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Abstract: The GEMSS project has developed a service-oriented Grid that supports the provision of medical 
simulation services by service providers to clients such as hospitals. We outline the GEMSS architecture, legal 
framework and the security features that characterise the GEMSS infrastructure. High levels of quality of 
service are required and we describe a reservation-based approach to quality of service, employing a quality of 
service management system that iteratively finds suitable reservations and uses application specific 
performance models. The GEMSS Grid is a commercial environment so we support flexible pricing models 
and a FIPA reverse English auction protocol. Signed Web Service Level Agreement contracts are exchanged 
to commit parties to a quality of service agreement before job execution occurs. 
We run four experiments across European countries using high performance computing resources running 
advanced resource reservation schedulers. These experiments provide evidence for our Grid’s rational 
behaviour, both at the level of service provider quality of service management and at the higher level of the 
client choosing between competing service providers. The results lend support to our economic model and the 
technology we use for our medical application domain. 
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1. INTRODUCTION  

The GEMSS project has created a medical Grid for simulation services to be run over the 

internet. There are many issues involved in creating such a Grid, ranging from the legal 

and security aspects right through to the quality of service issues and how to negotiate 

between sets of service providers. This paper presents a brief overview of the GEMSS 

Grid, implemented and tested at sites in several EU countries, and then focuses on the 

issues involved in quality of service and the negotiations between competing service 

providers. 

1.1 Paper Objectives 

This paper seeks to present the GEMSS Grid for commercial medical simulation services, 

evaluate our cluster level quality of service negotiation protocol and evaluate our client / 

service provider(s) negotiation protocol. 

1.2 The difference between academic and commercial Grids 

Grid technology emerged from academic research, and for some years it has been used to 

support academic research collaborations, a scenario for which it was originally designed. 

Systems like Globus [17] allow collaborators to share computing resources, creating a 



pool they can all use, which is managed for the common good by a “Virtual 

Organisation” (VO). In such a Grid, the VO often has a privileged position, trusted by all 

participants to collect information about resources and to allocate them fairly. 

In Grids designed for business, community benefits do not equate to benefits for all its 

participants, and the balance of risks and rewards for both providers and consumers can 

be quite different. Three main approaches have been developed to inject commercial 

business models into the Grid: so-called “Grid economies”, Grid-based application 

service providers (ASP), and business-to-business Grids. 

The “Grid economies” maintain the privileged VO approach, but allows resource 

providers to define the price for using their systems. The Grid-based ASP model can be 

summarised as a resource-providers’ cooperative. Unlike the traditional VO model, 

consumers do not provide resources to the community, but instead buy services from the 

collective using a conventional application service provision (ASP) model. Business-to-

business Grids follow conventional business practice. The main difference between these 

and the other models is that the resource providers do not cooperate with each other, nor 

disclose information to anybody about the availability of their resources. Instead, they 

wait until customers have a need to perform computations, and then propose a service 

level agreement. 

The GEMSS Grid follows the business-to-business approach, applied to the medical 

simulation services domain; we enable one to one commercial arrangements between 

clients and service providers operating under conventional commercial arrangements. 

The reason behind our requirement for a B2B style Grid is that our end-users (i.e. 

hospitals) require a commercial arrangement where services are paid for, levels of service 

expected to be available and penalties demanded if service levels fall below those 

contractually agreed. Our hospital users also need clear legal agreements with the service 

providers since personal patient data will be processed and it is the hospital that is 

required to ensure this data is handled correctly. 

1.3 Medical Grid characteristics 

The GEMSS project supports six complex medical simulation applications [24], one of 

which we describe later in more detail. Medical simulation work is characterised by a 

relatively small numbers of time consuming jobs requiring powerful computational 

resources (many CPU hours, Gigabyte datasets). We use the Single Photon Emission 

Computed Tomography (SPECT) application as our exemplar application in this paper. 

Section 4.1 contains details on the SPECT application. 



1.4 Quality of service 

Traditional approaches to provide quality of service (QoS) are usually focused on 

network-level and/or service-level quality of service support, ensuring metrics such as 

response time and bandwidth are within guaranteed levels. Since high levels of quality of 

service are required, our Grid infrastructure has been designed to support quality of 

service guarantees at the application level. Our computing resources have to be reserved 

in advance to ensure a high availability of the required computing resources; we thus use 

start time, end time and price as our QoS metrics. In GEMSS we support two reservation 

capable schedulers - Maui [28] and COSY [9]. Cluster reservations are described using 

service level agreements, expressed as XML documents following the Web Service Level 

Agreement (WSLA) [21] specification. 

In this paper we refer to this low level QoS negotiation as “microscopic” negotiation. 

1.5 Negotiation 

A client wishing to run a medical simulation must choose which service provider will run 

the job. This choice will be affected by the quality of service offered and the price. Our 

medical end users want to be able to negotiate the best deal before they choose from a set 

of well-known and trusted service providers. In GEMSS we use agent technology to 

enable the client to negotiate the best QoS agreement from a set of service providers. 

In this paper we refer to this high level client to service provider negotiation as 

“macroscopic”. 

1.6 GEMSS Grid architecture 

The GEMSS infrastructure [3] is based on a service-oriented architecture comprising 

multiple Grid clients and Grid service providers, one or more service registries and a 

certificate authority (see Figure 1). We only use a single certificate authority in GEMSS 

since we need maximum control over our user authentication process regarding our 

sensitive medical data; however if trusted more than one certificate authority could be 

used. 

