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Location extraction, also called toponym extraction, is a field covering geoparsing, extracting spatial 

representations from location mentions in text, and geotagging, assigning spatial coordinates to content 

items. This paper evaluates five ‘best of class’ location extraction algorithms. We develop a geoparsing 

algorithm using an OpenStreetMap database, and a geotagging algorithm using a language model 

constructed from social media tags and multiple gazetteers. Third party work evaluated includes a DBpedia-

based entity recognition and disambiguation approach, a named entity recognition and Geonames gazetteer 

approach and a Google Geocoder API approach. We perform two quantitative benchmark evaluations, one 

geoparsing tweets and one geotagging Flickr posts, to compare all approaches. We also perform a qualitative 

evaluation recalling top N location mentions from tweets during major news events. The OpenStreetMap 

approach was best (F1 0.90+) for geoparsing English, and the language model approach was best (F1 0.66) 

for Turkish. The language model was best (F1@1km 0.49) for the geotagging evaluation. The map-database 

was best (R@20 0.60+) in the qualitative evaluation. We report on strengths, weaknesses and a detailed 

failure analysis for the approaches and suggest concrete areas for further research. 
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 INTRODUCTION 

Social media provides a real-time source of information with a global spatial coverage 

that is supporting the daily activities of professionals in a wide variety of areas. 

Journalists are increasingly [Silverman 2014] turning to user generated content from 

social media sites such as Twitter and Facebook to find eyewitness images and videos 

during breaking news events. Civil protection agencies are using social media [Earle 

et al. 2011] to create real-time crisis maps, plotting eyewitness damage assessments 

and cries for help, which can both focus ongoing relief activities and provide much 

needed information to concerned friends and relatives of those involved. Businesses 

are using social media analytics [Chung 2014; Lassen et. al. 2015] to assess the impact 

of product launches, mapping sentiment and getting feedback from customers 
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discussing their experiences via social media. Any problem that needs to geospatially 

map information from social media posts will need a location extraction solution, which 

is typically implemented using geocoding, geoparsing or geotagging in some form or 

other. 

Geocoding, geoparsing and geotagging are types of information extraction, which is 

itself a subset of information retrieval. Geocoding is the act of transforming a well-

formed textual representation of an address into a valid spatial representation, such 

as a spatial coordinate or specific map reference. Geoparsing does the same for 

unstructured free text, and involves location extraction and location disambiguation 

prior to the final geocoding. Geotagging assigns spatial coordinates to media content 

items, typically by building statistical models that, given a piece of text, can provide 

an estimate of the most likely location (spatial coordinate), to which the text refers. 

It should be noted also that in the literature the term ‘location’ is used 

interchangeably with the term ‘toponym’, such as with ‘toponym disambiguation’. We 

use the term ‘location’ in this paper to mean a place name (e.g. London) and consider 

it synonymous with the term ‘location phrase’ and ‘location mention’. We use the term 

‘disambiguated location’ to mean an unambiguous location in the context of a 

geographic database of some type (e.g. London, UK, 51°30′26″N 0°7′39″W). We use the 

term ‘spatial coordinate’ to mean a general reference to a coordinate such as a 

longitude/latitude point on a map. Sometimes ‘location identification’ is used in the 

literature, which we consider to mean geoparsing without location disambiguation. 

Also ‘location estimation’ is sometimes used, which we consider to be geotagging to a 

spatial area such as a grid cell. 

Social media content sometimes contains a geotag to indicate either the location 

where it was created or the location of the subject matter. Analysis has shown 

[Middleton et. al. 2014] that about 1% of Twitter posts contain a geotag during events 

such as natural disasters. In the Yahoo! Flickr Creative Commons 100 Million 

(YFCC100m) dataset [Thomee et al., 2016] about 48% of posts have a geotag, although 

this percentage does not likely reflect the actual rate of geotagged images in the 

platform. Furthermore, a recent study has revealed that the number of geotagged 

photos in social media platforms such as Twitter and Flickr has tapered off [Tasse et 

al., 2017]. Even in cases where a geotag is available, location extraction from text can 

still add value. Geotags can be many kilometres away from where the subject matter 

is located, such as long range photographs of the Eiffel Tower. Moreover, the textual 

description of media posts can contain contextual location mentions that cannot be 

inferred from a geotag alone (e.g. ‘Obama in Washington making a speech about 

China’). 

There are today several commercial geocoding services, each based upon an 

underlying map database, which can take well-formatted location descriptions and 

return map references to them. The problem with social media posts is that, unless 

posts originate from automated services such as news feeds or earthquake alerts, they 

are not well-formed text and therefore need some sort of parsing before they can be 

used with a geocoding service. There is also a problem with rate-limited remote 

geocoding services, of which the throughput in practice is much lower than the real-

time volumes of posts common from social media sites such as Twitter. 

Geoparsing can be used to process the types of unstructured text seen in social 

media posts, and requires both location identification and location disambiguation. 

Approaches to location identification typically involve either named entity recognition 

(NER), usually based on linguistic properties such as part of speech tags, or named 

entity matching (NEM) based on a gazetteer, geospatial database or tag set of known 
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tokens associated with locations. The choice of gazetteer or database will depend on 

the spatial resolution the geoparsing is trying to operate within, ranging from the level 

of administrative regions, such as cities, down to street and building levels. Geotagging 

methods, on the other hand, are developed based on large corpora of geolocated social 

media posts, typically with a focus on popular locations, and can include vernacular 

names often missing from map databases, and even take advantage of non-

geographical names and terms that are indicative of a certain location (e.g. festivals, 

local dishes, etc.). 

Location disambiguation takes a set of possible location matches for a text token 

and selects the most likely ones based on available contextual evidence such as co-

occurring mentions of other locations or post geotags. The approaches for location 

identification and disambiguation can often support each other, and hybrid approaches 

are not uncommon. Geotagging involves a combination of location identification and 

disambiguation, presented as a geotagging problem. Geotagging is often applied to 

estimate the location of an image or video, optionally using additional context beyond 

text labels such as semantic information extracted from image and video content. 

Section 2 provides a good overview of the types of geoparsing and geotagging 

approaches used today. 

This paper presents a comparative study among five ‘best of class’ location 

extraction algorithms. Author developed approaches are based on (a) entity matching 

using an OpenStreetMap (OSM) database, and (b) a language model using a 

combination of a large social media tag dataset and multiple gazetteers. Third party 

developed approaches are based on (c) DBpedia-based entity recognition and 

disambiguation, (d) named entity recognition and GeoNames gazetteer lookup, and (e) 

named entity recognition and the Google Geocoder API. 

Our geoparsing quantitative benchmark experiments use a manually labelled 

Twitter dataset covering thousands of tweets during four major news events. We 

evaluate the precision and recall when extracting location mentions without 

disambiguation, working at resolutions down to street and building level. Our dataset 

includes within it labelled tweets shared with us by Carnegie Mellon University, 

allowing comparison of results to previously published work on the Christchurch 

earthquake event [Gelernter and Balaji 2013]. 

Our geotagging quantitative evaluation uses the standard Yahoo! Flickr Creative 

Commons 100 Million (YFCC100m) dataset [Thomee et al., 2016] containing millions 

of geotagged Flickr posts. We evaluate the precision and recall of our location 

extraction methods using a geotagging problem formulation, working at a 1km2 spatial 

precision. 

Lastly, we perform a case study-driven qualitative evaluation, taking over one 

million tweets crawled from three recent news stories and ranking extracted locations 

by mention count. We examine the recall for each algorithm of ground truth locations 

mentioned in published verified news stories at the time of each event. 

