
 1 

Ordinary kriging for on-demand average wind 
interpolation of in-situ wind sensor data 

 

Zlatko Zlatev, Stuart E. Middleton, and Galina Veres 
IT Innovation Centre, University of Southampton, Southampton, SO16 7NP, UK 

{zdz, sem, gvv}@it-innovation.soton.ac.uk 
 

Abstract 
 
We have developed a domain agnostic ordinary kriging algorithm accessible via a standards-
based service-oriented architecture for sensor networks. We exploit the Open Geospatial 
Consortium (OGC) Sensor Web Enablement (SWE) standards. We need on-demand 
interpolation maps so runtime performance is a major priority. 
 
Our sensor data comes from wind in-situ observation stations in an area approximately 200km 
by 125km. We provide on-demand average wind interpolation maps. These spatial estimates 
can then be compared with the results of other estimation models in order to identify spurious 
results that sometimes occur in wind estimation. 
 
Our processing is based on ordinary kriging with automated variogram model selection (AVMS). 
This procedure can smooth time point wind measurements to obtain average wind by using a 
variogram model that reflects the wind phenomenon characteristics. Kriging is enabled for wind 
direction estimation by a simple but effective solution to the problem of estimating periodic 
variables, based on vector rotation and stochastic simulation. 
 
In cases where for the region of interest all wind directions span 180 degrees, we rotate them 
so they lie between 90 and 270 degrees and apply ordinary kriging with AVMS directly to the 
meteorological angle. Else, we transform the meteorological angle to Cartesian space, apply 
ordinary kriging with AVMS and use simulation to transform the kriging estimates back to 
meteorological angle. 
 
Tests run on a 50 by 50 grid using standard hardware takes about 5 minutes to execute 
backward transformation with a sample size of 100,000. This is acceptable for our on-demand 
processing service requirements. 
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1. Introduction 
 
In the SANY project [5] we have developed reference implementations of decision support and 
generalized data fusion services based on an environmental service architecture that is 
compliant with the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) 
standards [6]. Data from existing sensor networks, emerging ad-hoc sensor networks, virtual 
sensors and so on are collected in sensors observations services (SOS) and can be pulled on 
demand and directed towards a web processing services (WPS). 
 
We have been developing generic processing services to provide SANY with a fusion capability 
that is domain agnostic, not restricted to a particular phenomenon or set of dataset 
characteristics. As a case study we have looked at providing services to support risk 
assessment and decision making when tracking bathing water pollution at beaches. For these 
risk assessment and decision making tasks proprietary physical models are fused with average 
wind velocity estimates on a spatial grid. 
 
Also, output from complex non-parametric models may be compared against spatial estimates 
from in-situ sensors in order to identify spurious results, which may sometimes occur in those 
more complex models. For example in [1] a number of reasons are stated that cause spurious 
results when estimating average wind speed and direction with Volume Imaging Lidar (VIL). 
Suspected VIL estimates may be compared against interpolated values from in-situ sensors of 
an existing sensor network covering the target area. 
 
We haven’t been able to find readily available generic work and procedures to address our 
requirements for obtaining average wind estimates on a spatial grid on-demand from time point 
wind measurements. We developed ordinary kriging with automated variogram model selection 
(AVMS) to provide on-demand maps of interpolated values of average wind velocity for any 
given moment in time. 
 
Our case study involves the study of wind velocity measurements from observation stations 
covering an area of approximately 200km by 125km. The sensor data is located in a database 
and accessed via a SOS, making use of the SWE metadata to read in self-described sensor 
datasets for the requested time period. We provide kriging via a WPS and our result sets are 
also formatted according to the SWE standards, making them also self-described. We have an 
initial, manual configuration for a new dataset by a domain expert based on an analysis of the 
dataset characteristics. After that our service uses the self-described nature of the input data to 
automatically configure itself to the observed phenomenon required and associated 
characteristics. 
 
Section 2 outlines our sensor data characteristics, the challenges faced when handling 
periodicity and the solutions we adopted. Section 3 describes in detail our algorithm for ordinary 
kriging with AVMS. 
 