 
Figure 1 : GEMSS high-level architecture. 

The GEMSS infrastructure relies on standard Web Services technologies. GEMSS 

services are defined via Web Service Definition Language (WSDL) descriptions and 



securely accessed using Simple Object Access Protocol (SOAP) messages. For large file 

transfers SOAP attachments are utilized. 

The GEMSS environment supports a three step approach to job execution on the Grid. 

First there is an initial business step, where accounts are opened and payment details 

fixed. The pricing model may also be chosen at this stage. Next there is a quality of 

service negotiation step, where a job's quality of service and price is negotiated and 

agreed. Finally, once a contract is in place, the job itself can be submitted and executed.  

Figure 2 shows the basic architectural components of the GEMSS infrastructure. Whilst 

the focus in this paper is the QoS negotiation modules, both client and server side, more 

details on the architecture as a whole can be found in [3]. We do not require special ports 

(only the usual port 80) be opened in client side firewalls since Grid communication is 

always initiated by the client; this means end user security department personnel are 

much more likely to accept our Grid software since its impact on existing network 

security is low. 

 
Figure 2 : GEMSS infrastructure. 

To provide acceptable levels of quality of service guarantees, well in advance of the job 

execution time, we adopt a reservation based approach to QoS coupled with application 

specific performance models; we deploy schedulers that support a reservation mechanism 

at our service provider sites. To represent quality of service agreements we use the 

WSLA standard, and implement a reverse English auction protocol for the client / service 

provider(s) negotiation. Details on all these aspects can be found later in this paper. 

We evaluate the GEMSS infrastructure by conducting a series of mirco-negotiation and 

macro-negotiation tests. The micro-negotiation tests are performed on a 16 CPU cluster 

running the MAUI scheduler, using a SPECT performance model and SPECT 

application. The macro-negotiation tests are run using a client application in the UK and 



three service providers in Austria, each supporting the SPECT client but using different 

pricing models. 

At a high level we use a three step model to running GEMSS jobs. First a client chooses a 

business model and agrees contracts with some service providers. Next one or more jobs 

are negotiated under the terms of the business model. Finally each job is securely 

executed and results returned. Figure 3 shoes this three step model. 

 
Figure 3. GEMSS three step model 

1.7 Paper structure 

In section 2 we review related work, discussing work on Grid, negotiation and quality of 

service. Section 3 presents the business aspects underlying our GRID, including the 

commercial framework we choose to operator in. In section 4 the quality of service 

micro-negotiation is introduced, and followed through to section 5 where the client / 

service provider(s) macroscopic price negotiation is described. Practical evaluation using 

one of the GEMSS medical applications is reported in section 6 and the results discussed 

in section 7. We end with conclusions. 

2. RELATED WORK 

2.1 Business Grids 

Examples of academic research collaborations can be found in projects such as the 

European DataGrid [11] and Enabling Grids for E-sciencE (EGEE) [41]. These projects 

used Globus and gLite [17] as well as other systems such as Condor to share computing 

resources as opposed to GEMSS which follows a Web-Service oriented approach. [8] 

proposed a Grid Architecture for Computational Economy, GRACE (not to be confused 

with the later EC project of the same name) which provided a generic way to resource 

parametric sweeping applications controlled by the Nimrod-G resource broker. 

An example of a Grid-based ASP model is reflected in the GRASP project [18]. Grid-

based ASP’s are resourced not by a single provider, but by a whole collective of 

providers, each of which is paid for pooling their resources and allowing them to be 

managed by a VO. 



The GRIA project [21, 36] is an example of a business-to-business type Grid. This 

approach does away with a trusted virtual organisation altogether [37], and instead 

employs business-to-business service provision models that link providers and consumers 

directly. The GEMSS Grid re-uses work from the GRIA project, specifically technology 

for access control and resource accounting. It is the combined support for SLA 

agreements, commercial business models for high value jobs and medical level security 

that differentiates GEMSS from other Grid architectures.  

2.2 Medical Grids 

In the bio-medical domain the EU BioGrid Project [4] aims to develop a knowledge grid 

infrastructure for the biotechnology industry. The main objective of the OpenMolGRID 

Project [34] is to develop a Grid-based environment for solving molecular 

design/engineering tasks relevant to chemistry, pharmacy and bioinformatics. The EU 

MammoGrid Project [27] builds a Grid-based federated database for breast cancer 

screening. The UK e-Science myGrid Project [31] develops a Grid environment for data 

intensive in silico experiments in biology. 

While most of these projects focus on data management aspects, the GEMSS project 

focuses on the computational aspect of the Grid, with the aim to provide hardware 

resources and HPC service across wide area networks in order to overcome time or space 

limitations of single HPC systems. Other projects in the bio-medical field which also 

focus more on the computational aspect of the Grid include the Swiss BioOpera Project 

[6], the Japanese BioGrid Project [22], and the Singapore BioMed Grid [5]. The US 

Biomedical Informatics Research Network (BIRN) initiative fosters distributed 

collaborations in biomedical science centred around brain imaging of human neurological 

disorders and associated animal models. These projects do not address the commercial or 

security and legal requirements GEMSS considers, since they work with bioinformatics 

data not sensitive medical patient data.  