The contribution of this paper includes both original algorithm work and detailed 

evaluation on benchmark datasets. Two author developed location extraction 

algorithms are presented, both of which have been extended from previously published 

work to include additional original features. The map-database algorithm has been 

extended from [Middleton et. al. 2014] [Middleton and Krivcovs 2016] to add location 

disambiguation heuristics, making use of textual context including location co-

occurrences and parent region mentions, spatial proximity to geotags, person name 

filters and token subsumption strategies. Its novelty lies in the use of the geographic 

shape information and metadata from OpenStreetMap to disambiguate locations and 
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boost geoparsing precision. The lm-tags-gazetteer algorithm is based on a language 

model and has been extended from [Kordopatis et al., 2015b; Kordopatis et al. 2016; 

Kordopatis et al., 2017] to include a location labelling step, which leverages multiple 

gazetteers to improve the quality of the location prediction model. The proposed 

approach resulted in a relative improvement of 4.5% in the geotagging performance 

(P@1km) compared to the best results reported in the previously published versions of 

the algorithm. Its novelty lies in the effective combination of multiple data sources (i.e. 

Flickr image metadata, OpenStreetMap and GeoNames) in a single probabilistic 

location language model. 

The results published in this paper represent a valuable benchmark for other 

researchers to compare against. All benchmark datasets are freely available and we 

encourage other researchers to benchmark their location extraction approaches on our 

labelled data against the results in this paper. The author developed algorithms are 

also available via open source releases. The map-database algorithm has never been 

evaluated before on a geotagging problem formulation, and the lm-tags-gazetteer 

algorithm has never been evaluated before on a geoparsing problem formulation. Both 

algorithms have never been evaluated on our case study-driven evaluation before. Our 

final contribution is a detailed analysis and discussion of the strengths and weakness 

of our approaches, providing insights to other researchers who might be considering 

developing their own location extraction approaches. 

We report on related work in section 2 including a discussion of the limitations in 

the state of the art. In section 3 we describe details on the methods used by each of the 

algorithms evaluated in this paper. Sections 4 and 5 provide evaluation results and 

discussion and we conclude in section 6 highlighting a few areas where we think 

further research might lead to improvements on the ‘best of class’ approaches outlined 

in this paper. 

 RELATED WORK 

 Geocoding services 

Commercial geocoding services such as the Google Geocoding API1, OpenStreetMap 

Nominatim2 and Bing Maps API3 allow users to post a textual phrase and get back a 

likely location reference that matches it, along with a longitude and latitude spatial 

coordinate. These services expect well-formed text with super-regions provided for 

disambiguation. For example sending the text ‘London, UK’ to the Google Geocoder 

API will result in a spatial coordinate for the centre of London, a bounding box for 

London and some metadata such as the full set of UK administrative super regions for 

London. Location disambiguation is generally weak or non-existent in geocoding 

services due to a lack of available context. For example sending the text ‘Winchester’ 

to Google Geocoder API will result in eight places called ‘Winchester’ in the USA, 

Google’s default locale. Only when one allows their browser to share its location (e.g. 

Southampton in the UK) will the result be further disambiguated to suggest, e.g. the 

city of Winchester, Hampshire in the UK, which is closer to the browser location and 

therefore more likely to be right. 

Commercial geocoding services are also subject to rate limits that prevent them 

from scaling up to handle high throughput applications, such as processing real-time 

 
1 https://developers.google.com/maps/documentation/geocoding   
2 http://wiki.openstreetmap.org/wiki/Nominatim   
3 https://www.microsoft.com/maps/choose-your-bing-maps-API.aspx   
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social media streams. At the time of writing, the Google Geocoder API allows 2,500 

free requests per day, with 100,000 allowed for premium users, and 50 requests per 

second. Typical breaking news events generate much higher volumes of content than 

these limits can handle. For example recent Twitter crawls [Wiegand and Middleton 

2016] of the November 2015 Paris shootings event captured about 6,000,000 posts 

during the first 6 hours of the event. Geocoding datasets of this size in real-time with 

rate-limited geocoding services is not feasible, even if one was able to extract well 

formatted location references from each tweet’s text. 

 Geoparsing 

Geoparsing from free text is a well-studied field in information retrieval, with 

applications including automated image tagging, web page annotation and social 

media analytics. Approaches can be broadly categorized as either named entity 

recognition or named entity matching. Named entity recognition approaches are 

usually based on linguistic annotations, such as parts of speech (POS) tags or bag of 

word feature vectors, which are then either used as training data for building 

supervised classifiers or input to hand-crafted linguistic grammars to classify and 

extract location mentions. Named entity matching uses a lookup index of known 

location names and variants, either from a gazetteer such as GeoNames 4  or a 

geospatial database such as OpenStreetMap5, to identify possible location mentions 

along with heuristics to reduce false positives. These approaches can be combined, with 

gazetteer-based entity matching used to geocode an entity recognition result. 

Earliest approaches to location entity recognition identified event locations from 

large text documents by analysing co-occurrence of dates and noun phrase patterns 

[Swan and Allan 1999]. More recently named entity recognition of locations in social 

media messages has been specifically addressed. This is a challenging area due to the 

short text length and wide variety of grammatical styles in social media posts 

[Bontcheva et al. 2013]. Typical approaches include conditional random fields (CRF) 

coupled with named entity recognition [Ritter et al. 2011] and entity disambiguation 

using a reference corpus such as DBpedia [van Erp et al. 2013]. Regression trees 

[Cheng et al. 2010] have been trained on tweet datasets with a combination of 

stemming and stop word removal. A ‘best of class’ entity recognition approach is the 

one presented in [Gelernter and Balaji 2013], which employs parts of speech tagging, 

named entity recognition, a set of global and local gazetteers and some heuristics such 

as spell checking and acronym processing. Our paper reports results from a benchmark 

evaluation using the same Christchurch earthquake tweet dataset that [Gelernter and 

Balaji 2013] used, allowing direct comparison of our results to this previous work. 

For named entity matching various gazetteers are reported as being used in the 

literature. The GeoNames gazetteer is perhaps the most popular choice, typically 

combined with heuristics such as person name filters [Gelernter et al. 2013] or 

demographic filters [Tahsin et al. 2016] to bias location selection to the largest area, 

along with DBpedia. Use of full map databases such as OpenStreetMap is possible 

[Middleton et al. 2014], using a location name index created from a combination of the 

planet wide OpenStreetMap database and multi-lingual heuristics for token expansion 

of place types (e.g. ‘... street’ expands to ‘... street’ and ‘... st.’). This OpenStreetMap 

named entity matching approach [Middleton et al. 2014] is one of the approaches 

 
4 http://www.geonames.org 
5 https://www.openstreetmap.org 



xx:6                                                                                                                            S.E. Middleton et al. 
 

 
ACM Transactions on Information Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

tested in our benchmarks and represents a ‘best of class’ named entity matching 

approach. 

 Location disambiguation 

Early work [Smith and Crane 2001] on location disambiguation, also called toponym 

disambiguation, used heuristics to prune false matches and disambiguate possible 

location choices. For example, common person names, person titles such as ‘mr.’ and 

generic place types such as ‘river’ were used to remove false positives. For location 

disambiguation, contextual super region mentions and the proximity of locations to a 

centroid computed from confident location matches was used. 

More recently, various additional types of heuristics and contextual data have been 

used to disambiguate locations. This includes co-occurring and super region mentions, 

place types, text capitalization, demographic data and semantic context where 

available [Want et al. 2010]. A georeferenced version of WordNet has been used 

[Buscaldi and Rosso 2008] to calculate a conceptual density function for 

disambiguation. Other approaches include entity disambiguation with machine 

learning techniques such as Expectation-Maximization [Davis et al. 2012] and Random 

Forest [Lee at al. 2015; Rafiei and Rafiei 2016]. The GNIS6 gazetteer has also been 

used [Amitay et al. 2004] for entity matching, exploiting contextual mentions of super 

regions and an aggregated location centroid for location disambiguation. 

Disambiguation of local placenames can be particularly challenging. A recent 

analysis [Cai and Tian 2016] of local placenames within a US city showed about 17% 

of locations were either vernacular names or vague and hard to disambiguate. The 

difficult problem of geotagging vernacular placenames has been examined [Pasley et 

al. 2007] with only limited success. 

In support of location disambiguation there is also the field of geosemantics 

[Lieberman and Goad 2008], which looks at contextual information relating to 

geoparsed location mentions, such as position modifiers or time references, for 

subsequent position refinement. Techniques such as spatial role learning 

[Kordjamshidi et al. 2012; Bastianelli et al. 2013], where phrases for position modifiers 

and landmarks are extracted, are helpful when references to a location include context 

such as '2 miles north of New York’. Temporal extraction [Verhagen et al. 2010] can 

help to disambiguate location mentions if an event context is known. 

