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Capturing user preferences is a problematic task. Simply asking the users what they 

want is too intrusive and prone to error, yet monitoring behaviour unobtrusively and 

finding meaningful patterns is both difficult and computationally time consuming. 

Capturing accurate user preferences is, however, an essential task if the information 

systems of tomorrow are to respond dynamically to the changing needs of their users. 

  This thesis tests the hypothesis that using an ontology to represent user profiles 

offers advantages over traditional profile representations in the context of 

recommender systems. 

  A novel ontology-based approach to recommendation is applied to a real world 

problem and empirically evaluated. Synergy between recommender systems and 

ontologies is then explored to help overcome both the recommender system cold-start 

problem and the ontology interest-acquisition problem. Finally, the visualization of 

profiles in ontological terms is examined in a real world situation and empirically 

evaluated. 
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Chapter 1 Introduction 

Chapter summary 

The motivation behind this thesis is described. 

The objectives and scope of this thesis are specified. 

The structure to this thesis is explained. 

The thesis contribution is detailed. 

A declaration of originality is made. 

 

1.1 Motivation 

Capturing user preferences is a problematic task. Simply asking the users what they 

want is too intrusive and prone to error, yet monitoring behaviour unobtrusively and 

then finding meaningful patterns is difficult and computationally time consuming. 

Capturing accurate user preferences is however, an essential task if the information 

systems of tomorrow are to respond dynamically to the changing needs of their users. 

This thesis examines issues associated with building user profiles for a recommender 

system by unobtrusively monitoring user behaviour. The thesis explores the idea of 

using an ontology to represent dynamic user behaviour profiles, and empirically 

evaluates some of the benefits associated with such an approach. The evaluations 

presented are grounded in the problem domain of recommending academic research 

papers. 

If the work presented here sheds some light on the path to truly personalized systems 

it will have been worthwhile. 

1.2 Scope and the central hypothesis 

1.2.1 Scope 

Recommender systems learn their users’ preferences over time via both unobtrusive 

monitoring and relevance feedback. The construction of accurate user profiles is a 

difficult process. Typically, a recommender system has to work with noisy, indirect 

evidence of user interest, such as web browsing logs or product purchase records. To 
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be successful, an appropriate profile representation must be selected for the specific 

domain, and appropriate profiling techniques employed. 

Recommendations are formulated either by finding similar users and recommending 

the things they liked, collaborative filtering, or by finding similar things to the things 

a user liked before, content-based filtering. Content-based recommendation normally 

requires machine-learning techniques to find patterns in the things users like. 

Collaborative filtering requires a statistical technique to match other user profiles to 

the profile of the things a user has liked. 

As such, the scope of this thesis includes both profiling techniques and machine-

learning, in addition to recommender systems. 

1.2.2 Central hypothesis 

The central hypothesis of this thesis is that representing user profiles using an 

ontology offers advantages over traditional profile representations. Three sub-

hypotheses are examined in order to test the central hypothesis. 

The first sub-hypothesis is that inferences gained about profiles outweigh the loss of 

information that occurs when a profile is constrained to use only ontological terms. 

Specifically, the profile accuracy lost by representing profiles in terms of ontological 

concepts, when compared to a traditional representation, is compensated for by the 

profile accuracy gained by using the ontology to infer information about a profile. 

The second sub-hypothesis is that using an ontology allows other knowledge-bases, 

which use the same ontological concepts, to be used to draw on additional information 

not normally available to the recommender system. Specifically, using a publications 

and personnel knowledge-base to bootstrap interest profiles helps reduce the 

recommender cold-start problem. 

The third sub-hypothesis is that explicit feedback on user profiles offers advantages 

over traditional relevance feedback. Specifically, visualizing a profile in ontological 

terms allows users to explicitly comment on their own profile, providing a rich source 

of information that will improve profiling accuracy. 

10 



 

If the first sub-hypothesis is true, then an ontological approach to user profiling is at 

least as good as a more traditional approach. If the second and third sub-hypotheses 

are true, then an ontological approach to user profiling offers clear advantages, and 

hence the central hypothesis is true. The objective of the three experiments within this 

thesis is thus to prove the three sub-hypotheses, and hence the central hypothesis. 

1.3 Thesis structure 

This thesis begins by introducing recommender systems and the techniques associated 

with them, setting the context in which this work is set. Three experiments are then 

discussed, each with the aim of providing supporting evidence to one of the three sub-

hypotheses. The evidence is then collated and summarized in order to show support 

for the sub- hypotheses, and in turn prove the central hypothesis of this thesis. 

Chapter 2, Recommender systems, reviews recommender systems in detail by 

examining the current recommender systems work within the literature. A 

categorization is proposed for recommender systems, and the reviewed systems 

placed within this structure. 

Chapter 3, Profiling techniques and machine-learning, introduces techniques and 

concepts in both profiling and machine-learning research that are used by 

recommender systems. 

Chapter 4, The Quickstep recommender system, introduces and describes the 

Quickstep recommender system. The representations and algorithms are specified, 

design discussed and experimental details revealed. An ontology is used to represent 

user profiles, and an evaluation is performed to measure the effectiveness of this 

approach. Overall usefulness is measured and the system is compared to others in the 

literature. The conclusions drawn provide evidence to support the first sub-hypothesis. 

Chapter 5, Cold-start recommendation and ontology interest acquisition, explores the 

idea of using both an ontology and a communities of practice identifier to bootstrap 

the Quickstep recommender system, hence overcoming the classic recommender 

system cold-start problem. This integration also allows Quickstep to provide up-to-

date interests to the ontology, hence addressing the interest acquisition problem 
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ontologies often have. An experimental analysis is performed and conclusions drawn 

to provide evidence for the second sub-hypothesis. 

Chapter 6, The Foxtrot recommender system, introduces and describes the Foxtrot 

recommender system. The representations and algorithms are specified, design 

discussed and experimental details revealed. The idea of visualizing user profiles 

using ontological terms is explored, allowing users to both see and update their own 

profiles. An empirical analysis is performed and conclusions drawn to provide 

evidence for the third sub-hypothesis. 

Chapter 7, Conclusions and future work, concludes this thesis by collating the 

evidence for each sub-hypothesis, and examining how the three sub-hypotheses prove 

the central hypothesis. The future direction for the work detailed within this thesis is 

then discussed. 

1.4 Contribution 

This thesis provides two contributions. 

Novel approach 

Both the Quickstep and Foxtrot systems use a novel, ontological approach to user 

profiling within recommender systems. It is novel since most other recommender 

systems use a binary class approach, using “interesting” and “not interesting” classes 

specific to each user. 

The ontological profile representation used by both Foxtrot and Quickstep represents 

each profile interest type as an ontological class. The relationships within the 

ontology are used to infer new knowledge about interests that could not be observed 

directly. Profiles are also visualized, using the ontological terms that are 

understandable to users, and profile feedback elicited. 

Lastly, the recommender cold-start problem is addressed by applying a knowledge-

base, based on publications and personnel data, which uses the same ontology to 

bootstrap new user profiles. 
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New evaluation results for an existing concept 

The current literature seriously lacks quantitative evaluations of recommender 

systems addressing real world problems. Both the Quickstep and Foxtrot systems are 

evaluated using real people while performing a real world task. This in itself is an 

important contribution to the recommender systems community. 

1.5 Declaration 

This thesis is based upon work undertaken by the author. What is presented is the 

original work of the author with the exception of OntoCoPI and the AKT ontology 

detailed in chapter 5; OntoCoPI and the AKT ontology are part of the advanced 

knowledge technologies (AKT) EPSRC project at the University of Southampton. 