2.3 Agents and Negotiation 

Agent-based systems [23, 39] focus on problem solving entities, embedded into their 

environment and designed to fulfil a specific role. Agents are autonomous and goal 

driven, able to work in a reactive or proactive fashion. 

Recently there has been a trend [25] to build serious distributed systems based on agent 

development environments. These architectures (e.g. JADE [2], ZEUS [40], FIPA-OS 

[14]) provide libraries for agent interaction protocols and follow the various inter-agent 

communication standards (e.g. FIPA [13], KQML [12]). 



The use of Grid with agent technology [15] is relatively new and provides a challenge for 

the agent development environments. Agent environments tend to provide a closed 

world, where technologies such as Grid and web services are unavailable. Grids tend to 

focus on service provision alone. A tighter coupling of agent and Grid technology would 

allow Grid entities to behave and interact more intelligently, and agent systems to interact 

with and control meaningful services. 

The GEMSS Grid employs the FIPA-OS libraries to implement a reserve English auction 

between the client and service providers. Adding such agent negotiation technology to a 

secure Grid system has allowed us to utilize the advantages of both technologies. 

2.4 Quality of service 

Quality of service has been investigated in various contexts [7, 33] while traditional QoS 

research usually focuses on network level QoS [38] with various techniques to guarantee 

service as an improvement to best effort protocols. The work in [7] focuses on QoS 

support for distributed query processing, providing significant improvements compared 

to best effort based systems. Our work uses QoS guarantees at the application level to 

guarantee service runtimes in advance via advance resource reservations. A good 

discussion regarding the demand for advance reservation in Grid applications can be 

found in [35] and [29]. Our work focuses on Grid provision of high performance 

computing (HPC) as opposed to traditional web services. 

In [1] a Grid QoS management framework is proposed that mainly focuses on service 

discovery based on QoS attributes. In [30] a model for QoS-aware component 

architecture for Grid computing is proposed. The work in [16] proposes a SOAP message 

tracking model for supporting QoS end-to-end management in the context of Web 

Service Business Process Execution Language (WSBPEL) and Service Level 

Agreements (SLA); this paper does not address long running Grid services and SLA 

negotiation and the trade-off between response time and cost as in our work. 

3. ECONOMICS AND BUSINESS MODELS 

Studies into the economics of computer services are not new [10]. The computer services 

market, especially the medical services market, is characterized by well differentiated 

application vendors, each providing services based around proprietary software; vender 

lock-in and monopoly situations are not uncommon. In the customers favour, a service 

market does allow for vertical integration of services, where sub-contractors can work in 

parallel on different aspects of a task. Demand for computer services is very cyclic in 

nature, with more demand during the day than there is during the night. The cyclic nature 



of demand is in direct contrast with the need for vendors to maximize the utilization of 

their hardware, which represents a fixed cost to the service provider. 

The billing mechanisms for computer services require equitable and auditable charges, 

but do not necessarily require reproducibility, since this would prevent vendors factoring 

variables such as demand into their charges. Key to any billing mechanism is the pricing 

policy. The optimal pricing strategy is considered by [10, 20] to be a flexible one that is 

free to factor in variables such as system load, application type and specific user groups 

willingness to pay. Price has a dual role, one of cost recovery (hardware, licensing costs 

and maintenance costs) and of resource allocation (maximising utilization). Interestingly 

[10] states that “priority systems are an alternative to a pricing policy and are normally 

cheaper to implement, however they are simply a surrogate set of prices that may in some 

instances work as well as a true price mechanism, but will almost never be superior”. A 

number of classic pricing policies are reviewed in [32], including some modern Grid 

based examples. 

3.1 Pricing models 

In GEMSS we support a flexible pricing policy that can be customized for each service a 

service provider supports. The choice of pricing algorithm is left to the service provider, 

with each pricing model implemented as a simple Java library that can be dynamically 

plugged in and selected. There are two example pricing models available in the GEMSS 

initial release, a fixed price telephone pricing model where users are charged at a 

prearranged CPU hour rate, and a dynamic pricing model where the CPU hour rate is 

dependant on the current load levels the service provider is experiencing. 

We have deliberately kept the complexity of our two pricing models low to reduce the 

costs involved in both developing the code to compute the price. In a commercial 

situation we would expect to see initially simple pricing models evolve to more complex 

and successful models only when the market expands enough to warrant the costs 

involved (and assuming added complexity yields real profits). 

The emphasis in GEMSS has been to explore the issues involved in creating a flexible 

approach to pricing models, rather than perform a market analysis of the high 

performance computing / Grid space. Issues such as determining the realistic market rate 

for each medical applications Grid-based CPU hours will be done after the end of the 

project in the exploitation phase. 

3.2 Accounting model used in GEMSS 

The accounting architecture is based on the GRIA [19] accounting model. There is a 

primary accounts service, which is controlled by the business module on the server side, 



and a web interface on the client side. The web interface is intended for both end user 

budget holders and service provider accounting personnel, allowing access to the current 

account details and an up-to-date billing statement. 

The negotiation handler invokes the business module when a signed WSLA contract is 

exchanged, and the job handler invokes the business module again when a job has 

finished executing and its final status (failed or finished) is known. This workflow is 

shown in figure 4. 

 
Figure 4 : Accounting workflow. 

4. MICRO QUALITY OF SERVICE NEGOTIATION 

The micro QoS infrastructure is centred on the QoS manager which provides a high level 

interface to clients and utilizes the compute resource manager, the application 

performance model and the chosen pricing model. Figure 5 presents the basic parts of the 

GEMSS micro QoS infrastructure, which provides the QoS interface to be utilized by the 

macroscopic QoS negotiation module. 