 Geotagging 

Geotagging has a similar aim to geoparsing, but only a spatial point reference is sought 

without the need to parse an explicit reference to a known location. This has led to the 

development of various probabilistic and machine learning approaches based on 

spatial grids that hold text statistics for different regions of the world. Geodesic grids 

have been computed from Wikipedia pages [Wing and Baldridge 2011] to train a Naïve 

Bayes classifier, and for tweets [Paraskevopoulos and Palpanas 2016], where city grids 

are used in combination with a TF-IDF statistical measure. 

Additional features such as time zones [Mahmud et al. 2014] or friend locations 

[Compton et al. 2014] can be used to geotag the likely home city of Twitter profiles. 

The spatial proximity of locations in documents can be used to statistically 

disambiguate geotagging results, such as in multi-lingual travel guidebooks [Moncla 

et al. 2014]. Spatial proximity can also be used for supervised classifiers, such as 

[Awamura 2015], where a support vector machine (SVM) is trained on a combination 

 
6 https://nhd.usgs.gov/gnis.html  
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of bag of words features, spatial proximity and temporal features extracted from the 

tweets. 

For street and building level geotagging, language models have been tried, such as 

[Flatow et al. 2015] where grids are learnt from datasets of tweets. The approach of 

[Serdyukov et. al. 2009] records location mentions in a graph structure, encoding both 

spatial and semantic relations, and models the probability of a location given the 

presence of a tag. A boosting coefficient is applied if the tag matches a location in the 

GeoNames gazetteer, allowing tags for popular place and landmark names to be 

weighted higher. Lastly, spatially aware term selection for geotagging has been 

examined [Laere et. al. 2014], comparing techniques such as kernel density estimation 

and use of Ripley’s K statistic to smooth spatial occurrences of tags in Flickr posts and 

Wikipedia articles and showing significant performance gains for subsequent 

geotagging. 

Standard benchmark datasets exist with labelled web and/or social media posts 

suitable for evaluating geotagging. For example, the YFCC100m dataset [Thomee et 

al., 2016] contains 100 million public Flickr photos/videos, many of which have a geotag. 

The MediaEval workshop runs a regular Placing Task series [Choi et al. 2014] with 

challenges for researchers to try out algorithms on this dataset. We make use of the 

YFCC100m dataset as one of our benchmarks, running an updated version of the 

winning MediaEval 2016 placing task algorithm [Kordopatis et al. 2016] to represent 

a ‘best of class’ geotagging approach. This use of a language model and gazetteer is 

similar to [Serdyukov et. al. 2009], but our approach includes a number of feature 

selection and weighting steps that ultimately lead to considerable gains in terms of 

geotagging accuracy [Kordopatis et al., 2017]. 

 Limitations in the state of the art 

We have found that the approaches we reviewed vary considerably in terms of the real-

time throughput that they can support. Using a commercial geocoding service is not 

scalable for third parties, since rate limited access imposes severe restrictions on 

throughput even for paying customers. To do location extraction for typical real-time 

Twitter loads (i.e. sampled search API throughput or even firehose throughput) 

algorithms need to process posts in parallel. Only few approaches (e.g. map-database) 

have reported results from practical experiments parallelizing their work. From the 

authors’ own experience, with Apache Storm deployments of geoparsing services, the 

bottlenecks for parallelization are POS tagging, named entity recognition and 

(depending on implementation) language and topic model execution. For real-world 

social media post throughput, over 10 nodes are required on a cluster deployment to 

overcome these bottlenecks with brute force parallelization. Entity matching can be 

very efficient if good indexing techniques are used. 

A consistent theme from the literature is that street and building name extraction 

performs worse than region name extraction. The reason for this is that street names, 

and especially building names, are not as unique as region names. This means it is 

much more important to exploit contextual clues when making an extraction and 

disambiguation decision. Region names are relatively unique and therefore much 

easier to identify. We consider that the improved use of contextual clues and a deeper 

understanding of the linguistic context where they are used is a key area for 

improvement over the current state of the art today. 

Older approaches tended to work with a single dataset and were unable to handle 

the rich variety of abbreviations and vernacular names that exist in many locations of 

the world. Recently, there is a clear trend in the literature towards using multiple 
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inter-connected data sources (e.g. social media tags and gazetteers). We think this 

trend is likely to continue and can foresee progress being made in approaches that 

exploit new information sources such as personal mobile devices and connected data 

from the Internet of Things (IoT). The more context that is available to associate with 

a user’s post the better the chance of getting location extraction and disambiguation 

correct. The authors’ language model approach in particular is helping to progress the 

state of the art in this direction. 

 METHODOLOGY 

We describe in this section our named entity matching algorithms using 

OpenStreetMap (map-database) and a language model approach using a combination 

of Flickr social media tags and various gazetteer resources (lm-gazetteer, lm-tags, lm-

tags-gazetteer). We benchmark our two novel approaches against three other standard 

approaches; geocoding (google-geocoder), entity recognition (ner-gazetteer) and entity 

extraction (linked-data). The map-database approach described here is a substantial 

improvement on the original work published in [Middleton et al. 2014] with the 

addition of location disambiguation strategies. The lm-tags-gazetteer approach is an 

extension of the geotagging approach first published in [Kordopatis et al. 2015b] and 

further analysed in [Kordopatis et al., 2017], and now includes a location labelling step 

to fuse tag-based location predictions with gazetteer resources. The google-geocoder 

approach uses named entity extraction to identify possible locations in text then sends 

it to the Google Geocoder API to get a location reference. The linked-data approach 

uses the linked data DBpedia spotlight service7 [Daiber et al. 2013] to extract location 

entities. Finally the ner-gazetteer approach uses GeoLocator8 [Zhang and Gelernter 

2014], which is based on entity recognition and entity matching from a GeoNames 

gazetteer. 

 Named entity matching using OpenStreetMap - map-database 

We have developed an entity matching approach that exploits region, street and 

building data found in the planet OpenStreetMap database. The overall information 

flow for this approach can be seen in Fig. 1. In an offline step we pre-process all the 

location geometry held within the 400+ GB planet OpenStreetMap PostGIS 

PostgreSQL database, generating a much smaller and more efficient database 

containing global region data and local street and building data for explicitly pre-

processed focus areas of interest (e.g. all streets and buildings in the city of 

Southampton). The online geoparsing algorithm loads to an in-memory cache location 

names and geometry and performs entity matching in real-time. Entity matches are 

disambiguated using available linguistic and geospatial context prior to ranking in 

order of confidence. The map-database software is packaged as geoparsepy9 and is 

freely available from the Python Package Index (PyPi). 

 

 
7 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki  
8 https://github.com/geoparser/geolocator  
9 https://pypi.python.org/pypi/geoparsepy  
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Fig. 1. Information flow pipeline for named entity matching using OpenStreetMap (map-database). In our 

evaluation geotag context was not provided for disambiguation since geotags were used as ground truth. 

 

The pre-processing of OpenStreetMap locations involves several steps. First a 

location lookup is performed via a PostgreSQL PostGIS query to get a set of locations 

to be pre-processed. A spatial filter can be applied to limit the location names that are 

pre-processed. The location lookup can be spatially wide (e.g. any administrative 

region in the world) or more focussed (e.g. all streets and buildings in a city). Location 

names and the associated geometry are returned, along with references to any 

geometrically overlapping super-regions. The resulting smaller SQL table contains 

rows for each location, with columns for OSM ID, all OSM name variants including 

abbreviations and multi-lingual translations, super-region ID’s and the location 

polygon/line/point geometry. 