This work has been supported by EPSRC studentship grant number 99308831. 
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Chapter 2 Recommender systems and Ontologies 

Chapter summary 

The problem domain recommender systems seek to solve is presented. 

Common approaches to recommender systems are described, with respect to both the 

recommendation process and user profiling techniques. 

A set of characteristics for recommender systems is defined in terms of the technology 

and work domain. 

A review of the state of the art is conducted, both for commercial systems and those 

published within the research literature. Systems are categorized according to the 

previously defined characteristics. 

Seminal works are identified and trends in the field discussed. 

 

Recommender systems have become popular since the mid 1990’s, offering solutions 

to the problem of information overload on the World Wide Web. There are several 

approaches employed, each with its own benefits and drawbacks. Since recommender 

systems are normally grounded to solve real world problems, the field is both exciting 

and rewarding to business and academics alike. 

In this chapter, current recommender system work is discussed and the approaches 

used by today’s recommender systems described. A set of characteristics for 

recommender systems is defined and a review of the current state of the art conducted. 

Interface agents share many properties with recommender systems, especially in the 

way they learn about users; interface agents are comprehensively reviewed in 

[middleton01a]. 

2.1 The problem of information overload 

The mass of content available on the World Wide Web raises important questions 

over its effective use. With largely unstructured pages authored by a massive range of 

people on a diverse range of topics, simple browsing has given way to filtering as the 

practical way to manage web-based information, and this normally means search 

engines. 
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Search engines are effective at filtering pages to match explicit queries. 

Unfortunately, people find articulating what they want as a search query difficult, 

especially if forced to use a limited vocabulary such as keywords. The result is large 

lists of search results that contain a handful of useful pages, defeating the purpose of 

filtering in the first place. 

The semantic web offers the potential for help, allowing more intelligent search 

queries based on web pages marked up with semantic metadata. Semantic web 

technology is very dependent, however, on the degree to which web pages are 

annotated by their authors. Annotation requires a degree of selflessness in authors, 

since the annotations provided will only help others searching their pages. Because of 

this, and the huge numbers of web pages that require annotation, in the foreseeable 

future it s likely tat most web pages will remain unannotated. The semantic web will 

thus only be of partial benefit to the problem of formulating explicit search queries. 

2.2 Recommender systems can help 

People find articulating what they want hard, but they are very good at recognizing it 

when they see it. This insight has led to the utilization of relevance feedback, where 

people rate web pages as interesting or not interesting and the system tries to find 

pages that match the “interesting”, positive examples and do not match the “not 

interesting”, negative examples. With sufficient positive and negative examples, 

modern machine-learning techniques can classify new pages with impressive 

accuracy; in some cases text classification accuracy exceeding human capability has 

been demonstrated [larkey98]. 

Obtaining sufficient examples is difficult, however, especially when trying to obtain 

negative examples. The problem with asking people for examples is that the cost, in 

terms of time and effort, of providing the examples generally outweighs the reward 

people will eventually receive. Negative examples are particularly unrewarding, since 

there could be many irrelevant items to any typical query. 

Unobtrusive monitoring provides positive examples of what the user is looking for, 

without interfering with the user’s normal work activity. Heuristics can also be 

applied to infer negative examples from observed behaviour, although generally with 

less confidence. This idea has led to content-based recommender systems, which 
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unobtrusively watch user behaviour and recommend new items that correlate with a 

user’s profile. 

Another way to recommend pages is based on the ratings provided by other people 

who have seen the page before. Collaborative recommender systems do this by asking 

people to rate items explicitly, which allows the system to recommend new items that 

similar users have rated highly. An issue with collaborative filtering is that there is no 

direct reward for providing examples since they only help other people. This leads to 

initial difficulties in obtaining a sufficient number of ratings for the system to be 

useful, a problem known as the cold-start problem [maltz95]. 

Hybrid systems, attempting to combine the advantages of content-based and 

collaborative recommender systems, have also proved popular to date. The feedback 

required for content-based recommendation is shared, allowing collaborative 

recommendation as well. 

2.3 User profiling in recommender systems 

User profiling is typically either knowledge-based or behaviour-based. Knowledge-

based approaches engineer static models of users and dynamically match users to the 

closest model. Questionnaires and interviews are often employed to obtain this user 

knowledge. Behaviour-based approaches use the user’s behaviour as a model, 

commonly using machine-learning techniques to discover useful patterns in the 

behaviour. Some sort of behavioural logging is employed to obtain the data necessary 

from which to extract patterns in behaviour. Kobsa [kobsa93] provides a good survey 

of user modelling techniques. 

The user profiling approach used by recommender systems is behaviour-based, 

commonly using a binary, two-class model to represent what users find interesting 

and uninteresting. Machine-learning techniques are then used to find potential items 

of interest with respect to the binary model. There are a lot of effective machine-

learning algorithms based on two classes. Sebastiani [sebastiani02] provides a good 

survey of current machine-learning techniques, as does chapter 3 of this thesis. 
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2.4 Features of a recommender system 

There are five main issues a recommender system must address; Figure 2.1 lists them 

all. Firstly, a knowledge acquisition technique must be employed to gather 

information about the user from which a profile can be constructed. This knowledge is 

processed to provide the basis for an individual’s user profile; it must thus be 

represented in a convenient way. There must be a knowledge source from which items 

can be recommended. Recommender systems allow information to be shared amongst 

users to enhance the overall recommendation performance; this shared information 

must be clearly defined. The final requirement is for an appropriate recommendation 

technique to be employed, allowing recommendations to be formulated for each of the 

users of the system. 

Knowledge can either be implicitly or explicitly acquired from the user. Implicit 

knowledge acquisition is often the preferred mechanism since it has little or no impact 

on the user’s normal work activity. Unobtrusive monitoring of the user discovers 

behavioural data about the user’s normal work activity over a period of time; this data 

can be used to infer preferences for frequently occurring items. Heuristics can also be 

employed to infer facts from existing data. Implicitly acquired knowledge requires 

some degree of interpretation to understand the user’s real goals; this is an inherently 

error prone process, reducing overall confidence in any resulting user profiles. 

Explicit knowledge acquisition requires the user to interrupt their normal work to 

provide feedback or conduct some sort of programming of the system. Explicit 

knowledge is generally high confidence information, since it is provided by the users 

themselves and not acquired from indirect inference. Feedback types include item 

relevance, interest and quality. User programming occurs when the user is asked to 

create filter rules, either visually or via a programming language, or to tell the system 

about groups or categories of items that exist in the domain. 

User feedback can be shared for the purpose of recommendation. If collaborative 

filtering is to be used, other users’ feedback on unseen items can be used as a basis for 

recommendations for a particular user. Examples of interesting items can be shared 

between similar users to increase the size of the training set and hence improve 

classification accuracy. Previous navigation patterns are also useful to share, as they 
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allow new users to receive the benefit from other people’s previous mistakes and 

successes. 

Domain knowledge can also be shared, since it is normally programmed in and hence 

available to the system from the start. Categorizations of items can be used to provide 

order to a domain, and common sets of domain heuristics, potentially part of a 

knowledge base, can be useful when computing recommendations. 

Profiles can be represented as a feature vector in a vector-space model. This is a 

standard representation and allows easy application of machine-learning techniques 

when formulating recommendations. For content-based recommendation the features 

in the vectors might be the word frequencies of interesting documents, while for 

collaborative filtering the features could be the keywords commonly used by users in 

their search queries. Navigation trails can be used to represent time-variant user 

behaviour. If some initial knowledge engineering has been conducted there may also 

be knowledge about the users available to a profile. 