 
Figure 5 : GEMSS Micro QoS Architecture. 

The performance model is used to compute the estimated run time and other performance 

relevant data for a service request. It takes as input a request descriptor and a machine 

descriptor and returns a performance descriptor. The request descriptor, supplied by the 



client, contains application specific meta-data about a specific service request (e.g. 

required accuracy). The machine descriptor, supplied by the service provider, specifies 

the resources that could be offered for an application service (e.g. number of CPUs). 

The performance descriptor returned by the performance model usually contains the 

estimated execution time and other parameters like number of processors used to execute 

a job, required memory, and required disk space. As a consequence, the performance 

model may be computed repeatedly until the time constraints are met, varying the number 

of CPU’s etc. 

The compute resource manager provides an interface to the scheduler for obtaining 

information about the actual availability of computing resources (e.g. number of free 

processors on a machine for a certain time period). The compute resource manager is 

utilized by the QoS manager in order to check and create temporary reservations during 

QoS negotiation. Currently a GEMSS resource manager is available for two scheduling 

systems which provide support for advance reservation, the Maui scheduler [28] and 

COSY [9]. 

4.1 Single Photon Emission Computed Tomography (SPECT) 

Visualization of the distribution of radio-pharmaceuticals by Single Photon Emission 

Computed Tomography (SPECT) provides valuable complementary information to the 

representation of anatomy from high-resolution imaging modalities such as x-ray CT and 

magnetic resonance imaging. The SPECT application supports fully 3D iterative 

reconstruction algorithms, providing enhanced image reconstruction for the whole image 

volume by considering principal 3D effects of data acquisition. A state of the art 

algorithm – the OS-EM (Ordered Subsets – Maximum Likelihood) algorithm which is an 

advanced version of the well-known ML-EM (Maximum Likelihood – Expectation 

Maximization) algorithm is used. This algorithm is based on a stochastic model of 

Poisson distributed generation and detection of photons. Both, improved resolution and 

robust convergence criteria are characteristics of this algorithm. 

The benefits of fully 3D iterative image reconstruction come with the disadvantage of 

demanding more computing power than traditional 2D image reconstruction algorithms. 

Due to the high computational requirements of the reconstruction process, the 

reconstruction kernel has been parallelized for clusters of shared-memory parallel 

processors, which are the most suited parallel computer architectures for this application 

(with a mostly linear speedup as more processors are added). Providing this application 

as a Grid service enables the use of advanced 3D image reconstruction software for 



improved healthcare within a clinical environment (figure 6); the ImageJ plugin is used 

for the user interface. 

 
Figure 6 : SPECT application interface 

4.2 Performance modelling 

The GEMSS infrastructure does not prescribe the actual nature of performance models, 

since each application is different. Since for many applications it will not be possible to 

build a simple analytical performance model, the GEMSS micro QoS infrastructure 

specifies only an abstract interface for performance models. For applications where the 

provision of an analytical performance model is not feasible, a database could be used to 

relate typical problem parameters to resource needs like main memory, disk space and 

execution time, which will initially be populated using data from representative test 

cases, and which will expand dynamically by including historical data. 

For the performance modelling of our SPECT application, we have decided to use an 

empirical approach to estimate the performance of the reconstruction kernel. First we 

identify parallel and sequential parts of the reconstruction code and determine the 

execution time of these parts depending on the input parameters. Next the time for each 

sequential part is measured by including time marks in the code and logging the output. 



By analysing the job output the CPU time needed to run a job, with a specific set of input 

parameters, can be assessed. 

The GEMSS project supported six application models, and we found the analytical 

models outperformed the database models significantly. The database models required 

time to gather statistics and large safety margins to ensure reservation windows were 

large enough (up to 50%) to cope with inaccurate estimations. 

4.3 Quality of service manager 

The QoS manager relies on heuristics that consider the outcome of the performance 

model, the availability of resources, and the pricing model to decide whether the client’s 

QoS constraints can be fulfilled. The QoS manager returns a corresponding QoS offer to 

the client and performs an advance reservation of the required computing resources via 

the compute resource manager.  

The current strategy of the QoS manager is shown in figure 7. The QoS manager executes 

the performance model and compares the estimated execution time in the resulting 

performance descriptor with the time constraints of the QoS request. If the client’s time 

constraints can be met, the QoS manager contacts the resource manager to check whether 

the required resources can be made available. If this is the case, the compute resource 

manager returns a corresponding resource descriptor, and the QoS manager executes the 

pricing model. The QoS manager then compares the resulting price descriptor to the 

client’s price constraints. If they can be met, the QoS manager instructs the resource 

manager to make a temporary reservation of the required compute resources. Finally, the 

QoS manager generates a corresponding QoS offer, which is returned to the client. If 

either the performance constraints or the price constraints can not be met, the QoS 

manager may decide to execute the performance model with a different number of 

processors (as specified in the machine descriptor). If the client’s QoS constraints cannot 

be met at all, the QoS manager returns the closest offer to the client. In any case the client 

has to confirm a QoS offer in order that a QoS contract is established. 