The choice of focus area for location lookup and spatial filter is based on prior 

knowledge about which locations will be relevant. If there is no prior knowledge, then 

no spatial filter is selected, and a default location lookup of all global locations with an 

OpenStreetMap admin level of ‘city’ or larger used; this provides over 300,000 location 

names. If a focus area is known (e.g. Christchurch, New Zealand), then all streets and 

buildings in the focus area are loaded in addition to the global lookup. The focus area 

can also be used to specify the spatial filter to remove irrelevant matches (e.g. a New 

Zealand spatial filter will prevent irrelevant matches about locations in China for 

example). Choosing a good location lookup will allow matching of relevant streets and 

buildings, whilst choosing a good spatial filter will remove irrelevant matches and false 

positives. In the experiments we report in this paper, we used location lookups to load 

street and building names, but did not apply any spatial filter since all global location 

names were considered viable matches. 

The smaller pre-processed PostgreSQL PostGIS table is loaded into memory by the 

online geoparse algorithm on start-up. A set of heuristics are applied to each OSM 

location name to perform location name expansion and create a set of n-gram location 

phrases. A multi-lingual corpus of street and building types, based on OSM feature 

types, is then used to compute obvious variations for common location types (e.g. 

‘Southampton University’ and ‘Southampton Uni’). Unigram location names which are 

non-nouns usually result in false positives so they are filtered using a multi-lingual 

WordNet corpus lookup (e.g. ‘ok’ abbreviation for Oklahoma is also used as a common 
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adjective ‘it’s ok’). Location phrases are filtered using a multi-lingual stop word corpus 

and heuristics are applied to help detect OpenStreetMap labelling mistakes that 

occasionally appear. Once all location n-gram phrase variants are computed an 

inverted index is generated so phrases can be looked up quickly and the OSM ID and 

geometry retrieved. A typical location cache for global regions will contain 300,000+ 

locations and need 8+ GB of RAM. Multi-lingual support is provided based on corpora 

for English, French, German, Italian, Portuguese, Russian and Ukrainian. 

For online geoparsing, text is first cleaned and tokenized. We use the Natural 

Language Processing Toolkit’s (NLTK’s) [Bird at al. 2009] Punkt sentence tokenizer 

and Treebank word tokenizer. For entity matching all possible n-gram tokens in a 

sentence are matched using the inverted location phrase cache. A corpus of common 

person names is used to perform a prefix check, avoiding false positives where a valid 

location name is actually part of a full name (e.g. Victoria Derbyshire != Derbyshire). 

The final result is, for each location phrase, a set of possible location matches ready for 

disambiguation. Disambiguation is an important step since a location name like 

‘London’ will get 10’s of matches across the globe ranging from the most likely (i.e. 

London, UK) to the pretty unlikely (i.e. London, Rusk County, Texas, USA). 

Location disambiguation is based on the accumulation of evidential features to 

create a confidence score. We first check for token subsumption, rejecting smaller gram 

phrases over larger ones (e.g. ‘New York’ will prefer New York, USA to York, UK). 

Spatial proximity of other location mentions is then checked, with nearby parent 

regions and nearby locations adding to the confidence of any specific match (e.g. ‘New 

York in USA’ will prefer New York, USA to New York, BO, Sierra Leone). If a geotag 

is available with a post, we prefer locations that are closeby or overlapping to the 

geotag. Finally a location with a higher OSM admin level is preferred to a location with 

a lower one (e.g. ‘New York’ will prefer New York, USA to New York, BO, Sierra Leone). 

Once confidence scores are computed the highest confidence location match is returned 

for each location phrase, with multiple options returned if several location matches 

have the same confidence value. 

We used the OpenStreetMap 10 point admin_level classification (e.g. country, 

region, city, suburb) for disambiguation in favour of demographic statistics (e.g. 

population size) which other researchers [Purves et. al. 2007] [Leidner 2008] have used. 

We found that in OpenStreetMap, and other gazetteers such as Geonames, the 

population size data is often years out of date, with locations being updated on an ad-

hoc basis. This means one location might have a smaller population size than another 

just because the two figures are reported 10 years apart. We also think that population 

density is probably more important that absolute population size when it comes to 

disambiguation based on the likelihood of a location being talked about. Overall, we 

found the OpenStreetMap admin level classification is always correct, easily available 

and provides a reliable indication of the relative importance of a location to a 

geographic region. 

For the work in this paper, we pre-processed each of the cities featuring in our 

evaluation datasets (i.e. New York, Milan, Christchurch, Paris, Brussels, Midyat) in 

addition to the global administrative regions. We did not use any geotag 

disambiguation since the geotags were used as ground truth. When multiple location 

options were returned with the same confidence score, we selected a random choice. 

 Location extraction using social media tags and gazetteer - lm-tags-gazetteer 

We have extended the winning method of the MediaEval 2016 Placing Task 

[Kordopatis et al. 2016] to explore the use of social media tags and gazetteer 
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information for location label extraction. A language model is first built on a corpus of 

geotagged Flickr posts and/or gazetteer data by analysing their metadata and building 

a term-cell spatial map. Several refinements are then applied to the language model 

for selection and weighting of textual terms, which are highly indicative of specific 

locations. Fig. 2 illustrates the information flow pipeline for this approach. The source 

implementation is freely available10. 

We first apply a pre-processing step on the tags and titles of the dataset Flickr posts 

used for training. This involves URL decoding 11 , lowercase transformation and 

tokenization into a term set. Multi-word tag phrases are included both in their initial 

form (e.g. “new york”) and further split into atomic tokens, which are added to the 

item's term set (e.g., “new”, “york”). All symbols, accents and punctuation in the terms 

are removed. Terms consisting only of numeric characters or less than three characters 

and stop words12 are discarded. The remaining terms are used as features to build the 

language model as in [Popescu et al. 2013]. 

 

 
Fig. 2. Information flow pipeline for location extraction using social media tags and gazetteer (lm-tags-

gazetteer). 

 

We divide the earth’s surface into (nearly) rectangular cells with a side length of 

0.01° for both latitude and longitude, corresponding to a distance of approximately 

1km near the equator. Then, language model training is performed by calculating the 

term-cell probabilities based on the user mentions of each term in each cell. The cell 

with the greater aggregate term-cell probabilities for a given query text is then 

considered to be the most likely cell and is used as the basis for geotagging. 

After the initial construction of the language model, a feature selection and 

weighting step is applied to reduce the size of the model and increase its robustness. 

Two scores are extracted for each term of the language model, namely the locality and 

spatial entropy scores. For feature selection only the locality score is used, while both 

scores contribute to feature weighting.   

 
10 https://github.com/MKLab-ITI/multimedia-geotagging  
11 This was necessary because text in different languages was URL encoded in the YFCC100m dataset. 
12 https://sites.google.com/site/kevinbouge/stopwords-lists    
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Feature selection is performed based on the locality score of terms [Kordopatis et 

al. 2017]. Locality is designed to capture the spatial distribution of term usage, i.e. it 

quantifies how indicative a term is for a given location. It is calculated based on 

number of unique users that have used the term across the spatial grid. First, for each 

cell c of the grid, the set of unique users Uc who made use of term t is considered. Then, 

locality is computed using the following equation: 

𝑙(𝑡) =
∑ |𝑈𝑐|(|𝑈𝑐| − 1)𝑐∈𝐶

𝑁𝑡

 

where Nt is the total number of unique users using tag t across the whole grid. Note 

that cells where tag t is not used at all (|Uc|=0) are not considered by the summation 

in the nominator. Fig. 3 illustrates some examples of locality computation over a 3x3 

toy grid, making clear that the more uniform the tag usage distribution is, the lower 

the resulting locality score. All terms with a locality score of zero are discarded by the 

feature selection method. 

 
Fig. 3. Four examples of locality computation on a 3x3 toy grid, where cells represent the bounding boxes 

of the underlying geographic partition. In all cases, a set of nine users are assumed to have used tag t, and 

only their distribution to the grid cells is different. 

 

The contribution of each remaining term (after feature selection) is further 

weighted based on its locality and spatial entropy scores. Locality weights are 

generated in proportion to locality scores. In particular, all terms are ranked based on 

their locality scores and the weights derive from the relative position of each term in 

the ranked term distribution. Spatial entropy weights are computed using a Gaussian 

weight function based on the term-cell entropy of terms [Kordopatis et al. 2015b]. First, 

the spatial entropy of every term is calculated based on the term-cell probabilities. 