The domain itself will contain sources of information to be recommended to the users. 

These could be from a database held by the recommender system, such as movie 

titles, or available dynamically via the web, such as links from the currently browsed 

page or web pages crawled from a web site. Systems can also rely on external events, 

such as incoming emails, to provide items for recommendation. 

There is a wide variety of recommendation techniques employed today, with most 

techniques falling into three broad categories. Rule filters apply heuristics to rank 

items in order of potential interest. Machine-learning techniques employ similarity 

matching to rank items in order of interest. Collaborative filtering finds similar users 

and recommends items they have seen and liked before. 
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To summarize, the set of features important to a recommender system are: 

� Knowledge acquisition technique 

o Implicit 

� Monitoring behaviour 

� Heuristics to infer information 

o Explicit 

� User feedback 

� User programming 

• Filter rules 

• User-created groups/categories 

� Shared information 

o User feedback 

� Item feedback 

� Examples of items 

� Navigation history 

o Domain knowledge 

� Item groups / categorizations 

� Domain heuristics 

� Profile representation 

o Vector model 

o Navigation trails 

o Knowledge-based profile 

� Knowledge source 

o Internal database of items 

o Crawled web pages 

o External domain events 

� Recommendation technique 

o Heuristics 

o Similarity matching 

o Collaborative filtering 
Figure 2.1 : Technology features of a recommender system 
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One line definitions of each technology feature are available in table 2.1. 

Technology feature One-line description 

Monitoring behaviour System observes users using it and records this behaviour. 

Heuristics to infer information Rules are used to infer information about users 

User feedback Users provide explicit feedback e.g. item relevance, item examples, etc. 

Filter rules Users provide filter rules to the system 

User-created groups/categories Users define system groups or categories 

Item feedback Item feedback is used by the system to help other users 

Examples of items System pools examples of items to form a collective training set 

Navigation history System uses recorded navigation histories to help other users 

Item groups / categorizations System shares communal groups and categories, whether defined by the 
system or other users 

Domain heuristics System shares a set of domain filter rules between all users 

Vector model System uses vectors to model for documents or interest profiles 

Navigation trails System holds a navigation history e.g. a web browsing history 

Knowledge-based profile System uses knowledge-based profiles 

Internal database of items System recommends from an internal database of items 

Crawled web pages System crawls the web for items to recommend 

External domain events Events occur that trigger recommendation e.g. an email arrives 

Heuristics Rules are used to find best items to recommend 

Similarity matching Similarity function is used to find items matching a content-based profile 

Collaborative filtering Statistical functions are used to find people with similar profiles, then items 
liked by those people are recommended 

Table 2.1 : Technology feature one-line definitions 

2.5 Classification by technology 

Table 2.2 lists the recommender systems reviewed in appendix A and shows how they 

are classified according to the technological features identified previously; forty-four 

recommender systems are reviewed in total. Entries in this table are sorted by 

knowledge-acquisition technique and entries marked by a “-” are due to the 

information being unavailable. It is common for commercial systems to withhold their 

technologies to maintain commercial advantage. This table provides a clear 

representation of the recommender system domain as it is today. Commercial systems 

are highlighted in a bold typeface. 
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The Quickstep and Foxtrot recommender systems are included within table 2.2 to 

show where they fit in the literature. Details of these experimental systems can be 

found in chapters 4 to 6.  
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CoCoA o  o   o   o o   o o    o o  
Comm’ty search ass’nt o       o    o  o    o   

ELFI o      o    o   o    o   
FAIRWIS o  o   o     o  o o     o  

Foxtrot o o o   o o o o  o    o   o o  
Ghani o      o  o  o    o   o   

MEMOIR o  o     o    o   o    o  
OWL o     o        o     o  

ProfBuilder o       o   o    o   o o  
QuIC o      o  o  o   o o   o   

Quickstep o o o  o o o o o  o    o   o o  
Referral Web o o       o      o o o    

SOAP o  o   o     o    o    o  
SurfLen o       o    o   o   o o  

Tapestry o  o o  o  o  o      o o    
Entree  o     o  o o   o o    o   

PHOAKS  o       o o    o   o    
Amazon.com   o   o  o o  - - - o     o  

Campiello   o   o   o  o   o     o  
CBCF   o    o  o  o   o    o o  

CDNOW   o   o  o o  - - - o     o  
Dietorecs   o      o o   o o    o   

eBay   o   o   o  - - - o     o  
EFOL   o  o o   o     o     o  

Expertise Recom’er   o o o o    o o  o o   o    
Fab   o   o   o o o    o   o o  

GroupLens   o   o   o  o   o     o  
ifWeb   o   o     o    o   o   
Levis   o   o   o  - - - o     o  

LIBRA   o    o  o  o   o    o   
METIOREW   o    o    o   o     o  

MIAU   o      o    o o     o  
Moviefinder.com   o   o   o  - - - o     o  

MovieLens   o   o   o  o   o     o  
Nakif   o   o     o   o     o  

P-Tango   o   o   o  o   o    o o  
RAAP   o   o   o  o   o    o o  

Recommend’ Explorer   o    o  o  o   o    o   
Reel.com   o   o   o  - - - o     o  

RIND   o    o  o  o   o    o o  
Ringo   o   o   o  o   o     o  

Siteseer   o   o     o   o     o  
Ski-europe.com   o   o     o   o    o o  

Virtual rev’s (Tatemura)   o  o o   o  o   o     o  

Table 2.2 : Classification of recommender systems by technology 

From this classification we can see that most recommender systems today explicitly 

ask users for feedback and share that feedback between users to provide collaborative 

recommendation from an internal database of items. 

This trend is understandable when you consider the technology available. Eliciting 

user feedback is an optional task and normally requires minimal effort from the user if 
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eliciting at the point of recommendation. The feedback device is often associated with 

a reward to encourage participation, for example a feedback control next to a 

recommended web page. 

Casual users are often reluctant to either register or install software, making 

monitoring of their behaviour difficult. It is also unlikely that users will accept the 

invasion of privacy that occurs with monitoring unless the reward offered is 

substantial. Heuristics can successfully infer information about users but they 

normally need data to work on, be it from existing logs or monitored behaviour. Filter 

rules are generally too complex to define in any useful detail, and creating categories 

or groups for a system requires a substantial investment of human effort for little 

immediate reward. 

Perhaps the most compelling evidence for the benefits of a simple 

feedback/collaborative filtering approach is the marketplace. All the commercial 

recommender systems reviewed use this technology. It thus appears clear that this 

approach is the only one to have yet reached maturity. This is not the full story, 

however. While unsuitable for the type of mass-market operation the commercial 

systems are targeting, other approaches would work for a smaller user base from 

corporations down to a groups of individuals. 

Monitoring user behaviour is useful in a corporate environment, where software is 

installed for everyone and computers are used for work purposes only. Several of the 

reviewed systems do indeed use monitoring techniques, which tend to share 

navigation histories and implicit user feedback. Here, a mix of collaborative and 

content-based approaches to recommendations are seen, with the content-based 

systems using vector-space models to perform similarity matches between the domain 

content and user profiles. 

For information systems with large databases, heuristics can be used to infer 

knowledge about the users. If a large corpus of information exists of users and their 

relationships, this could be mined and recommendations generated from it. User 

relationships can be found from email messages, newsgroup archives mined for web 

references, bookmarks utilized etc. These systems tend use filter rules to select 
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appropriate items for recommendation, avoiding the need for user feedback 

completely. 