2. Interpolating periodic data 
 
Wind direction is represented by its meteorological angle, which is periodic. Most statistical 
estimation techniques are not directly fit for estimating periodic variables. For periodic variables, 
values at the period beginning and end are contextually close but numerically distant. An 
approach to resolve this disagreement could be to transform the periodic variable to Cartesian 
space, obtain estimates of the Cartesian components and then perform backward 
transformation to estimates in the original periodic space. The backward transformation shall be 
obtained as the arctangent of the ratio of the Cartesian components’ estimates, which are 
generally assumed to be Gaussians. The Gaussian ratio distribution has no simple analytical 
solution [3]. The resulting arctangent distribution can be multimodal and with undefined mean 
and variance making a simple backward transformation impossible. 
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A method based on an artificial neural network (ANN) with a mixture of periodic or Euclidean 
Gaussian kernel functions has been proposed by Bishop and Legleye [4] for the estimation of 
densities of periodic variables. However, applying estimation methods based on ANN on ad-hoc 
bases and on a spatial grid, e.g. 50 by 50, can be very time consuming which compromises the 
on-demand interpolation service requirement. In our ordinary kriging with AVMS implementation 
for wind direction spatial interpolation we tackle the problem of estimating a periodic random 
variable with a simple but effective solution based on vector rotation and Cartesian 
transformation with stochastic simulation.  
 
Ordinary kriging estimates at unobserved locations are obtained from measurements at 
observed locations and a variogram, which models spatial dependences. When creating the 
variogram numerically close measurements point to high spatial dependence and vice versa. 
Wind directions’ meteorological angles at the period’s beginning and end are close in terms of 
direction but are distant numerically, which makes the variogram creation direct from the 
observed wind direction angle inappropriate.  
  
We observed in our test datasets, containing observations for 17 locations over an area of 
200km by 125 km for 5 years, about 80% of the wind direction angles spanned less then 180

o
. 

In cases like these, before creating a variogram we will only need to rotate the wind directions in 
a way that the period onset doesn’t intersect the wind directions span. This will eradicate the 
periodicity problem as the numerical distance between the wind direction angles will correspond 
to the distance between the wind directions and will enables variogram building and kriging. 
Figure 1 depicts this idea: the original wind directions (solid line) in quadrants 1 and 4, are 
rotated (dashed line) to lie in quadrants 2 and 3. As kriging smoothes extreme values the 
interpolated values are expected to be within the extreme wind direction angle values. With this 
transformed data a variogram is created and ordinary kriging used to obtain estimates. The 
kriging estimates are rotated backwards to obtain the final results, as depicted in Figure 2. 
 

 
Figure 1. Transforming observed wind direction meteorological angles when observed wind 
directions span less then 180

o
. 
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Figure 2. Transforming estimated wind direction meteorological angles when observed wind 
directions span less then 180

o
. 

 
For cases where the observed wind directions span more then 180

o
, we transform the 

meteorological angle to Cartesian space and perform kriging on the transformed data. For the 
backward transformation, from Cartesian components estimates to meteorological angle, we 
use stochastic simulations and calculate the mode and 0.025 & 0.925 percentiles from the 
simulated sample. Figures 3 and 4 show respectively the forward (before variogram building 
and kriging) and backward (after variogram building and kriging) data transformation. 
 

 
Figure 3. Transforming observed wind direction meteorological angles when observed wind 
directions span more then 180

o
. 

 

 
Figure 4. Obtaining estimated wind direction meteorological angles when observed wind 
directions span more then 180

o
. 

 
We expect that for the majority of the cases only direction rotation will be needed. The 
simulation approach was tested on a 50 by 50 grid using standard hardware. Backward 
transformation with sample size of 100,000, allowing results to approach direct angle kriging 
results, takes on average about 5 minutes. Thus, the service on-demand requirements for the 
WPS interpolation service are not compromised.   
 