Then, a Gaussian function is estimated from the mean and standard deviation of the 

spatial entropy distribution. These weights are normalized by the maximum value in 

the distribution. The linear combination of the two weights is used for the generation 

of a weight value for every term. 

To tackle the problem of extracting a location label from the text of a new social 

media item, the item’s term set is first determined using the same pre-processing step 

as described above. Afterwards, the resulting term set is fed directly to the language 

model to calculate the corresponding cell probabilities (language model execution). 

Representing cells by their centres, a simple incremental spatial clustering scheme 

is then applied on the latitude/longitude pairs: if the 𝑖-th cell is within range 𝑟 from 

the closest one of the previous  𝑖 − 1 cells, it is assigned to its cluster, otherwise it forms 

its own cluster. For every cluster, the cell with the largest probability is considered as 

the cluster representative cell. In the end, for every query item, the most likely cell and 

the representative cells of the clusters with more than 𝑐𝑡  cells compose a set of “lookup 
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cells”. This set is used as the source of areas to look for geographical entities. We used 

𝑟 = 2𝑘𝑚 and 𝑐𝑡 = 4, as they were empirically found to yield the best results. 

Having estimated the most likely geographic areas to contain the geographical 

entity of interest, we then leverage large-scale open geotagged resources, including 

Foursquare (FS), OpenStreetMap (OSM) and GeoNames (GN), for candidate location 

label retrieval. This is useful for collecting information related to local names (i.e. shop 

names, landmark names, etc.), addresses and placenames that fall inside the borders 

of the cells comprising the lookup set.  

We provide cell locations to the Foursquare API to get a set of nearby venues. 

Venues usually contain information about the name, address and city of their 

respective point of interest. For every cell, five queries are sent to the Foursquare API 

(one for every cell corner and one for the centre). For every returned venue, the values 

of the fields of the location of interest are stored in a gazetteer and considered as 

candidate location labels for the corresponding cell.  

We download the complete collection of OpenStreetMap geographic areas as a 

gazetteer. We use only location metadata relevant to our task (i.e. names, addresses, 

cities/countries). Locations are organized based on the cells that they fall into. A 

similar process is applied to the GeoNames gazetteer where the alternative city names 

are used as candidate labels. For every cell in the final lookup set, a set of lowercase 

labels is generated from the three sources (FS, OSM and GN).  

To query the model, location label matching is performed that applies entity 

matching between the query text tokens and the label set for each lookup cell. Phrases 

are ranked by n-gram order, highest preferred, to help avoid partial phrase false 

matches. 

To allow a detailed analysis of the impact that different training data have on the 

performance of the approach, three different language models were developed using 

different combinations of source data when building the language model. The different 

setups are (a) tag-based, where only the tags and titles of the Flickr items contained 

in the YFCC100m dataset are used, (b) gazetteer-based, where only the 

OpenStreetMap and GeoNames datasets are used to build the language model, and (c) 

tag-gazetteer-based, where both sources are used to build the language model. The 

experimental results of the different setups are discussed in Section 4. 

 Geocoding and named entity recognition approach - geocoder 

To allow benchmarking against a commercial geocoding service we developed an 

algorithm using simple named entity recognition and the commercial Google Geocoder 

API13. The overall information flow for this approach can be seen in Fig. 4. 

The Google Geocoder API does not accept sentence input for geoparsing, only well 

formatted location names. It expects well-formatted lists of location super regions such 

as ‘Amphitheatre Parkway, Mountain View, CA’. The geocoded result is a JSON 

formatted list of geocoded addresses representing possible matches, including a 

longitude and latitude coordinate and well-formatted address with all the super 

regions included. There is no confidence data associated with entries in this list, so the 

first result is assumed to be the best. This service is really intended to present a list of 

geocoded locations to a user allowing a human choice to be made as to which one is 

really meant by the text (e.g. for an online map search feature). 

Our algorithm identifies named entities within a sentence using a combination of 

the Stanford POS tagger and a regex pattern that matches a sequence of proper nouns. 

 
13 https://developers.google.com/maps/documentation/geocoding/intro  
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We allow comma delimited noun phrases, so addresses with comma delimited super 

regions can be passed intact to the Google Geocoder API for a better result. For each 

sentence, noun phrases are ordered by gram size, largest first, and lexical position, 

earliest first. Candidate noun phrases are sent to Google geocoder in this order, and 

the first successful geocoding result used as a ‘best guess’ disambiguated location for 

the entity in question. A typical sentence will have 10+ possible noun phrases to try so 

there are many calls to the Google Geocoder API for every sentence. We cache 

geocoding results to avoid geocoding a phrase more than once, helping to reduce the 

number of requests to the API. 

The Google Geocoder API is rate limited, with limits applying to a 24-hour period 

of use and per second request rates. At the time of writing the rate limit for the free 

version of Google Geocoder API is 2,500 requests per 24 hours. We built the algorithm 

to pause when the rate limit was met and wait until it was enabled again. In practice 

this severely limits the size of the datasets we could geocode. For that reason, we only 

report in this paper results using the geocoder algorithm for the Tweet datasets and a 

randomly sampled 5,000 post subset from the MediaEval 2016 Placing Task Dataset; 

these 11,387 posts took almost two weeks to geocode. 

 
Fig. 4. Information flow pipeline for location extraction using named entity recognition and Google 

Geocoder API (geocoder) 

 Linked data entity extraction approach - linked-data 

For further comparison, we have also tested an approach based on DBpedia Spotlight 

[Daiber et al. 2013]14, which is a REST-based web service that exposes the functionality 

of annotating and/or disambiguating DBpedia entities in text. We will refer to this 

approach as linked-data. Its information flow can be seen in Fig. 5. 

The DBpedia Spotlight accepts any input text and performs named entity 

recognition to return DBpedia URIs based on the detected entities in the input text. 

To do so, it uses Apache OpenNLP for phrase chunking based on noun phrase and 

preposition phrases, and for identifying all named entities. In addition, it selects the 

best candidates from the set of phrases generated from the previous step by resolving 

the overlap between candidates and filtering them based on a score threshold. Then, 

it uses a generative probabilistic language model built on Wikipedia articles, in 

particular based on article mention frequencies of entities. The language model 

produces a score for each entity given a phrase and its surrounding context, and 

discards entity candidates with scores lower than a certain value. The final output is 

the list of the resulting DBpedia entities. 

 
14 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki  
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To leverage DBpedia Spotlight for our problem, we limit the results returned by the 

service to entities that are related to places or locations. Additionally, we set a 

confidence threshold equal to 0.4 in order to ensure reliable results from the annotation 

process. The output of the service is a JSON formatted list of DBpedia entities.  For 

geoparsing tweets, their text is provided to the annotation service and a list of DBpedia 

entities is retrieved for each tweet. The name of each entity in the list is considered 

the predicted location label. Similarly, the geotagging of posts in the MediaEval 2016 

Placing Task dataset is performed by giving the tags and titles as input to the DBpedia 

Spotlight and collecting the annotated entities. Afterwards, since for this task a unique 

latitude/longitude pair must be estimated, we selected the location of the DBpedia 

entity with the largest population as the final estimate. 

  

 
Fig. 5 Information flow pipeline for location extraction using linked data entity extraction approach and 

DBpedia Spotlight service (linked-data) 

 Named entity recognition and gazetteer matching approach - ner-gazetteer 

The last approach for comparison is the method described in [Zhang and Gelernter 

2014] that utilizes the geoparse algorithm from [Gelernter and Zhang 2013], which we 

refer to as ner-gazetteer. We used the publicly available implementation of the method15. 

The information flow of the approach can be seen in Fig. 6. 

The approach receives as input either text or a tweet in JSON format and returns 

geographical objects that contain information about the detected locations. The method 

initially applies a pre-processing step to the input text, which involves the Stanford 

NLP tool and a spell checker. From this step, the input is chunked in phrases and the 

corresponding parts of speech are detected. The spell checker removes nouns that do 

not match with any words in a dictionary or gazetteer. The output of the pre-processing 

is passed to three different parsers to identify location words, i.e. the named location 

parser, named entity recognition parser and rule-based parser. The recognized 

locations are buildings, streets, toponyms, and abbreviations. Then, entity matching is 

performed between the extracted locations and GeoNames entries to produce a set of 

candidate entities. The final location disambiguation is performed based on an SVM 

trained on entries with features generated based on information from GeoNames, i.e. 

population, alternative names and location type. 