When a QoS offer is made a temporary reservation is created on the cluster. If the client 

later fails to confirm this offer (or fails to reply in time) then the reserved CPU time is 

released back to the scheduler. If the client confirms a QoS offer the client is 

contractually agreeing to pay for this CPU time, even if the time is later not used (for 

example the job fails). Other potential business models might provide a refund for a 

failed job since the service provider can release its reserved resources back to the cluster 

to run short notice jobs. We have only considered the up-front contractual situation, 

which was most appropriate for our medial end users requirements. 



 
Figure 7 : Micro QoS negotiation. 

4.4 Service level agreements 

A QoS descriptor is an XML-based document representing a potential agreement on a 

single service usage between a client and a service provider following the WSLA 

specification. Being machine readable, using WSLA documents allows us to process the 

QoS negotiation without the need to human intervention until the final confirmation step. 

The GEMSS QoS infrastructure utilizes a subset of the WSLA specification. An outline 

structure of our WSLA document is listed in figure 8. 

In the context of GEMSS, SLA parameters are QoS parameters and include the begin 

time of the job execution, the end time of the job execution, and the price of the job 

execution. The service definition section specifies the overall contract duration and a 

metric for each parameter. The obligations section contains a list of objectives. Each 

objective is linked to an obliged party and defines the acceptable values of a specific SLA 

parameter. 



 
Figure 8 : GEMSS subset of WSLA structure. 

5. MACRO QUALITY OF SERVICE NEGOTIATION 

In GEMSS we have adopted a practical approach with our Grid middleware, basing our 

macroscopic negotiation on the Foundation for Intelligent Physical Agents (FIPA) 

standards. An auction protocol is needed since we have distributed services and want to 

support flexible pricing policies at each service provider. The reverse English auction 

protocol is the most appropriate given the GEMSS client/server(s) configuration and 

firewall restrictions on message passing. We use the WSLA document generated by the 

micro-negotiation to represent the contract under negotiation. 

Our macroscopic QoS negotiation architecture is shown in figure 9, where the modules 

relevant to the negotiation processes are outlined. The GEMSS Proxy is a proxy class for 

the service provider’s web service interface. 

 
Figure 9 : Macroscopic negotiation architecture. 

5.1 FIPA English auction protocol 

Our implementation of the FIPA English auction protocol is described in figure 10. A 

client starts with a job that they wish to execute, and first discovers a set of available 

services by querying a GEMSS registry. Once a set of suitable service providers is 



discovered they are each alerted (informed) to the start of the auction protocol by the 

client software. The user is asked for the auction criteria, in our case the acceptable 

min/max values for both the start and end time of the job and the acceptable price range; 

these are the QoS parameters used in GEMSS. Weightings can be given to each QoS 

parameter by the user and this information is sent to each service provider via a call for 

proposals (cfp) message. Each service provider then starts a micro QoS negotiation and 

comes back with a temporary reservation encoded in a WSLA document. These are 

collected by the client when the proposal deadline is reached and scored using the scoring 

algorithm described later in this section. Several rounds of bidding can occur but 

ultimately a single service provider’s WSLA is accepted and the client moved to the job 

execution phase. One WSLA per service provider per job is agreed – jobs spread over 

several service providers are not supported, although are theoretically possible. 

5.2 Scoring the WSLA 

The scoring mechanism used by the GEMSS client is a normalized dot-product score 

based on a vector of QoS parameter values and a set of parameter ‘importance’ weighting 

values. The QoS parameters for our GEMSS test bed are start time, end time and price. 

The client chooses the importance weights before the auction to reflect the negotiation 

priorities they want to stress (e.g. the price might be the most important parameter). The 

QoS parameter set is not restricted and can be easily expanded should a service provider 

provide other measurable QoS metrics. It is easy to change the scoring mechanism, so 

more complex approaches tailored to the business environment can be supported in the 

future. 



 
Figure 10 : GEMSS English auction protocol. 

6. EXPERIMENTAL EVALUATION 

A number of tests have been carried out on the GEMSS infrastructure as part of the 

evaluation phase of the project. This section details the negotiation evaluation, both at the 

microscopic and macroscopic levels. 

6.1 Evaluation of the microscopic negotiation 

The QoS micro-negotiation tests took the form of 53 hours of stress test runs running a 

total of 1604 real SPECT jobs. All these jobs were run for real on a 48 CPU cluster 

running a MAUI scheduler. The cluster itself had 3 services set-up to control 16 CPU’s 

each, representing 3 service providers. 

For each test 10 client computers were set-up running a single client installation each. 

Each client concurrently submitted jobs until a total of 401 jobs were submitted. The 

clients could choose from 3 different kinds of user ‘strategy’; one with a high priority for 

fast job execution, one group with a medium preference for quickly executed jobs and 

one group with no hard time constraints for the job execution. We wanted a variety of 

client strategies to simulate real usage where different users will have different priorities. 

We identified 24 different SPECT job set-ups to be used in our stress tests, where each 

job setup has individual input data. These job set-ups represent typical SPECT use-cases 



that have been enforced mostly from clinicians and researchers from the GEMSS project. 

Generally a SPECT job can be characterized with its image resolution, the number of 

projections acquired from the CT or MRI scanner, the number of slices the should be 

computed for the output image volume and finally the number of iterations to be 

computed in order to specify the accuracy of the results. All job set-ups have been 

categorized by their size accordingly to figure 11 with 8 small, 8 medium and 8 job set-

ups as well as a mixture of all 24 job set-ups. Four tests were conducted, where clients 

ran randomly choosen jobs using a uniform distribution of all available jobs with 

specified size from figure 11. These four test cases represent different types of stress 

conditions the cluster can be subjected to. 

