficient in-

memory lookup table. This avoids the need to use named 

entity recognition approaches, such as a parts of speech 

classifier coupled with a context grammar, to extract free 

text location phrases and then geocode them at run-time. 

Most online geocoding services, including the 

GoogleGeocoder API, have strict usage rate limitations 

making Geocoding on the fly not practical for the 

throughput of tweets we receive. 

During system start-up we take each location in our spatial 

region of interest and tokenize it into 1-gram tokens using 

the Natural Language ToolKit's (NLTK's) [10] Treebank 

word tokenizer, then compute a final n-gram token from a 

sequential combination of the 1-gram tokens. A n-gram 

token is a phrase made up of 1 to N words, in our case up to 

a maximum of 5 words. For example, the address 'London 

Street' generates a two 2-gram token 'london street'. For 

buildings and street addresses we use our own multi-lingual 

corpus of building and street types, along with common 

variants and abbreviations. This allows us to expand token 

sets to include common usage variants of certain phrases. 

For example 'London Street' becomes 'london street' + 

'london st'. 

We remove any tokens that match the NLTK toolkit's 

multi-lingual stopword list, holding words with low 

information value such as 'the'. We also remove tokens that 

match NLTK toolkit's name corpus of common male and 

female names, avoiding false matches like 'Chelsea' which 

is both a location and a girl's name. We use weak token 

stemming to remove plurals as locations are proper names 

and stronger stemming would cause false positives. We 

filter any place and address tokens that are identical to 

region names, since a region match is most likely in this 

case. We reject any 1-gram token phrases for place and 

street names as these tend to be ill-defined (e.g. 'station') 

and prone to over matching. Lastly we compute a 1-gram 

'hashtag' token by removing all spaces since hashtags are 

often used in Tweets (e.g. '#newyork'). 

During live real-time tweet processing we remove URL's 

and email addresses from tweets that might generate false 

tokens. We then use the NLTK toolkit's Punkt sentence 

tokenizer before executing the Treebank word tokenization 

as before. We compute all sequential combinations of n-

gram tokens from each tweet's text and use this as the basis 

for location token matching. Our location match algorithm 

first checks for places tokens, then streets and finally 

regions. At each stage we remove previously matched 

tokens from the tweet token pool to avoid text with street 

names like 'london street' being used to also match a region 

like 'london'. 

In performance testing our location extraction algorithm 

performs three times quicker than the peak levels of tweet 

throughput found in our recorded datasets. The processing 

speed, end to end including all of the database I/O, was 

about 270,000 tweets/hour for a 20,000 location dataset on 

a 8Gbyte RAM 2.5GHz CPU laptop. Our performance 

scales much better than linearly as more locations are added 

to the database. 

We first evaluated multi-cultural geo-parsing accuracy on 

some tweet datasets recorded by our crawler over the last 2 

years. These tweet datasets were manually annotated with 

places, streets and regions. These datasets vary in native 

language and size of area affected, with localized blackouts 

in Milan and widespread floods in New York. The Istanbul 

earthquake caused no building or street damage, hence we 

only matched region labels. We counted true/false positives 

and negatives, where a true positive occurred if the matched 

location was the same as the expert label, and computed 

precision, recall and F1 measures. 

It can be seen from the results in figure 3 (bottom) that all 

locations reported a high match precision, but the Turkish 

dataset had an unusually low recall for region data. This 

was largely due to the way location names are written in 

Turkish grammar. For example 'izmir' is a Turkish location, 

but may appear as 'izmirda', 'izmirdan' or 'izmira' depending 

on if someone is going to, from or into a location. This 

result highlights potential limitations of our language-

independent matching process. 

We benchmarked the accuracy of our geo-parsing on the 

well-studied Christchurch 2011 New Zealand earthquake. 