The application of this method on our data is straightforward. For geoparsing 

tweets, their JSON representation is directly fed to the available software 

implementation and the name fields of the returned locations are used as location 

 
15 https://github.com/geoparser/geolocator3  
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estimates.  Similar to the linked-data method, the tags and titles of the post contained 

in the MediaEval 2016 Placing Task dataset are used as input and the most populated 

location entity in the returned location set is considered as the estimated location of 

the approach for the geotagging problem.  

 

 
Fig. 6 Information flow pipeline for location extraction using named entity recognition and gazetteer 

matching approach (ner-gazetteer) 

 EVALUATION 

This section outlines the experimental analysis of the algorithms described in section 

3. We performed three different experiments and a failure analysis on the detailed 

results. The first experiment examined geoparsing without location disambiguation, 

extracting location mentions from a benchmark Twitter dataset containing a ground 

truth of manually labelled location mentions. The second examined geotagging to a 

grid cell, extracting the spatial coordinates from a large dataset of Flickr posts each 

associated with a ground truth geotag. The last applied our approaches to a case study 

involving ranking location mentions from a Twitter feed from several real-world news 

events and comparing ranked location lists to ground truth news reports. 

Our experiments are designed to allow a relative performance comparison of the 

five considered algorithms on a variety of problem formulations and datasets. We 

examine each result in detail and highlight strengths and weaknesses between the 

algorithms. We also report on a failure analysis across all three experiments. This 

analysis provides the reader with a deeper discussion of which algorithms work better 

than others on different types of text expressions and different types of location. 

 Geoparsing Benchmark Tweet Datasets 

To examine geoparsing from text we use the geoparse Twitter benchmark dataset 

[Middleton et. al. 2014], available from the University of Southampton Web 

Observatory16. This open resource is available to any researcher with an interest in 

benchmarking geoparse algorithms, with the earliest Christchurch data evaluation 

reported in [Gelernter and Mushegian 2013] and earliest evaluation of the other events 

in this dataset reported in [Middleton et. al. 2014]. The dataset contains a set of tweets, 
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crawled during four news events at different times and in different countries, with 

manually annotated location references for mentions of administrative regions, streets 

and buildings. Details for this dataset can be seen in Table 1. 

It should be noted that this dataset has ground truth labels suitable for geoparsing 

without location disambiguation. The human annotators were asked to label the 

location phrases, so they did not attempt to disambiguate locations or report spatial 

coordinates or map database entries. 
Table 1. Breakdown of events in geoparse benchmark Twitter dataset 

 

We ran all the algorithms on this dataset and computed location labels for each 

tweet. The computed location labels for each tweet were manually scored by comparing 

each one to the ground truth label set provided with the dataset. If an extracted 

location name matched a location name in the ground truth set we reported a true 

positive (TP) for that tweet. If any extracted location name did not appear in the 

ground truth set, even if another extracted location name did appear, we reported a 

false positive (FP) for that tweet. Tweets with no extracted labels were either a true 

negative (TN), if the ground truth set was also empty, or a false negative (FN). Variant 

names for a location (e.g. New Zealand and NZ) were permitted as a valid match since 

the original ground truth labels, created by human labellers, often used the shortest 

abbreviation possible for a location name. We did not differentiate between region, 

street and building location granularity as we are interested in comparing geoparsing 

performance as a whole; [Middleton et. al. 2014] has previously reported results on 

geoparsing performance at different levels of spatial granularity. 

The benchmark dataset ground truth labels contain some missing location errors. 

This is a known issue with the dataset, resulting from the human labellers occasionally 

missing location mentions or not specifying the full set of location mentions in the 

tweet (e.g. only reporting the first location in a list of mentioned locations). We 

performed a meta-review of the tweets in the dataset and identified all such missing 

labels. There were a total of 259 meta-review tweets with a missed location in the 

dataset. Whenever any of our approaches correctly extracted a location that matched 

a meta-review missing location, we reported results as if the approach had not 

extracted any location at all; this resulted in either a TN or FN result. The alternative 

was to report a strict FP result, which would cause a misleadingly low precision score 

as all the meta-review missing locations are perfectly valid mentions of a location by a 

tweet. We followed this meta-review procedure to ensure our results can be compared 

directly yet fairly with the original work from [Gelernter and Mushegian 2013]. Our 

meta-review location label list is available, on request to the authors, to any researcher 

who needs it in the future and will be included in future releases of the geoparse 

Twitter benchmark dataset. 

 

Event # Tweets Crawler

Keywords

Language Date # Regions

mentioned

# Streets

mentioned

# Buildings

mentioned

# Locations

mentioned

Spatial mention

coverage

New York, USA

Hurricane Sandy

1996 flood

hurricane

storm

Mostly

English

Oct

2012

85 18 48 151 US South Coast

Christchurch, NZ

Earthquake

2000 earthquake

quake

#eqnz

Mostly

English

Feb

2011

33 24 64 121 New Zealand

Milan, Italy

Blackout

391 blackout Mixture

English &

Italian

May

2013

17 8 10 35 Milan

Turkey

Earthquake

2000 earthquake

quake

deprem

Mostly

Turkish

May

2012

51 0 0 51 Turkey
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Fig. 7. Metrics for evaluation 

 

To remove any potential training bias we filtered from the training set of Flickr 

posts used by the lm-tag and lm-tag-gazetteer approaches any reference to hashtags or 

event specific terms for each of the four events (e.g. #EQNZ, #Milano, Sandy, Blackout). 

We also removed Flickr posts in the temporal period of these events. 

Once all the tweets were scored, we computed precision, recall and F1 scores. The 

metrics used are shown in Fig. 7 and the obtained scores in Fig. 8. Overall, we find the 

map-database approach is the most robust choice for English and Italian tweets with 

F1 scores between 0.90 and 0.97. It provided a high precision as it was able to use 

context in the tweets to remove many false positives. The geocoder approach performed 

worst, due mostly to Google geocoder matching global locations to common phrases (e.g. 

‘deprem’ which is earthquake in Turkish) and names (e.g. ‘Sandy’). Examples of 

common failure patterns are provided in section 4.4. 

The conclusion from the Turkish results is that the decision of which approach 

performs best appears to be sensitive to whether there is a parser available for the 

target language. 

Precision  (P) = TP/(TP + FP) TP = true positive, FP = false positive
Recall  (R) = TP/(TP + FN) TN = true negative, FN = false negative
F1 measure = 2*PR/(P+R)
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Fig. 8. Geoparsing results for benchmark Twitter posts broken down by event. The map-database approach 

had the best precision (P 0.93 to 0.99) overall across the four events. The map-database also had the best 

overall F1 score (F1 0.90 to 0.97). The lm-tags approach was a robust choice (F1 0.66) for the Turkey 

earthquake event. 

 Geotagging Benchmark Flickr Posts 

To examine geotagging we ran each of our approaches where identified location 

mentions in text are returned as a spatial geotag for subsequent evaluation. For this 

work, we used the standard Yahoo! Flickr Creative Commons 100 Million (YFCC100m) 

dataset [Thomee et al., 2016], used also by the MediaEval 2016 benchmarking activity. 

This dataset has an in-built ground truth since each Flickr post contains a geotag. We 
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used the same test and training set split as MediaEval 2016, with a training set size 

of ≈38,2M posts and test set size of ≈1,5M posts. The title, description and tags were 

all available to be used for location extraction. Details for this dataset can be seen in 

Table 2 or explored on the dataset website17. 
Table 2. Global statistics for YFCC100m dataset and our training/test set split 

YFCC100m Flickr Dataset 

Timeline Feb 2000 - May 2014  

# posts 100,000,000 

# posts with 0 user tags 31,000,000 

# posts with 1 user tag 7,100,000 

# posts with 2 user tag 7,400,000 

# posts with 3+ user tag 53,800,000 

# posts - training set18 38,253,003 

# posts - test set 1,527,398 

 

To evaluate the results we computed the distance between the geotag calculated by 

each approach and the ground truth geotag of the Flickr post. Any geotag within a 1km 

radius of the ground truth was considered a TP, otherwise it was a FP. If no geotag 

was returned, due to a lack of confidence in the result, it was a FN. This allowed us to 

compute the P@1km result and its associated recall and F1 scores. 