3. Ordinary kriging with automated variogram model selection 
 
Traditional in-situ wind speed and direction measuring instruments provide point measurements 
at certain locations in space and time points. For environment monitoring applications we are 
interested in area or volume average wind speed and direction values. Generally, point 
measurements in the convective boundary layer do not provide representative average wind 
estimates. This is because point measurements often include contaminations from large eddies, 
roll vortices, and topographic influences, which causes them to differ from the average values 
[1]. Time averaging often cannot compensate temporal fluctuations without losing some 
information about the changing value of the average wind [1]. Therefore, for wind interpolation 
from point measurements we need a method that accounts for its phenomenology and 
smoothes the fluctuations accordingly.  
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The wind velocity (speed and direction) power-spectrum will depend on the geographical area 
and the surface topology but in general wind has a slowly varying component and a rapidly 
fluctuating component. The slowly varying component can be considered as current average 
wind velocity level, relatively constant over a period of time of several hours. The rapidly 
fluctuating component is with a period of fluctuations from seconds to minutes. To extract the 
average wind velocity vector a time series power-spectrum analysis can be performed. 
However, for the purposes of the SANY project it is required that the wind spatial interpolation 
service is to work on ad-hoc bases (i.e. dataset agnostic processing) on a given time-slice data. 
Consequently, the power spectrum analysis from temporal data may not be performed but 
instead we needed to use a smoothing procedure that can utilise background information about 
the phenomenon. 
 
For spatial interpolation our WPS provides ordinary kriging with automated variogram model 
selection (AVMS). Background information describing the phenomenon characteristics can be 
reflected by the variogram model used for kriging. For the ordinary kriging with AVMS, along the 
sensor data, metadata is supplied that impose constraints to the variogram model to be 
selected in a way that reflects the phenomenology of the interpolated phenomenon. Figure 5 
depicts the different stages of the ordinary kriging with AVMS interpolation procedure. 
 

 
 
Figure 5. Ordinary kriging with 
automated variogram model selection 
procedure. 
 

The first stage is the data pre-processing stage, 
where data cleaning, normalisation and necessary 
data transformations are performed (e.g. forward 
transformations necessary for estimating a periodic 
variable discussed in Section 2). Accordingly, in the 
last stage, data post-processing, data de-
normalisation and reverse transformations are 
performed (e.g. backward transformations 
necessary for estimating a periodic variable 
discussed in Section 2). The core ordinary kriging 
with AVMS stages are the experimental-variogram 
creation, theoretical-variogram model selection, 
model-consistency optimisation and ordinary 
kriging.   
 
The most critical part of the experimental-variogram 
creation stage is the selection of lags. Lags need to 
be selected so they contain an optimal number of 
points in a way that physical phenomenon 
characteristics are not smoothed out but that noise 
is not modelled. Generally the initial slope of the 
variogram needs to be well estimated so the first 
few lags shall contain smaller number of points. If 
no hole-effect is expected the following lags may 
contain a large number of points, but if hole-effect is 
expected the lags shall contain lower number of 
points so the effect is not smoothed out. The 
relative number of points in a lag is specified in the 
metadata supplied to the interpolation procedure. 
This relative number can be set by a phenomenon 
expert or pulled from an expert system listing 
known phenomena (an expert system is currently 
under design).  
 

The next stage is the theoretical-variogram model selection. Currently, we have eight models 
implemented: spherical, exponential, Gaussian, linear, power, generalised Bessel, sine hole-
effect and cosine hole-effect. The model shape is governed by a subset of the following 
parameters: nugget, range, power, hole and sill. We use least-squares fitting method to select a 
model that best fits the experimental variogram. We can introduce background information 
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about the phenomenon by constraining the fitted model types and the parameter values and 
then, in effect, a variogram model reflecting the characteristics of the phenomenon of interest 
will be selected.  
 
For wind velocity we expect the point measurements of wind velocity to have low spatial 
correlation because of the rapidly fluctuating component previously discussed, so we set the 
upper bound for the nugget parameter to be relatively high, e.g. 1/3 of the sill. Also, we expect 
spatial correlation of the average wind velocity to decrease very slowly with increasing the 
distance, so we set the lower bound of the range parameter to be relatively high (so relatively 
more observations influence the estimate), e.g. 1/3 of the maximum distance. Next, we don’t 
expect a hole effect, so the models with hole effect are not selected. As the observed area is 
relatively large we expect that the phenomenon causes are to change within it and so the 
variogram should approach a horizontal asymptote, a sill, at some distance, so the power model 
is not selected.  
 