Our 'gold standard' for comparison is a recently published 

[7] tweet geo-parsing system based on state-of-the-art 

language specific named entity recognition, lexio-semantic 

heuristics and a spelling checker. We tested using the same 

dataset of 2,000 manually labelled tweets, provided by 

Carnegie Melon University, with annotations showing 

places, streets and regions. We used the same experimental 

conditions as [7], including the GNS Gazetteer and a local 

gazetteer, as well as additional map data from 

OpenStreetMap. Figure 3 (top) shows our benchmarked 

results broken down into places, streets and regions. Whilst 

our approaches F1 measure is similar to the gold standard 

the precision at street level is much higher. This is an 

attractive result as a low false positive rate is an important 

requirement [9] for control room staff to avoid wasted time 

during a crisis situation. 



 

Figure 3. Geo-parsing evaluation results. Benchmark results (top) for Christchurch Feb 2011 earthquake comparing published 

Gelernter [7] results to ours [Middleton] using the same 2,000 tweet labelled dataset. Multi-cultural datasets (bottom) show our 

results for a variety of European locations. Each dataset has a set of labelled tweets and a set of locations, of which a small subset of 

locations appeared in tweets e.g. Istanbul database has 83,527 regions across Turkey, of which 51 were mentioned in tweets

STATISTICAL ANALYSIS OF LOCATION MATCHES 

We calculate a statistical baseline for each location to allow 

us to compute later a threshold level for tweet mentions 

before which each location is displayed on the crisis map. 

We use a configurable sample period (e.g. 5 minutes) and 

sample window (e.g. 6 hours) over which to calculate our 

statistics. For each location we count the number of tweets 

per sample period where the location is mentioned, using a 

historical dataset for the baseline in which we know no 

disasters happened. We then calculate a simple moving 

average and triangular weighted moving average across the 

dataset as a whole for the moving sample window. The case 

studies reported later both use a 1 month baseline tweet 

dataset with just under 1 million tweets each.  

The same per-location match statistics are calculated for a 

moving sample window of real-time tweet data. The 

deviation of real-time metric values from baseline metric 

values is calculated every sample period, and compared to a 

configurable threshold before displaying each location on 

the crisis map. 

Our central hypothesis is that locations mentioned many 

times in a sample window are more likely to be coherent 

and credible disaster related location reports than those with 

only 1 or 2 mentions. In the case studies reported next we 

use the simple moving average metric, and show how 

raising the threshold level for acceptance increases 

precision. Ultimately this threshold value will be tailored to 

suite each crisis management control room, reflecting the 

error-tolerance of the final end user decision makers. 

CRISIS MAPPING CASE STUDIES 

We conducted two case studies to evaluate the quality of 

our tweet maps. The first event studied was hurricane 

Sandy (Oct 2012), which caused major flooding in New 

York and New Jersey. The second event was the Oklahoma 

tornado (May 2013), which devastated the town of Moore 

south of Oklahoma. 

For the New York flooding event we ran our crisis mapping 

with a sample window of 6 hours and a sampling rate of 5 

minutes. Three maps were computed using a 

high/medium/low threshold setting for the allowed 

deviation of simple moving average from baseline 

(dev_sma). The tweet dataset covered 5 days, contained 

597,022 tweets (15,175 after timezone & retweet filtering) 

of which 4,302 had a location mention. Our New York 

location database has 8,298 places, 12,800 streets and 

48,661 regions available for matching. We have all regions 

(cities, suburbs, neighbourhoods etc.) for New Jersey from 
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our gazetteers and coastal street data from OpenStreetMap 

and GooglePlaces covering all of Manhattan. 

Each map was compared to a ground truth storm surge map 

from the official post-event impact assessment produced by 

the US National Geospatial Agency (NGA). Figure 4 shows 

the post-event storm surge map alongside our 5 day tweet 

map. To empirically evaluate our map we segmented it into 

a 8x8 grid and compared each grid cell to the ground truth 

map. True positives were reported for any cell that has both 

a tweeted location reported and some storm surge activity 

on the NGA impact assessment map. We counted the 

number of true/false positives and negatives and calculated 

precision, recall and F1 measures. As expected, when we 

increase the mapping threshold (dev_sma) the map 

precision increases at the expense of recall. 