2.6 Classification by work domain 

Figure 2.2 lists the recommender systems reviewed in appendix A by work domain. 

This classification provides an overview of the different types of work domain current 

recommender systems address. Commercial systems are highlighted in a bold 

typeface. 
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Figure 2.2 : Classification of recommender systems by work domain 

The majority of systems lie in either the web domain or the e-commerce domain. For 

commercial systems only the e-commerce, music and movie domains are used. This 

reflects the reality that successful commercial recommender systems must offer the 

customer a service they value enough to invest time and money. E-commerce and 

music systems tend to sell products while movie systems tend to make money from 

web advertising to repeat users. Perhaps the failure of web recommender systems to 

make a significant commercial impact reflects the immaturity of the technology 
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behind them, and the difficulty of the technical problems they face to make them good 

enough in the marketplace. 

2.7 Seminal recommender systems 

The first recommender system, Tapestry [goldberg92], coined the phrase 

“collaborative filtering” that has been used by many others since. Seminal examples 

of collaborative recommender systems include GroupLens [konstan97] and PHOAKS 

[terveen97], both published in the influential 1997 special issue of the 

Communications of the ACM on recommender systems. Content-based recommender 

systems are exemplified by Fab [balabanović97], a seminal hybrid recommender 

system. 

Other systems of note are SOAP [voss97], which was one of the first recommender 

systems to use an agent metaphor and ReferralWeb [kautz97], which looked into 

recommending people with useful expertise. 

2.8 Recommender system examples 

The GroupLens [konstan97] recommender system is a classic recommender system 

which recommends Usenet newsgroup articles. As users browse their usenet news a 

split screen interface presents some recommendations, as shown in figure 2.3, along 

with the ratings provided by other GroupLens users. The aim of the split screen 

interface is to blend into the normal usenet interface. With 50,000+ new messages 

posted each day this recommendation interface provides some way to identify what is 

worth reading and what is not. 

CDNOW is a commercial music CD shop/recommender system. It is now integrated 

into the wider application of Amazon.com. Customers buy CD’s through a standard 

electronic shop web-based interface as shown in figure 2.4. As customers shop, by 

navigating through the sites web pages, CDNOW presents opportunistic 

recommendations of items that the user might want. These recommendations are 

based on the previous navigation pattern and buying habits of the customer. 

If a customer wants they can provide feedback as to which artists they prefer and own. 

Likes and dislikes can be indicated and a set of 6 albums recommended upon request. 

Feedback on these recommendations is also elicited. 
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Figure 2.3 : GroupLens interface 

 

Figure 2.4 : CDNOW interface 

2.9 Ontologies 

An ontology is a conceptualisation of a domain into a human-understandable, but 

machine-readable format consisting of entities, attributes, relationships, and axioms 

[guarino95]. Ontologies can provide a rich conceptualisation of the working domain 
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of an organisation, representing the main concepts and relationships of the work 

activities. These relationships could represent isolated information such as an 

employee’s home phone number, or they could represent an activity such as authoring 

a document, or attending a conference. 

Ontologies are normally used within knowledge-based systems to define the classes 

and structure of the domain models supported. The experimental recommender 

systems in this thesis use ontologies in such a way, defining the classes used to 

represent research paper topics and the structure of the generalization relationships 

between these classes. Ontologies are employed in such a way that we can further 

employ inference, mappings to external knowledge-bases and mappings to human 

understandable concepts. 

The two experimental recommender systems described in this thesis represent user 

profiles using the classes defined in the system’s research paper topic ontology. The 

user profiles thus form a dynamic knowledge-base, holding interest information about 

the users of the recommender system. This profile knowledge-base is used to drive the 

recommendation process. Further to just recommendation, however, the ontological 

representation of user profiles allows inference of interests via the is-a relationships 

defined within the ontology, bootstrapping from information gleaned by mappings to 

an external ontology and profile visualization based on the ontological profile classes. 

In the three experiments described in this thesis only a simple is-a taxonomy is used; 

this is perhaps one of the simplest ontological representations. The reason for this 

simplicity is to reduce the number of potential causes of experimental observations to 

a minimum. However, many more relationships and concepts could be employed in 

the recommender system ontology than just research paper topics and generalization 

relationships. The second experiment in this thesis alludes to some of the potential 

benefits of a more capable ontology, making use of project and personnel knowledge 

held in external sources. As discussed in the concluding chapter, expanding the 

ontology by including additional concepts and relationships is a clear way to increase 

the potential for inference and hence improve profiling accuracy. 
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2.10 Ontology example 

An example of an ontological system is the ScholOnto system [shum00]. ScholOnto 

is a digital library of academic research papers which allows researchers to 

semantically mark-up papers and share this mark-up for collaborative interpretation 

and discourse. ScholOnto maintains an ontology supporting claims made by 

researchers about papers; claims in this context are personal assertions of relationships 

between supported concepts and/or other claims. The concepts supported by this 

ontology include a papers “approach”, “ideas”, “language” and “methodology”; the 

relationships supported include “uses”, “envisages”, “confirms” and “raises problem”. 

The ontology is thus well suited to represent scholarly discourse over the significance 

of ideas and concepts within their field. 

ScholOnto’s ontology is presented to the users via HTML web pages, generated by a 

knowledge representation tool. These web pages allow users to see the complex 

relationships between each ontological concept. A schema language allows rules to be 

created to operate on the supported knowledge model; such rules can be used to signal 

inconsistencies within a model. 

Various interface views to this knowledge are supported, including a conventional 

form/menu interface, direct annotation interface and semantic network interface. 

These interfaces make it possible for researchers to see different perspectives on a 

body of research, such as a “European” perspective on EU driven research work. 

There is a significant need for researchers to provide the initial knowledge capture to 

populate the knowledge models. This is made an easier task with the helpful 

interfaces, but the authors will be looking into methods such as machine learning to 

automatically detect perspectives within the ontology. 

2.11 Conclusion 

Current recommender systems use a wide variety of techniques, often adopting a 

hybrid approach with both collaborative and content-based filtering techniques being 

employed. The commercial systems, however, use a smaller subset of the potential 

techniques available, concentrating on offering a collaborative filtering service to sell 

products. 
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The Quickstep and Foxtrot experimental systems described later in this thesis use a 

hybrid approach, using both similarity matching and collaborative filtering. They 

unobtrusively monitor users in addition to eliciting feedback, forming a basis upon 

which to run advanced profiling algorithms and techniques. The classification in table 

2.2 and figure 2.2 clearly places these systems in the context of the recommender 

system literature. 

 

The next chapter describes in detail the profiling and machine-learning techniques 

used by recommender systems in the literature. 
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Chapter 3 Profiling techniques and machine-learning 

Chapter summary 

The profiling representations used by recommender systems are discussed. 

The profiling techniques used with these representations are detailed. 

The machine-learning algorithms commonly used in recommender systems are 

described. 

 

This chapter introduces the machine-learning and profiling techniques commonly 

employed by recommender systems, along with the profile representations that they 

use. Many techniques have been published in the user-modelling [kobsa93] and 

machine-learning [sebastiani02] literature. The techniques described here are the 

subset commonly used by the recommender systems community. Generally speaking, 

once a profile representation is decided upon, the technique that you can apply to that 

representation can be chosen. 

3.1 Backus-Naur Format 

This thesis uses a non-rigorous version of Backus-Naur format (BNF) in the figures to 

describe data formats. Figure 3.1 briefly describes BNF for easy reference. 