In general, nugget reflects the magnitude of rapid fluctuations (assuming that the measuring 
error is negligible in comparison to these fluctuations), range reflects the scale of the 
phenomenon (for wind possibly reflects the surface topology too) in comparison to the size of 
the observed area, the presence and the magnitude of sill depends on the phenomenon scale in 
relation to the size of the observed area, and finally hole effect exists or not depending on the 
essence of the phenomenon and the characteristics of the environment (for wind hole effect 
may be caused by the surface topology).  
 
We are positive that phenomenon experts will be able to select models and parameters’ 
boundaries that reflect the characteristics of the phenomenon of interest. 
 
After selecting the theoretical-variogram model, model parameters optimisation is performed in 
order to improve the internal consistency of the model. Kitanidis [4] suggests two statistics, Q1 
and Q2, that need to be as close to their expected values as possible in order for the model to 
be consistent with the ordinary kriging inductive bias. We use quadratic-sequential-
programming to tune the model parameters, subject to the parameter constraints discussed 
above, with a loss function proportional to the squared differences between Q1 and Q2 and their 
respective expectations. Additionally, we try to keep the nugget of the model minimal but as a 
secondary objective, i.e. it is included in the loss function with a smaller weight. Unrealistically 
high nugget will over-smooth the estimates. Kriging over-smoothing will cause a very high 
standard deviation in an estimate.  
 
After the variogram model optimisation stage standard ordinary kriging is performed using the 
optimised variogram model and estimate’s mean and standard deviation are computed. We 
take the mean as the area average wind. In general, the produced estimate standard deviation 
by kriging shall be utilised depending on the purpose of the interpolation. When kriging is used 
for spatial smoothing the use of the estimates’ standard deviation can be subtle. We take the 
area average wind to be the mean of the estimated wind at a particular time point, given the 
correct variogram model for the phenomenon. The produced standard deviation by kriging is 
pertinent to the distribution of the estimated wind at a particular time point but not the estimated 
mean, taken to be the estimated area average wind. A very high kriging standard deviation 
indicates possible over-smoothing and the estimation results should be questioned.  A very low 
standard deviation indicates that the estimate was possibly influenced by a spatially close 
observation, i.e. it is not an average value but a time point value, which according to the wind 
phenomenology is affected by the rapid fluctuations component. In such cases the estimate 
may be rejected and re-estimation performed with the spatially closest observation ignored. 
Currently we have not experimented with this idea but it seems viable. 
 
When using ordinary kriging for spatial smoothing it is not possible to perform experimental 
procedure validations such as cross-validation. We can only make sure that the internal 
structure of the method is as consistent as possible - i.e. theoretical model optimisation is 
performed. In addition we have performed numerous tests with real data and visually inspected 
the results for presence of spurious results.   
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4. Conclusions. 
 
We have implemented ordinary kriging with AVMS as an OGC compliant web processing 
service (WPS). It is a generic fusion service for grid interpolation on-demand from in-situ sensor 
data, self-configuring itself based on the OGC SWE self-described input data provided. 
 
The ordinary kriging with AVMS takes phenomenon metadata as an input and selects a 
variogram model that reflects the characteristics of the phenomenon of interest, making the 
service generic. This also enables using the service as a spatial smoothing procedure as it is in 
the case of estimating average wind from time point wind measurements. 
 
We require on-demand results to provide input into a bathing water quality model that allows 
decision support regarding the water quality at beaches. We thus have a simple yet effective 
solution based on vector rotation and stochastic simulation for estimating periodic random 
variables, which produces practical on-demand execution speeds for spatial grid estimates. 
Running on standard hardware, simulation with sample size of 100,000 to obtain estimates on a 
grid 50 by 50, takes about 5 minutes to execute. 
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