 

 

Figure 4. Crisis map comparison for New York's 2012 flooding. The left image is the ground truth post-event NGA impact 

assessment showing storm surge inundation.  The right image is a 5 day tweet flood map (dev_sma > 0) for tweets between 29-10-

2012 to 02-11-2012. Red annotations show major incidents. Source: FEMA Modelling Task Force (MOTF) storm Sandy impact 

analysis field-verified interim high resolution report, Nov 2012. Mapping courtesy of ArcGIS ESRI portal and Google Maps.
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Figure 5. Crisis map comparison for Oklahoma's 2013 tornado. The left image is the ground truth official post-event NGA impact 

assessment showing building damage.  The right image is a 5 day tweet damage map (dev_sma > 0) for tweets between 20-05-2013 

to 24-05-2013. Red annotations show major incidents. Source: National Geospatial Agency (NGA) damage assessment using aerial 

(FEMA, BAE) & satellite images (World View 1), May 2013. Mapping courtesy of ArcGIS ESRI portal and Google Maps.

For the Oklahoma tornado event we also ran our crisis 

mapping using a 6 hour sample window and sampling 

period of 5 minutes, generating three maps with the same 

threshold values as the New York case study. The tweet 

dataset covered 5 days, contained 877,527 tweets (92,300 

after timezone & retweet filtering) of which 42,434 had a 

location mention. Our Oklahoma location database has 625 

places, 3,930 streets and 18,599 regions available for 

matching. 

Our ground truth map was a US National Geospatial 

Agency post-event impact assessment showing structural 

damage across the town of Moore. Figure 5 shows this 

post-event damage assessment alongside our 5 day tweet 

map. We segmented each map into an 8x8 grid as before 

and compared each cell, counting the true/false positives 

and negatives. The results again show that we can raise the 

overall map precision at the expense of recall by raising the 

mapping threshold level. 

CONCLUSION AND FUTURE WORK 

Both our case studies demonstrate that high precision (i.e. 

90% or higher) geo-parsing from real-time Twitter data is 

possible by exploiting large databases of pre-loaded 

location information for 'at risk' areas. Such data is readily 

available online from mapping services, volunteered 

geographic information sources and gazetteers. These case 

studies also show that crisis maps generated from social 

media data can compare well to gold-standard post-event 

impact assessments from national civil protection 

authorities. This matches well with the requirements of use 

cases such as Tsunami early warning centres, where real-

time crisis mapping with minimal rates of false positives 

are needed. 

When applying our approach in the future it is important to 

consider the spatial size and significance of the natural 

disaster, as the quality of the crisis map is directly related to 

the number of people tweeting information about the 

disaster zone. Large scale news worthy events will usually 

receive more tweets than events in small localized areas, or 

areas in remote locations with limited mobile 

communication. However, as the uptake of social media 

around the world increases with time we feel the role this 

type of social intelligence has to play in assisting civil 

protection authorities will also increase. 

For next steps we are experimenting with approaches for 

language-specific context filtering, to be applied as a type 

of secondary filter on the sub-set of tweets that match the 
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initial geo-parsing stage. This context filter would look at 

the natural language context in which locations are 

mentioned and try to classify patterns associated with 

specific classes of response, such as flooded transport 

systems, positive/negative reports, cries for help and reports 

with high levels of urgency. We will also look at using 

retweet's for adding a credibility value to original reports. 

Currently each instance of our location extraction process 

looks for location matches in a single region of interest. We 

will in the future scale our approach across a computing 

cluster to handle many spatial regions of interest 

simultaneously. This offers the possibility of country-wide 

area map coverage and/or collections of processes able to 

be adaptively tasked to monitor new spatial areas on- 

demand. 

We plan in the next few months to deploy a prototype as 

part of the award winning TRIDEC project, allowing 

potential end users to assess the social media crisis 

management platform first-hand and start the process of 

user-evaluation and progress towards adopting this early 

stage technology. 
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