Data types represented by angled brackets <>
Items are assigned a data type item = <data type>
Sets of items are enclosed by parentheses set = (item1,item2 … itemn)
List of 0 or more items use a * list = (item1)*

= (item1)(item1)…(item1)
List of 1 or more items use a o list = (item1,item2)o

= (item1,item2)(item1,item2)…(item1,item2)  

Figure 3.1 : Backus-Naur format 

3.2 Profile representations 

Profile representations falls into two types, which are not mutually exclusive. Ratings-

based representations store every user’s ratings on available items so correlation 

techniques can be used to find similar users. Content-based representations store 

representations of specific items of interest to a single user so machine-learning 

techniques can find similar items. 
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3.2.1 Ratings-based representations 

Relevance feedback 

When users receive recommendations it is common to elicit feedback on how 

interesting the recommendations are to the needs of the user. This type of feedback is 

called relevance feedback. 

Relevance feedback is elicited by offering the user a rating scale for each 

recommendation; the choice is commonly either “interesting” and “not interesting” or 

a 3 to 5-point scale of interest. The representation of relevance feedback is thus a set 

of recommended items and the associated interest values provided by each user. 

Relevance feedback is often incomplete since users are often reluctant to invest time 

and effort to provide the feedback. 

Relevance feedback can be acquired implicitly, allowing inference from observed user 

behaviour. The problem with implicit feedback is that the assumptions made to allow 

inference often introduce errors. For example, a user may read an initially interesting 

looking document, only to find it was actually not interesting after all when its details 

are known; if all documents that are read are inferred to be interesting this situation 

would clearly introduce an error into the relevance feedback acquired. Implicit 

feedback is commonly in a positive/negative form, implied by clear positive or 

negative actions in an attempt to reduce the number of assumptions required. 

A balance must be made between interrupting the user to acquire high quality explicit 

feedback and unobtrusive methods to obtain lower quality implicit feedback. Exactly 

how much interruption users will tolerate will depend upon the specific application 

domain. 

3.2.2 Content-based representations 

Most content-based analysis is performed on textual documents such as web pages, 

newspaper articles or document abstracts. The reason for this is that textual 

documents easily break down into individual words, whereas video and audio sources 

require sophisticated analysis to decompose into useful sub-components. All content-

based recommender systems work with textual content. 
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Term-frequency vector representation 

The most common abstraction of a textual document in the machine-learning context 

is a term-frequency (TF) vector. Terms consist of single words or phrases, and the 

frequency count is simply the number of times a term appears within the document 

text. To create a term-frequency vector the terms within a document are counted and 

the frequency values stored in an n-dimensional vector. The number of dimensions of 

the vector is the number of unique terms within a document. 

It is common to reduce the dimensionality of term-frequency vectors to improve 

processing efficiency. Common terms, called stop words, are removed since they have 

little discriminating power as all documents contain them; examples of stop words are 

“and”, “if” and “the”. The removal of stop words is normally performed using a 

standard stop list, removing all terms that match the stop list. 

Low frequency terms are also removed, since they too have little discriminating 

power, often appearing in just one document; an example of low frequency term is a 

web URL. 

Another dimensionality reduction technique commonly employed is to stem terms. 

This involves removing suffixes so that basically similar words are grouped together; 

an example would be to use the stemmed term “recommend” for the terms like 

“recommender”, “recommendation” and “recommends”. 

In practice, stemming, stop lists and low frequency term removal are all applied to 

reduce the dimensionality of the term vectors as much as possible. Sebastiani 

[sebastiani02] covers the subject of dimensionality reduction in more detail. 

Term-frequency representations are often called “bag of words” representations, since 

the structure of the document is lost. It has been shown [lewis92] that the loss of 

structural information such as sentences and paragraphs does not significantly degrade 

the performance of subsequent analysis and classification. 

Recommender systems usually normalize the frequency data based on the length of 

the document, and some systems weight individual terms in favour of the more 

discriminating ones. This avoids larger documents always having highly weighted 

terms. 
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Binary class profile representation 

The most common profile representation for content-based recommender systems is 

the binary class profile, representing user interests as a set of positive and negative 

examples. The positive, or “interesting”, examples are represented as a collection of 

term-frequency vectors of documents that the user has rated as “interesting”. The 

negative, or “not interesting”, examples are likewise represented. This binary class 

representation is very suitable for a great many machine-learning techniques. 

Since relevance feedback is required to obtain the sets of positive and negative 

examples, a ratings-based profile is often additionally implemented to create a hybrid 

recommender system. 

Multi-class profile representation using an ontology 

The alternative to the binary class representation is a multi-class representation. 

Rather than simply having positive and negative classes, an ontology of classes can be 

created that map to domain concepts such as newspaper topics like “sport”. A user’s 

profile is thus represented in terms of which classes they are most interested in, 

abstracting away from the specific examples of interest. When relevance feedback is 

acquired, examples of interest are classified according to the classes within the 

ontology, and the user’s interest in that class recorded. 

Multi-class classification is considerably more complex than binary class 

classification. Having more than two classes reduces the number of examples 

available for each class, thus reducing the accuracy of the machine-learning technique 

employed. In addition, since classes are shared between users, there will be a loss of 

information about individual user interests when compared to a binary representation 

where each user has their own set of examples; sharing examples does allow for a 

larger training set, however. These factors are the reason why very few recommender 

systems adopt this approach. 

Most ontologies are created manually by a knowledge engineer and domain experts. 

They thus capture the relevant classes within a domain and relationships between 

them. It is possible to create classes automatically using clustering machine-learning 

algorithms. Clustering finds similar term frequency vectors and groups them together 
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to make a class. Classes created by clustering, however, have no domain knowledge 

associated with them, making useful inference from them difficult. 

3.2.3 Knowledge-based profile representation 

Knowledge-based profile representations appear in the user modelling literature. 

Typically these approaches require questionnaires and interviews with users to 

acquire information about their requirements before a profile can be built. Profiles 

consist of asserted facts about a user in a knowledge-base, from which inferences can 

be drawn about user stereotypes and interests. Knowledge-based profiles are often 

used in the related fields of agent and intelligent tutoring systems, however. Kobsa 

[kobsa93] provides a good introduction to the field of user modelling and profile 

representation. 

3.3 Profiling techniques 

3.3.1 Time-decay functions 

Time decay functions are simple profiling techniques, and can be applied to content 

and rating-based profile representations so long as their information is time-stamped. 

A weighting function is defined which contains an inverse time weight, so older 

information is less relevant than more recent information. This weighting function is 

then applied to one of the rating values, term weights or class interest values. 

Due to their simple nature, time decay functions can be successfully applied to very 

complex profiles, where multiple patterns exist and evidence is incomplete. 

w(ti) =

w(ti) weight of term ti after time decay
ti ith term
N number of documents
tf(ti,dj) number of times term ti appears in document dj
dj jth document
age(dj) age of document dj

Σ ______
age(dj)

tf(ti,dj)

j = 1

N
w(ti) =

w(ti) weight of term ti after time decay
ti ith term
N number of documents
tf(ti,dj) number of times term ti appears in document dj
dj jth document
age(dj) age of document dj

Σ ______
age(dj)

tf(ti,dj)

j = 1

N

 

Figure 3.2 : Time decay function 
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3.3.2 Pearson-r correlation 

The Pearson-r correlation algorithm is the most common algorithm used on rating-

based representations to find similar people to a given user. Pearson-r correlation 

finds correlations between different user ratings on particular items. The users with 

the highest Pearson-r values have ratings most similar to the target user. 