 

Size of Job Resolution Projections Slices Iterations 

Small 128 60 8 – 32 5 – 25 

Medium 128 – 256 60 – 120 64 – 128 5 – 25 

Big 256 120 8 – 32 5 – 25 

Mixture Any Any Any Any 
Figure 11: SPECT job characteristics 

Eval: Micro-negotiation 

The metrics measured and results for each of the four stress tests are reported in figure 

12. The utilization values represent the percentage of the theoretical full usage of all 

available nodes and they were reported using the cluster scheduler’s own functions, 

recorded every 15 minutes . Each test attempted to schedule and run 401 jobs. The big 

job test saw the cluster approaching full load and many jobs were unable to be scheduled 

due to lack of CPU availability; this reduced the corresponding metric result (i. e. 

availability heavily decreased). 



Stress test metreics 
  Utilization = Average % node use reported by cluster 
  Robustness = % of jobs successfully run 
  Availability = % of successful requests for a SLA 
  Throughput = Jobs run per hour 

Stress testing [1604 jobs run over 53 hours]
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Figure 12 : Stress test results 

The runtime of these jobs is dependent on the resources which the jobs are executed on, 

but in general all jobs could be executed on 2, 4, 8, 12 or 16 nodes on our clusters. 

Generally jobs with a lower resolution, less number of projections and less slices to 

compute are performed faster. The overall runtimes on the used resources in our testbed 

range from a minimum of 2 minutes and a maximum of 90 minutes. Moreover it should 

be mentioned that bigger jobs could not be executed on less than 4 cluster nodes because 

of their high memory requirements. 

Eval: SPECT performance model 

In addition to measuring the stress metrics we recorded the SPECT performance models 

estimated run time and actual run time for each job we successfully ran. Figure 13 shows 

these accuracy results. The standard deviation for these figures varied between 0.013 and 

0.014 over the four 401 job test runs; these results are statistically significant.  
Performance accuracy metrics 
  Accuracy = (estimated runtime - actual runtime) / actual runtime 

Performance model accuracy

90%

92%

94%

96%

98%

100%

Small Medium Big Mixture

Size of Job
Average % Minimum % Maximum %

 
Figure 13 : SPECT performance model accuracy 



Analysis 

We can see from these tests that the system operates stably over a longer period of time 

and it is handling most of the requests properly and robustly. The few errors that occurred 

can be lead back to two different problems that arise throughout the tests. The first 

problem was related to network timeouts occurring in our hosting environment while 

querying to the QoS event database (i.e. on status queries) when concurrently other client 

requests write to this database; we probably had the timeout value too low. Another 

problem, mainly cased by clients, was that the SLA negotiation could not be performed 

within the time frame specified by the security token. A solution to this problem would 

be to extend the validity of the security tokens of the E2E security implementation. In 

general, however, the system showed few errors even under heavy usage lending 

evidence of the robustness of our approach. 

There were also a number of errors that were handled robustly by the infrastructure, 

mainly relating to network timeouts whilst negotiating with services. These were handled 

by an automatic retry mechanism very successfully. Also, if one service was not 

contactable for some reason the clients simply chose from the other two services that 

were available. 

The cluster’s throughput tended to be higher when submitting a lot of small jobs which 

validates rational behaviour since the smaller jobs are executed faster then bigger ones. 

The average utilization was lower on the small and medium job sizes because the sizes of 

these jobs were too small to fully load the cluster. For the big job case the cluster started 

to reject jobs, being full loaded, and hence availability was reduced. This is to be 

expected since there is always a trade-off between the client’s desire for availability to 

run new jobs and the service providers desire to keep cluster utilization to a maximum. 

The theoretical maximum utilization of 100% has been achieved only for the big job 

sizes, but even tough the average utilization was below the theoretical maximum due to 

the nature of varying resource requests from clients and possible short periods of unused 

resources e.g. when a job execution finishes shortly before the reservation interval ends. 

However, the average utilization level for the big and mixture job cases shows a 

satisfying demonstration for service and resource providers. 

Finally the accuracy of the SPECT performance is very high, verifying that the SPECT 

application is well suited to this kind of reservation-based model. Other types of less well 

characterised application are discussed later. 



6.2 Evaluation of the macroscopic negotiation 

The reason for supporting flexible pricing models is to try to create a practical Grid 

marketplace where a client can select service providers who will provide QoS guarantees 

at a reasonable price. Such a market should take into account the service providers need 

to maximise utilization of their resources and the client’s desire for the best price/service. 

In order to allow us to demonstrate this in action over the GEMSS infrastructure we have 

devised two tests. The first test runs with a large time window, making start and end time 

constraints irrelevant; this allows us to analyse the pricing models in isolation and verify 

rational behaviour. The second test has a smaller window, allowing each service 

provider’s micro-negotiation to schedule jobs where they see fit, within the time and 

price constraints set by the client. The results of these tests provide an insight into how a 

real medical service market place might function. 

Eval: Macro-negotiation on price alone 

Our objective in this test is to demonstrate that the client behaves rationally and chooses 

the lowest price first. We would expect to see low price models grab the early jobs and 

quickly fill up the low priced service provider’s schedule. If demand is maintained then 

the clients are forced to pay the higher prices until all service providers are at full 

capacity, when no more jobs can be run at all. 