Given the nature of Flickr there is a potential social bias in the YFCC100m dataset 

where popular locations are over-represented in terms of post frequency. It is also 

likely that results from the ‘long tail’ of less frequently mentioned locations would 

become hidden in the mean P/R/F1 results for each grid cell. To help assess the impact 

of this possible bias we computed a 1km2 grid across the globe and assigned to each 

grid square a randomly chosen post of which the geotag fell within the square. We then 

used this reduced dataset of 286,564 posts, spatially balanced so each grid square had 

a single post, to compute a P@1km_square result. We call this dataset a ‘geographically 

normalized dataset’. 

Lastly, we created a smaller random sample of 5,000 posts from the full dataset to 

allow us to run the geocoder algorithm. The geocoder has to work within Google 

Geocoder rate limits and geocoding 5,000 posts takes about a week, with the algorithm 

pausing each day until the 24-hour rate limit is refreshed. 

Results for all algorithms can be seen in Fig. 9. For our algorithms, we selected 

confidence thresholds that optimized the F1 score. Location matches falling below the 

confidence threshold were ignored, usually resulting in a FN result. The lm-tags-

gazetteer performed best overall (P@1km 0.36, F1@1km 0.49). It is clear that social tag 

features are dominant, since the lm-tags approach is almost as good as the lm-tags-

gazetteer approach. All the approaches showed weaker results when geo-social bias 

was removed, using 1km2 grid cells with equal post density, showing there is some bias 

in the YFCC100m dataset towards popular locations with many Flickr posts. The 

random sample dataset results were very similar to the full MediaEval 2016 dataset 

results, so the geocoder results are representative despite the small sample size. 

 
17 http://www.yfcc100m.org/globalstats   
18 Although YFCC comprises 100 million posts, only approximately 40 million of them were usable for 

training-testing our geotagging approach. The reason for that is that approximately half of the posts do not 

carry any geotag information, while an additional 10M posts created by users belong to the test set and 

were excluded in order to avoid overfitting. 
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Fig. 9. Geotagging benchmark Flickr posts. The lm-tags-gazetteer approach was best overall (P@1km 0.36, 

F1@1km 0.49). The lm-tags approach was almost as good, showing tag features were very important. All 

the approaches were weaker when testing on the sampled 1km2 grid cells, with the lm-tags-gazetteer 

approach performing best (P@1km 0.18, F1@1km 0.30). This shows there is some bias in the full dataset 

towards popular locations with many Flickr posts. The random sample results are very similar to full 

MediaEval 2016 dataset results, so the geocoder results are representative. 

 Case Study for Location Analytics over Tweets during a Breaking News Event 

We wanted to evaluate our approaches on the real-world problem of location mining 

from news content, to see if locations with a high mention frequency, extracted from 

content during a breaking news event, matched the locations finally reported in news 

articles via respected news sites. The aim was to provide a qualitative evaluation for 

the recall of newsworthy locations. Journalists are under a lot of time pressure, so they 

are very interested in highly filtered information feeds where only pertinent data is 

presented. Journalists want to look at the most important locations for a breaking 

news story and verify the earliest posts about each incident(s) at the event location(s). 

Therefore understanding the recall of newsworthy locations from a top N filtered list 

is an important applied use case to evaluate. 

We used the Twitter search API to crawl tweets for three news events shortly after 

they broke. Events include November 2015 Paris shootings, March 2016 Brussels 
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airport bombing, and May 2016 Turkish police station bombing. Each of these events 

had many mainstream news reports, and the journalist-verified location breakdown 

associated with specific incidents during each event is very well documented and is 

used as the ground truth for the task. The news sites used for our ground truth location 

list were BBC News, CNN and RT. The dataset statistics can be seen in Table 3. 

 
Table 3. Statistics for Twitter datasets and ground truth locations associated with each news event 

Event Crawler 

keywords 

# Tweets # Ground 

truth locations 

Start 

timestamp 

End 

timestamp 

Paris shootings19 

13th November 2015 

Incidents 20:20, 20:25, 20:32, 

20:40, 20:36, 20:40 UTC 

paris 

shootings 

62,908 4 (regions) 

2 (streets) 

5 (places) 

20:20 

UTC 

21:20 

UTC 

Brussels airport bombing20 

22nd March 2016 

Incidents 08:00, 09:11 UTC 

brussels 

bombing 

969,524 3 (regions) 

2 (places) 

04:00 

UTC 

10:30 

UTC 

Turkish police station 
bombing2122 

8th May 2016 

Incident 06:00 UTC 

turkey 

bombing 

midyat 

57,902 3 (regions) 05:30 

UTC 

14:00 

UTC 

 

We ran all algorithms except the geocoder approach, due to the aforementioned API 

limitations, on this dataset and geoparsed every tweet. We then compiled a ranked list 

of ground truth locations for each event, ordered by frequency of mention. Finally, we 

computed a recall@N metric by counting the number of ground truth locations in the 

top N locations extracted. The idea is to see how a top N list of trending locations 

extracted using the proposed methods maps to the location list used in the journalists 

final news reports. 

The results can be seen in Fig. 10. We report R@3, R@10, R@20 and R@All as we 

wanted to see how coverage varied between different ‘top N’ location sets. The map-

database approach was best overall, with results worse when locations included streets 

and building names rather than just region names. 

 

 
19 http://www.bbc.co.uk/news/world-europe-34818994   
20 http://www.bbc.co.uk/news/world-europe-35869985   
21 https://www.rt.com/news/345822-mardin-police-station-bomb/   
22 http://edition.cnn.com/2016/06/08/europe/turkey-midyat-car-bomb/   
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Fig. 10. Case study results ranking extracted locations mentioned in Twitter posts of breaking news 

stories. The map-database approach was best overall (R@20 0.60 to 1.00). Both approaches struggled with 

the Paris event, where the story involved streets, buildings and regions as opposed to mostly regions. 

 Failure analysis 

We observed some recurring patterns of location mentions that cause problems for 

different classes of algorithms. Table 4 shows a set of common patterns that caused 

problems for some algorithms.  
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Table 4. Examples of failure patterns 

Pattern 

[frequency seen from 

manual inspection] 

Algorithms which 

had trouble 

Example Correct Location 

Common terms 

mistaken for location 

names 

[very common] 

geocoder 

ner-gazetteer 

This is the end of my 

Hurricane Sandy live-

tweeting day 1 

None. Mistaken location was 

Hurricane, UT 84737, USA 

Peoples names that are 

also location names 

[common] 

geocoder 

linked-data 

ner-gazetteer 

Webgrrls hosting 

company is flooded by 

#Sandy 

Sandy, UT, USA 

Locations without any 

context 

[common] 

geocoder 

ner-gazetteer 

The city has high winds 

and flooding by the 

coastal lines 

City of London, London, UK 

Not in a well formatted 

address 

[rare] 

geocoder Street flooding #NYC: 

48th Ave 

48th St, New York, NY, USA 

Spelling mistakes 

[rare] 

map-database 

linked-data 

ner-gazetteer 

lm-tags-gazetteer 

earthquake in 

Chrristchurch New 

Zealand ghastly 

Christchurch, New Zealand 

Saints and peoples title 

confused with place 

type abbreviations 

[rare] 

geocoder 

linked-data 

lm-tags-gazetteer 

I agree with St. Mary 

on this topic 

None. Mistaken location was 

1928 St Marys Rd, Moraga, 

CA 94575, USA 

Vernacular names and 

abbreviations 

[very rare  on average 

but depends on event] 

map-database 

linked-data 

ner-gazetteer 

CHCH hospital has 

been evacuated 

Christchurch Hospital, 2 

Riccarton Ave, Christchurch 

Central, Christchurch 8011, 

New Zealand 

Street names in 

unpopular locations 

[very rare on average 

but depends on event] 

linked-data 

ner-gazetteer 

Anyone have news of St 

Margarets Girls 

College Winchester St 

Merivale 

Margarets Girls College, 12 

Winchester St, Canterbury 

8014, New Zealand 

All approaches could handle poorly formatted location mentions with the exception 

of Google Geocoder, which expected a well-formatted address with the primary location 

followed by a comma separated list of super regions. 