rxy pearson-r correlation between user x and y
N number of ratings
Uxi ith rating for user x
Ux mean rating for user x

rxy =

Σ (Uxi – Ux) * (Uyi – Uy)
_ _

i = 1

Σ (Uxi – Ux) 2 *
_ _

i = 1

√
________________________________

_________________________________

(Uyi – Uy)2Σ
i = 1

_

N N

N

rxy pearson-r correlation between user x and y
N number of ratings
Uxi ith rating for user x
Ux mean rating for user x

rxy =

Σ (Uxi – Ux) * (Uyi – Uy)
_ _

i = 1

Σ (Uxi – Ux) 2 *
_ _

i = 1

√
________________________________

_________________________________

(Uyi – Uy)2Σ
i = 1

_

N N

N

 

Figure 3.3 : Pearson-r correlation 

rxy pearson-r correlation between user x and y
N number of ratings
Uxi ith rating for user x
β constrained value

rxy =

Σ (Uxi – β) * (Uyi – β)
i = 1

Σ (Uxi – β) 2 *
i = 1

√
________________________________

_________________________________

(Uyi – β)2Σ
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N N

N
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√
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_________________________________
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Figure 3.4 : Constrained Pearson-r correlation 

The Pearson-r correlation algorithm adjusts to bias within ratings, such as from users 

who always rate highly, by computing the deviation of ratings from the mean rating of 

each user. If ratings have no bias a constrained Pearson-r algorithm can be used, with 

the β coefficient set to the threshold level of a “good” rating. Pearson-r correlations 

suffer from the cold-start problem, where initial results are poor until enough ratings 

have been accumulated with which to form significant correlations. 
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3.3.3 Other profiling techniques 

Other profiling techniques include time-series profiling algorithms such as piece-wise 

representation and curve fitting functions. Piece-wise representation [keogh99] splits 

a time-series profile into slices and matches newly seen data to these previous slices. 

Predictions for future activity are modelled on the most similar slice. Curve fitting, 

such as mathematical polynomial methods, models the previously seen activity and 

uses the model to predict future activity. 

Knowledge-based profiling techniques also exist where knowledge is acquired about 

user preferences and experience, often via interviews or questionnaires, and modelled 

in a knowledge base. Contextual questions can then be asked about users, and 

reasoned predictions inferred from known domain knowledge. Stereotyping [rich79] 

is an example of a knowledge-based profiling technique. 

3.4 Machine-learning techniques 

Machine-learning (ML) techniques fall into two categories according to whether they 

require a labelled set of examples or not. Supervised learning takes a set of labelled 

example cases, called a training set, as the basis for categorization of new cases. 

Unsupervised learning does not use a training set since classes are generated from 

patterns within unlabelled examples. 

Supervised learning is more accurate since it avoids the errors introduced by 

automatic class generation. Labelling a training set is, however, a time-consuming 

task often performed by hand. Due to the nature of relevance feedback, recommender 

systems use supervised learning techniques. 

Most machine-learning algorithms deal with the binary class case and generalize to 

the multi-class case. Only a few algorithms are designed with the multi-class case in 

mind. 

3.4.1 Data mining 

With a large dataset of user behaviour, data mining techniques can be used to discover 

patterns of behaviour. One such technique is the A-Priori [agrawal94] algorithm, 

which learns association rules from a large dataset of transaction data such as 

supermarket shopping data. Each pass of the data counts the support for individual 
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items and determines which item sets are well supported. These sets are then used as a 

seed to find new, well supported itemsets called candidate itemsets. This continues 

until no new itemsets are found. 

for (k=2;Lk-1≠0;k++) {
Ck = apriori-gen(Lk-1)
forall transactions t ∈ D {

Ct = subset( Ck,t )
forall candidates c ∈ Ct {

increment count for c
}

}
Lk = { c ∈ Ck | c count ≥ min }

}
answer = union of Lk

L well supported itemset = (item,count)*

Lk kth item in well supported itemset
C candidate itemset = (item,count)*

Ck kth item in candidate itemset
D database of user transactions
subset( c,t ) hash-tree lookup to find candidates in set c for a transaction t
apriori-gen( l )algorithm to generate candidate sets from itemset l  

Figure 3.5 : A-Priori algorithm 

3.4.2 Information theoretic methods 

Term frequency-inverse document frequency (TF-IDF) is the most popular 

information theoretic method [van rijsbergen79] for recommender systems. 

w(ti,dj) = tf(ti,dj) * log
N

df(ti)
____

w(ti,dj) tf-idf weight of term ti in document dj
ti ith term
dj jth document
tf(ti,dj) number of times term ti appears in document dj
N number of documents
df(ti) number of documents containing term ti

w(ti,dj) = tf(ti,dj) * log
N

df(ti)
____

w(ti,dj) tf-idf weight of term ti in document dj
ti ith term
dj jth document
tf(ti,dj) number of times term ti appears in document dj
N number of documents
df(ti) number of documents containing term ti  

Figure 3.6 : Features used in TF-IDF algorithm 

This term weighting biases the chosen classifier towards terms which have a high 

frequency count within their documents, but only appear in a small number of 

documents. These terms are likely to be good discriminators. 
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Once the term weights are calculated a vector similarity measure is applied to new 

documents to determine classification. A typical vector similarity measure is the 

cosine similarity measure, or dot product. 

sim(da,db) similarity measure between document a and b
da,db,d document vectors
t term
w(t,d) normalized cosine weight
tfidf(t,d) tf-idf weight of term t in document d
Td number of terms in document d

sim (da,db) = Σ w(t,da) * w(t,db)

t ∈da

w(t,d) =

tfidf(t,d)

tfidf(ti,d)2Σ
i = 1

_______________

√
____________
Td

sim(da,db) similarity measure between document a and b
da,db,d document vectors
t term
w(t,d) normalized cosine weight
tfidf(t,d) tf-idf weight of term t in document d
Td number of terms in document d

sim (da,db) = Σ w(t,da) * w(t,db)

t ∈da

w(t,d) =

tfidf(t,d)

tfidf(ti,d)2Σ
i = 1

_______________

√
____________
Td

 

Figure 3.7 : Features used in Cosine similarity algorithm 

The Rocchio algorithm [van rijsbergen79] is another information theoretic algorithm 

used by recommender systems. Rocchio takes positive and negative examples and 

computes the relevance of each term in the form of a class vector. 

classi = (w1i, … wTi)

wki = Npositive

_______β
Σ wkj
j = 1

– Nnegative

_______γ
Σ wkj
j = 1

classi term vector for class i
wki weight for term k document i
T number of terms in document set
β, γ constants, typically β=4, γ=16
Npositive number of positive documents
Nnegative number of negative documents

Npositive Nnegative

classi = (w1i, … wTi)

wki = Npositive

_______β
Σ wkj
j = 1

– Nnegative

_______γ
Σ wkj
j = 1

classi term vector for class i
wki weight for term k document i
T number of terms in document set
β, γ constants, typically β=4, γ=16
Npositive number of positive documents
Nnegative number of negative documents

Npositive Nnegative

 

Figure 3.8 : Features used in Rocchio algorithm 

These class vectors are then used with a cosine similarity measure to classify new 

documents. Computing the term weights is time consuming, but once done 

classification is fast. If the training set changes then the weights must be re-computed. 

Latent semantic indexing (LSI) [deerwester90] is a term weighting technique that 

must be combined with a similarity matching technique such as cosine-similarity. 
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Document vectors are compressed into a low dimensional space based on patterns of 

word co-occurrence found after term-document matrix manipulation using 

eigenvectors. Terms below a threshold are removed from the final document vectors, 

thus reducing the dimensionality of the final document-vector space. It is meant to 

bring out the “latent” semantic structure of the vocabulary used in a document corpus. 