We installed, in Austria, three service providers as described in figure 14. Each service 

provider had an individual pricing model of its own. All three service providers provided 

the SPECT service and ran a MAUI scheduler in simulation mode (to avoid needlessly 

running the job itself). The SPECT test data was a job that lasted 34 minutes on 2 CPU’s. 

 
Figure 14 : Test bed deployment. 



We set-up an account for the client with each service provider, and credited these 

accounts with enough euros to run the 9 test jobs. Two fixed price models were used and 

a variable pricing model that adjusted its price based on the current system load. 

To create a controlled environment we manually adjusted the scheduler load to simulate 

an external cluster load of 9 active CPU’s on our 16 CPU cluster. In a commercial 

implementation the variable pricing model would query the dynamic load directly from 

its scheduler, or read in a static daily load profile that describes the service provider’s 

cyclic load profile. 

Nine jobs were run sequentially, with the client running a negotiation between the three 

service providers for each job. Once a service provider won a job we increased the 

providers load by 30%; starting load was 0%. This had the effect of increasing the price 

demanded by the variable pricing model. We recorded the WSLA QoS parameters (start 

time, end time and price) and used just a single auction round. Multiple auction rounds 

are fully supported to allow sophisticated service providers to reduce price in the face of 

competition, but for this test were not needed. The proposal deadline was 50 seconds, 

allowing for realistic delays in pan-EU internet communication and firewall protocols; 

this could be lower with a dedicated high-speed internet link. Inefficient firewalls (and 

other security) cannot be bypassed since we are dealing with sensitive medical data, and 

end users will not reduce security of their existing network systems. 

The accumulated revenue for each service provider can be seen in figure 15, which shows 

what happens as each service provider’s system load increases (to maximum) and the 

price for the variable model increases and becomes less attractive. 



SPECT test job 
  Duration 34 mins with 2 CPU’s 
Price model A 
  Fixed price = € 5 per CPU hour 
Price model B 
  Variable price = €1 per CPU hour + € 6 * <system load> 
  <system load> = fractional value [ 0 .. 1 ] of cluster’s current CPU loading 
Price model C 
  Fixed price = € 3 per CPU hour 

Total service provider's revenue (cumulative)

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

1 2 3 4 5 6 7 8 9
Job number

Eu
ro

Variable cost Fixed cost (medium) Fixed cost (high)
 

Figure 15 : Revenue from each pricing model (only price variable). 

Eval: Macro-negotiation on end time and price 

In this test we used the same set-up as test one but allowed the schedulers to vary the start 

and end time, allowing the schedule to fill up until it was unable to make any more 

reservations. The client weighted both price and end time equally (weight 1.0), and was 

not bothered by start time (weight 0.0). The pricing models were the same, except for a 

new dynamic price shown to make sure it goes above the medium price for an interesting 

trigger condition. We requested jobs be allocated in a 2 hour window to ensure that a 

very successful service provider would achieve a full schedule (100% load). For this test 

we simulated an external loading of 8 CPU’s, allowing more scheduling flexibility. For a 

2 hour window each job (34 mins) increases the service providers load by about 25%. 



SPECT test job 
  Duration 34 mins with 2 CPU’s 
Price model A 
  Fixed price = € 5 per CPU hour 
Price model B 
  Variable price = € 1 per CPU hour + € 10 * <system load> 
  <system load> = fractional value [ 0 .. 1 ] 
Price model C 
  Fixed price = € 3 per CPU hour 

Total service provider's revenue (cumulative)
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14.00
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Figure 16 : Cumulative revenues (price, start and end time variable). 

Our objective in this test is to examine how our system behaves in a resource limited 

environment, looking at how demand affects both the success of the pricing policy and 

the overall resource allocation of the service providers. We would expect to see low 

prices grab the early jobs and quickly fill up a low price service provider’s schedule. 

Because end time is now important the service providers winning early jobs will no 

longer be able to finish a job quickly, and hence will become less attractive even with a 

lower price and thus we should see a more balanced load between service providers. 

The results for each job run can be seen in figure 16 and 17, which shows the cumulative 

revenue gained by service providers and a view of each service provider’s reservation 

schedule as it filled up with jobs. 

 
Figure 17 : Microscopic level scheduler reservations. 

Analysis 

We can see from the two macroscopic negotiation tests that the negotiation results appear 

to follow rational behaviour. The lowest price job will always get chosen first, and will 

only be refused when other factors such as the quality of service (e.g. end time of the job) 

degrade significantly. 



If the level of demand is low then the most successful service providers will be the ones 

offering the lowest price. It can be seen from figure 14 that if only 6 jobs were run (a low 

demand) then the high fixed price service provider would be very under-utilised since the 

cheaper providers are chosen first. 

If the level of demand is high then the client will be forced to eventually use all service 

providers, so charging a high price is most sensible. This is all in line with the economic 

basics of supply and demand. 

Limits on resource allocation also allow a high pricing policy to win over because clients 

are unable to achieve the levels of QoS they need from other loaded providers. Figure 17 

shows how each service provider’s schedule fills up, and how after one job is allocated 

on each of the three service providers the best start time available is no longer time 0.  

The variable pricing does allow a service provider to get some early cheap jobs in, and 

defer further load until the client is willing to pay a premium. The exact variable / fixed 

price ratio could easily be tuned to exploit the thresholds of the fixed pricing models. The 

optimal variable pricing would maximize both cost recovery to get the revenue in, and 

resource allocation to ensure the cluster is busy but still able to provide a reasonable QoS. 