The issue of spelling mistakes was addressed by some approaches by using spell 

checkers at the phrase extraction stage. With the exception of Google Geocoder API, 

which has access to a comprehensive multilingual spell checker, the use of spell 

checkers impose language restrictions (e.g. English only) as spell checking is highly 

language dependent. Interestingly we found the option of using machine translation 

to English, and then applying spell checking, was not adopted in the approaches we 

reviewed. This is probably due to the information loss that would occur and the fact 

that it is unnecessary when you have access to multi-lingual variant names (e.g. via 

OpenStreetMap) or social tags in a variety of languages. 

Most approaches struggled with street and building names for unpopular locations 

without a social media tag. For example, news events can occur in any place, not just 

tourist spots, so locations of interest can be buildings or streets in unheard of locations. 

The map-database and lm-tags-gazetteer were most resilient to this as they had access 

to detailed street and building data for focus areas (e.g. all of Christchurch’s streets 

and buildings). 

Approaches without additional vocabulary support for stop word lists, place type 

abbreviations and people names consistently returned incorrect global location 

matches. This was mostly due to a lack of understanding of the context where the 

phrases were being used. Approaches using only gazetteer or linked data lists of 

locations were vulnerable to this. Google Geocoder was particularly weak on this point 
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due to its strategy of returning long lists of possible location matches; the intention is 

really for a human to choose from this list and it provides little context to allow a high 

precision automated selection. 

Lastly, vernacular names for locations were problematic to all approaches that did 

not have access to social media tag data. The map databases like OpenStreetMap has 

some vernacular names, but often local nicknames were missing and simple ignored 

unless they appeared in a social media tag. 

The next section 5 reviews these results in more detail, examining possible causes 

to some of the observed patterns we see in the results. 

 DISCUSSION 

We performed two quantitative and one qualitative evaluation to examine the different 

strengths and weaknesses of our approaches. Each approach had a different strength 

and weakness profile, allowing some interesting insights and indicating there is 

potential for a complimentary fusion approach to be developed. 

The map-database was strongest for geoparsing. Locations associated with news 

events can be anywhere, and often include places or regions that are not popularly 

visited or posted about on social media sites such as Flickr. We found that approaches 

relying on linguistic processing (e.g. parts of speech patterns, spell checking, name 

filters, etc.) provided the best recall (R 0.93), and were very good at extracting location 

mentions from English posts. We think this is because even though social media posts 

have poor grammar they contain enough linguistic clues to make effective guesses. 

The map-database approach had a consistently high precision (P 0.93 to 0.99) 

exhibiting a strong multi-lingual performance with the exception of Turkish. The lm-

tags approach, using tag set training data to list many of the popular ways people refer 

to a location and non-location contextual tags, showed its strength on the Turkish 

dataset (R 0.54 and up to three times better than other approaches). 

When comparing how approaches performed on the problem of geotagging, the lm-

tags approach performed best (F1 0.49). Looking into why this might be, we think that 

the presence of specific contextual tags in addition to location name references 

provided highly discriminating features, which the lm-tags approach could train upon. 

Tags such as sporting event names, food types and local nicknames reported alongside 

a location name proved to be good discriminators between locations with the same 

name. The results degrade (F1 0.30 down 60% from 0.49) when posts are uniformly 

sampled on 1km2 grids, showing that scarcity of tags in unpopular areas does 

downgrade performance. This is expected as there is more training data for popular 

tourist locations than the more obscure locations rarely posted about. It is also true 

that locations where no Flickr posts exist at all are not represented in the YFCC100m 

dataset. However, the lm-tags approach clearly outperformed the others, with F1 

scores double other approaches, and shows the major strength of using tag sets for 

geotagging. 

It would be possible to develop a hybrid approach where entity recognition is used 

for identification of location labels, followed by a coarse-grained tag-based geotagging 

(e.g. get all location within a 10km2 cell) and finally a fine-grained map-based entity 

lookup. This could be a very successful strategy where text documents are well 

organized, with good grammar and strong use of case for proper names, such as formal 

reports. In these cases, linguistic processing should detect locations with high precision. 

Unfortunately social media posts are rarely well formatted, containing bad grammar 

and difficult non-textual content such as emojis and characters for visual expression 

and emphasis, so scope for hybrid success is more limited. 
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For the qualitative evaluation, on our applied use case of mining breaking news 

tweets, we found that the map-database approach was the most robust (R@20 0.64 to 

1.00). The recall errors observed with the lm-tag-gazetteer approach were mostly due 

to making a wrong location estimate in the first part of the method, resulting in a 

failure to find a matching location label at the next step, given that only locations from 

the estimated cells are considered in the matching. 

It is clear from the qualitative evaluation that most techniques are weak when 

extracting street and building location names compared to strong performance in 

region name extraction. Approaches with access to a full map database, as opposed to 

just a gazetteer with region names, were strongest. Approaches using social media tags 

performed well on popular streets and buildings, but completely missed mentions of 

place names that were not tagged (e.g. a police station in a small region of Turkey). 

When selecting the best method it is therefore important to consider the use case in 

which location extraction will be applied. Are streets and buildings needed in addition 

to regions? Is the area likely to be well tagged via social media? Are focus areas known 

in advance? These questions need to be answered before the best technique can be 

recommended. 

 CONCLUSIONS 

We present in this paper a comprehensive analysis of five ‘best of class’ approaches to 

location extraction from social media text. The first, an extension of [Middleton et. al. 

2014], uses a location entity matching approach based on the OpenStreetMap database. 

The second approach, an extension of [Kordopatis et al. 2017], uses a combination of 

training a language model on a set of Flickr post tags and a set of gazetteers. For 

benchmarking, we also evaluated a DBpedia linked data matching approach, a 

gazetteer and named entity matching approach and an approach based on Google 

geocoder lookups of named entities. 

We evaluate geoparsing without location disambiguation using a standard geoparse 

Twitter benchmark dataset (i.e. over 6,000 tweets), allowing us to directly compare 

results across all five approaches. We found that the map-database entity matching 

was best overall for English and Italian (P 0.96 to 0.99, F1 0.90 to 0.97). For Turkish 

the lm-tags approach was best (F1 0.66). 

We then evaluated geotagging by exploring a geotagging problem formulation using 

the YFCC100m Flickr dataset (i.e. over 39 million geotagged Flickr posts). The lm-

tags-gazetteer approach was strongest (F1@1km 0.49) and showed the strength of using 

tag sets for location disambiguation. It should be noted however that there are 

locations, especially unpopular or insignificant locations, where there are no Flickr 

posts at all, which would represent areas where approaches using tags alone would 

fail.  

We lastly performed an applied qualitative evaluation where datasets of breaking 

news tweets (i.e. over one million tweets) were geoparsed and the results, ranked by 

top-N mention frequency, compared to locations published in ground truth news 

reports from BBC, CNN and RT. The map-database approach was strongest (R@20 

0.60+), probably down to the fact that OpenStreetMap has no variation in coverage 

between popular and unpopular locations and was able to successfully identify lesser-

known street and suburb names from the news reports. 

There are a few areas where further research might make improvement on the ‘best 

of class’ approaches outlined in this paper. The first is to explore other sources of 

context to social media posts, such as inter-connected datasets from mobile devices and 

the Internet of Things (IoT). If real-time geoparsing is not required then adaptive 
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lookup and indexing of social media sites with tagged content could be performed to 

add user profile context to posts. The last area is the use of location refinement 

strategies, exploiting available geosemantic context within the text of each post. 

Sometimes location mentions come with some geosemantic context such as ‘5 miles 

north of London’. This could be parsed and the spatial location reference adjusted 

accordingly to improve geotagging precision. 
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