3.4.3 Instance-based methods 

Techniques that hold the training set in memory are instance-based methods. The 

most common instance-based method in the recommender systems literature is the k-

nearest neighbour (kNN) algorithm [mitchell97]. The kNN algorithm stores all 

example vectors within a term-vector space and computes the distance between these 

example vectors and an unclassified vector. The distance measure is normally the 

cosine similarity measure, and an inverse distance weighting is often applied to reduce 

the effect of distant neighbours. Inverse weighting is particularly useful where there is 

a very close neighbour and many unrelated neighbours; since k neighbours are taken 

the distant ones will tend to dominate unless an inverse distance weighting is applied. 

The classification confidence in a class is the sum of the distances from the closest k 

examples of that class. 

w(da,db) = √
____________

Σ
j = 1

(tja – tjb)2

w(da,db) kNN distance between document a and b
da,db document vectors
T number of terms in document set
tja weight of term j document a
f(d) k-NN function

T

d1 … dk are the k nearest documents to dnew

f(dnew) = Σ
i = 1

________
w(dnew,di)

k 1

w(da,db) = √
____________

Σ
j = 1

(tja – tjb)2

w(da,db) kNN distance between document a and b
da,db document vectors
T number of terms in document set
tja weight of term j document a
f(d) k-NN function

T

d1 … dk are the k nearest documents to dnew

f(dnew) = Σ
i = 1

________
w(dnew,di)

k 1
Σ

i = 1

________
w(dnew,di)

k 1

 

Figure 3.9 : Features used in kNN algorithm 

Since new instances can be added to the vector space without the need to re-compute 

weights, the set-up time is minimal. Classification can be time-consuming, however, 

since all example distances must be computed for every unclassified vector. The 

memory requirement is proportional to the size of the training set. 

38 



 

Where instances are held in a more symbolic representation, case-based reasoning can 

be used. Classification involves a search of known instances to find those cases that 

have the greatest number of matching parts. Knowledge-based reasoning can be used 

to combine cases to construct a response to a specific query and problem-solving 

knowledge can be attached to specific cases. An example of case-based reasoning is 

the CADET [sycara92] system. 

3.4.4 Probabilistic methods 

Methods that compute the probability of a vector belonging to a particular class, based 

on the set of terms, are probabilistic methods. A large network of probabilities is 

normally computed from the training set, showing the likelihood of a class given a set 

of terms. Bayes theorem is the basis for many probabilistic techniques, with the naïve 

Bayes classifier [mitchell97] being popular for recommender systems. 

P(h|D) =
P(D|h) P(h)

P(D)

________

P(h|D) probability of h given D
h hypothesis
D data
P(h) probability of h

P(h|D) =
P(D|h) P(h)

P(D)

________P(D|h) P(h)

P(D)

________

P(h|D) probability of h given D
h hypothesis
D data
P(h) probability of h  

Figure 3.10 : Bayes theorem 

The naïve Bayes classifier uses Bayes theorem and an assumption of conditional 

independence of terms given the classification label. This assumption is incorrect, but 

the algorithm has been shown [domingos97] to give good results anyway. Zero term 

probabilities, resulting from zero term frequencies, also present a problem since 

probabilities are multiplied together. As such, zero probabilities are often replaced by 

an estimate based on sample size [mitchell97]. 
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Pc(dj) = argmax P(dj)
dj∈Dc

∏
i=1

P(ti|dj)

Pc(dj) probability of document dj belonging to class c
dj jth document 
Dc document set for class c
P(dj) probability of document dj occurring
T number of terms in document set
P(ti|dj) probability of term ti occurring in document dj

T
Pc(dj) = argmax P(dj)

dj∈Dc
∏
i=1

P(ti|dj)

Pc(dj) probability of document dj belonging to class c
dj jth document 
Dc document set for class c
P(dj) probability of document dj occurring
T number of terms in document set
P(ti|dj) probability of term ti occurring in document dj

T

 

Figure 3.11 : Features used in Naive Bayes classifier 

Where the number of training examples is limited, but there are many unlabelled 

examples, Expectation-Maximization (EM) [mitchell97] can be used. The EM 

algorithm searches for the maximum likelihood for an hypothesis by seeking the 

hypothesis that maximizes the expected value given a data set, consisting of labelled 

and unlabelled data. The expected value is computed from the probable full dataset, so 

hypotheses are found that maximize this value. 

Q(h’|h) = E[ ln P(Y|h’)|h, X ]

Step 1 : Estimation
Calculate Q using the current hypothesis h and labelled data X
to estimate the probability distribution over Y
Q(h’|h) ÅE[ ln P(Y|h’)|h, X ]

Step 2 : Maximization
Replace hypothesis h by the hypothesis h’ that maximizes the Q function
h Åargmax Q(h’|h)

h’

h current hypothesis
h’ new hypothesis
E expected value
P(a,b) probability of a given b
Y full dataset
X labelled dataset  

Figure 3.12 : EM algorithm 

Probabilistic methods require a significant set-up time to build the probabilistic 

network, and it must be re-formulated if the training set changes. Once built however, 

the classification time is minimal. 
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3.4.5 Boosting and bagging 

Boosting works by repeatedly running a weak learning algorithm on various 

distributions of the training set, and then combining the classifiers produced by the 

weak learner into a single composite classifier. The “weak” learning algorithm is 

often actually a strong binary algorithm such as a naïve Bayes, kNN and decision 

trees. 

Classification error is evaluated per iteration, and used as the basis for the 

specialization of that iteration’s classifier weights. The final classifier takes the 

weighted votes of each iteration’s classifier, and returns the class with the highest 

total vote. AdaBoostM1 is an example of a boosting algorithm designed to work with 

multiple classes. 

Initialise all values of D to 1/N
Do for t=1..T

call weak_learn(Dt)
calculate error et
calculate βt
calculate Dt+1

Dt class weight distribution on iteration t
Dt(i) weight distribution for class i on iteration t
N number of classes
T number of iterations
weak_learn(Dt) weak learner algorithm with distribution Dt
et weak_learn error on iteration t
βt error adjustment value on iteration t
Zt normalization constant for Dt
classifier final boosted classifier
C all classes

et = Σ Dt(i)

i = all incorrect
classes

et = Σ Dt(i)

i = all incorrect
classes

β t = et/(1-et)

Dt+1(i) =
Dt(i)

Zt

Dt(i)

Zt

____ βt if classification correct
1 if classification incorrectxclassifier = argmax Σ log

t = all iterations
with result class c

c ∈ C βt

1__classifier = argmax Σ log

t = all iterations
with result class c

c ∈ C βt

1__
βt

1__

 

Figure 3.13 : AdaBoostM1 algorithm 

Bootstrap aggregating, or “bagging” [breiman94], trains copies of a classifier 

algorithm on random bootstrap samples of the training set. When classifying a new 

document, each classifier votes and the aggregated votes determine the final 

classification. Bagging differs from boosting in the way that weight distributions are 

modified. 
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3.4.6 Other machine-learning techniques 

Other machine-learning techniques, not employed by current recommender systems, 

include decision trees, neural networks, inductive logic learning and reinforcement 

learning. These techniques can be found in interface agents and other related 

technologies. 

Decision trees build a tree-like decision structure based on the term weights in a 

training set. New vectors navigate the tree from the top, and when the bottom is 

reached the classification for that node used. Induction logic learns rules from a 

training set, which classify new instances based on term weights. 

Neural networks learn patterns within the term vectors via a network of nodes and 

connections. Reinforcement learning adjusts weights based on the successful actions 

and is used to learn patterns of behaviour. 