Regarding scalability the GEMSS architecture supports multiple registries that can 

theoretically contain 100’s of service providers (we had less than 10 in practice). A client 

can connect to a number of service registries (chosen based on which ones the client 

trusts) to find all the services providers they wish to deal with. The service provider 

hosting environments are based on web services and can handle 100’s (maybe 1000’s 

depending on hardware) of concurrent requests from clients to reserve CPU’s and run 

jobs. 

Given the nature of medical jobs the client (hospital) must have a written legal contract in 

place before sub-processing of patient data can occur. This legal restriction is actually the 

limiting factor on how large a medical Grid can scale, not the technology. 

7. DISCUSSION 

The accuracy of performance models is critical to the ability of the QoS management 

system to select a large enough reservation to successfully run an applications job. If the 

accuracy of the performance model is relatively low, for example if the application is 

fundamentally difficult to predict, the performance model can provide an over-estimate 

with a large safety margin; this over-sized reservation would be released once the job 

finish time is known. 

We have found that the chosen heuristics of the QoS manager are also crucial to the 

overall performance of the QoS management. Due to the dynamic nature of resource 



allocations for different jobs, and the fact that our flexible pricing model can support 

different strategies depending on the service provider’s preferences, it is very hard to 

decide which job should be scheduled at which time with a specific number of CPUs 

involved. Time to fine tune the heuristic parameters should be factored into any future 

installations. 

From our macroscopic evaluation results it can be seen that the existence of fixed and 

variable pricing models allows service providers to react to the marketplace in different 

ways. When demand is low the variable pricing model has the flexibility to lower its 

price to capture early business. This allows a service provider in a low demand market to 

increase its utilization of resources, which in turns helps cost recovery by maintaining a 

steady load. The fixed price service providers will have high under-utilization of resource 

in such a competitive low demand environment. Conversely, in a high demand 

environment where the demand out-stretches the capacity to meet it we have an effective 

monopoly situation where clients are forced to run jobs from any service provider who 

has a few spare CPU cycles to offer. In this case the service provider need only set the 

price as high as possible, just below the client’s maximum threshold before they choose 

to run no jobs at all. Flexibility is the key here, with the optimal pricing model able to 

adjust its price based on the levels of demand (most simply measured by scheduler 

loading level). 

A major end user concern at the start of the GEMSS project was that we should stick to 

good, basic economics and not invent an artificial marketplace with concepts such as 

Grid credits etc. Keeping tried and tested economic principles in mind has guided us to 

develop a mechanism for flexible pricing policies, which allow the flexibility for serious 

future exploitation using pricing models that meet the needs of a real commercial 

environment. We cannot know what the marketplace will look like in the future, but we 

can ensure we have the flexibility to adapt to its needs. 

To be robust in the face of internet communication delays we used a 50 second auction 

round duration. This means that it is not practical to negotiate many times for small jobs, 

since the auction negotiation time would exceed the job exec time. Instead we would 

expect many small jobs to be bundled together as a batch of jobs and negotiated as a 

single job with a single contract to be economically viable. On a local network, or high 

speed dedicated link, negotiation times of around 1 second could be expected making 

negotiation of smaller jobs more practical. 

From an overall viewpoint the use of micro-negotiation for low level scheduler-oriented 

QoS and macro-negotiation for high level service provider selection appears to 



complement each other well. The service provider’s micro-negotiation ensures the 

reservations offered to a client meet the quality of service levels expected by the client 

and at the same time helps maximize utilization of the service providers computing 

resources. The client / service provider’s macro-negotiation provides the client with a 

way to compare offers from multiple service providers and maintain a realistic economic 

model in this global service marketplace. 

8. CONCLUSION 

The GEMSS project has developed a service-oriented Grid framework that supports the 

provision of medical simulation services by service providers to clients such as hospitals. 

The GEMSS medical applications mostly require computing resources to be pre-booked 

well in advance of the patient’s arrival at the hospital. High levels of quality of service 

are required, since resource unavailability can result in expensive time being wasted 

through to compromising the safety of live surgery. The GEMSS infrastructure supports 

this through a reservation-based approach to quality of service, and provides a 

microscopic negotiation mechanism where a QoS management system iteratively finds 

the most suitable reservations available from a resource scheduler based on application 

specific performance model estimates of each job’s resource usage. 

The GEMSS Grid works in a commercial environment where clients want to be able to 

choose from several service providers before agreeing to book a specific resource. The 

GEMSS Grid supports flexible pricing models for individual services, and a macroscopic 

negotiation, based on a FIPA reverse English auction protocol, where a client can choose 

the best offer from a set of competing service providers. A WSLA contract is signed and 

exchanged to commit both parties before job execution occurs. 

We have run four experiments, communicating between two EU countries and using a 48 

CPU cluster with a MAUI scheduler, to verify that the microscopic quality of service 

negotiation and the macroscopic negotiation between client and service providers behave 

in a rationale manner. The results of this evaluation provide support to our view that the 

GEMSS Grid provides a realistic economic model, guarantees to clients regarding quality 

of service, and the basic legal and security framework needed to provide a realistic 

platform for future exploitation. We hope this work allows us to move closer to being 

able to set-up a practical commercial Grid for real medical simulation services. 
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