 

The next chapter describes the Quickstep recommender system, which a multi-class 

profile representation based on an ontology along with a boosted nearest neighbour 

machine-learning technique and time-decay profiling algorithm. Experimental work 

with Quickstep provides evidence to prove the first sub-hypothesis, which makes up 

part of the central hypothesis of this thesis. 
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Chapter 4 The Quickstep recommender system 

Chapter summary 

The Quickstep problem domain is presented. 

An overview of the Quickstep system is detailed, and the empirical evaluation 

summarized. 

Detailed descriptions of the approaches used by Quickstep are laid out. 

Experimental set-up is described along with subject selection, experimental conditions 

and metrics recorded. 

The experimental data is detailed and significant trends identified. 

The trends seen are discussed and hypotheses offered for the effects seen. Comparison 

is made with other published data from similar systems. 

Conclusions are drawn and evidence to support the first sub-hypothesis found. 

 

Quickstep is an experimental recommender system. It addresses a real world problem 

and assesses the effectiveness of using an ontology within the profiling process. The 

overall effectiveness of this approach is measured and compared to other 

recommender systems within the literature. Appendix B contains details of the 

Quickstep implementation and a set of data flow diagrams detailing the system 

design. 

The Quickstep system is described and evaluated in the K-CAP publication 

[middleton01b]. 

4.1 The Quickstep problem domain 

As the trend to publish research papers on-line increases, researchers are increasingly 

using the web as their primary source of papers. Typically, researchers need to know 

about new papers in their field of interest, and older papers relating to their current 

work. In addition, a researcher’s time is limited, so browsing competes with other 

tasks in the work place. It is this problem the Quickstep recommender system 

addresses. 
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Since researchers have their usual work to perform, unobtrusive monitoring methods 

are preferred because a researcher will be reluctant to use the system if it significantly 

interrupts normal workflow. Also, high recommendation accuracy is not critical as 

long as the system is deemed useful to them. 

Evaluation of real world knowledge acquisition systems [shadbolt99] is both tricky 

and complex. A lot of evaluations are performed with user log data, simulating real 

user activity, or with standard benchmark collections that provide a basis for 

comparison with other systems. Although these evaluations are useful, especially for 

technique comparison, it is important to back them up with real world studies so we 

can see how the benchmark tests generalize to a real world setting. 

This is why a real problem has been chosen upon which to evaluate the Quickstep 

recommender system. 

4.2 Overview of the Quickstep system 

Quickstep unobtrusively monitors user browsing behaviour via a web proxy server, 

logging each URL browsed during normal work activity. A machine-learning 

algorithm classifies browsed URLs overnight, and saves each classified paper in a 

central paper store. Explicit feedback and browsed topics form the basis of the interest 

profile for each user. Figure 4.1 shows an overview diagram of the Quickstep system. 

Each day a set of recommendations is computed, based on correlations between user 

interest profiles and classified paper topics. Any feedback offered on these 

recommendations is recorded when the user looks at them. 

Users can provide new examples of topics and correct paper classifications where 

appropriate. In this way the training set improves over time as more feedback is 

elicited from the users. 
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Figure 4.1 : The Quickstep system 

4.3 Empirical evaluation 

The current literature lacks many clear results showing the extent to which 

knowledge-based approaches assist real-world systems that have noisy data and 

differing user opinions. The evaluation compares the use of an ontology against a 

simple flat list, providing some empirical evidence as to the effectiveness of this 

knowledge-based approach. 

Two experiments are described in detail later in this chapter. The first has 14 subjects, 

all using the Quickstep system for a period of 1.5 months. The second has 24 subjects, 

again over a period of 1.5 months. 

Both experiments divide the subjects into two groups. 

The first group uses a flat, extensible list of paper topics. Any new examples, added 

via explicit feedback, use this flat list to select from. The users are free to add to the 

list as needed. 

The second group uses a fixed-size topic ontology based on the dmoz open directory 

project hierarchy [dmoz]. This ontology models the is-a relationships between 

computer science topics. The research topics used by the system are taken from this 

ontology. Interest profiles for the second group take into account the super classes of 

browsed topics, thus taking a knowledge-based approach to profile construction. 
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Performance metrics are measured over the duration of the trial, and the effectiveness 

of both groups compared. 

4.4 The Quickstep system approach 

Quickstep is a hybrid recommendation system, combining both content-based and 

collaborative filtering techniques. Since both web pages and user interests are 

dynamic in nature, catalogues, rule-bases and static user profiles would quickly 

become out of date. The recommender system approach is well suited to the problem, 

since it works with observed dynamic behaviour and will adjust to the changing 

interests of its users on a daily basis. 

Asking users to provide explicit feedback on browsed papers would be very intrusive 

and interfere with the normal workflow of the researchers. Unobtrusive monitoring of 

web browsing was thus chosen to acquire positive examples of user interest. Optional 

explicit feedback is elicited when recommendations are made, both on topic interest 

and paper classification accuracy. However, since users choose when to review their 

recommendations, asking for explicit feedback at this point will not interrupt their 

normal workflow as they have chosen to spend time with the system anyway. Since 

many users will be using the system at once it is sensible to share user feedback and 

maintain a common pool of example papers provided by the users. 

An initial training set of example papers is provided for each topic in the ontology to 

bootstrap the classifier. This training set is then allowed to grow over time as users 

provide examples of their own or correct the bootstrap examples. This labelled 

training set is well suited to supervised learning techniques, which require a prior set 

of classes on which to base a classification. A term vector representation is used to 

represent research papers, a common approach in machine-learning [mladenić99]. A 

term vector is a list of word weights, derived in this case from the frequency that 

words appear within the research paper main text. 

A binary classification approach could have been used, with classes for “interesting” 

and “not interesting”. This would have led to profiles consisting of two term vectors, 

one representing the kind of thing the user is interested in, or positive examples, and 

the other what the user is not interested in, or negative examples. Recommendations 

would be those vectors that are most similar to the positive class vector and least 
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similar to the negative class vector. The binary case is the simplest class 

representation, and consequently produces the best classification results when 

compared with multi-class methods. 

However, one problem with such a representation is that the explicit knowledge of 

topics in which the user is interested is lost, making it hard to benefit from any prior 

knowledge we may have about the academic domain. For Quickstep, a multi-class 

representation was chosen, with each class representing a research paper topic and 

class relationships held within an ontology. This allows profiles that consist of a 

human understandable list of topics, since each class represents a real world research 

topic. Quickstep’s multi-class classifier assigns each new paper a class based on 

which class vector it is most similar to. Recommendations are selected from those 

papers classified as belonging to a topic of interest to a user. 

The profile itself is computed from the correlation between browsed papers and paper 

topics. This correlation creates a topic interest history for each user, and a time-decay 

function is applied to compute the current topics of interest. A more complex profiling 

function, such as polynomial curve fitting or a machine-learning technique, would 

have trouble discriminating between the multiple interests people have since real 

world browsing behaviour data is both incomplete and noisy. 

4.4.1 Research paper representation 

Research papers are represented as term vectors, with term frequency / total number 

of terms used for a terms weight. To reduce the dimensionality of the vectors, term 

frequencies less than 2 are removed, standard Porter stemming [porter80] applied to 

remove word suffixes and the SMART [smart74] stop list used to remove common 

words such as “the”. These measures are commonly used in information systems; 

[van rijsbergen79] and [harman86] provide a good discussion of these issues. 

To give a rough idea of the size of the term vectors, 10-15,000 terms were used in the 

trials with training set sizes of about 200 vectors. Because of the training set size, 

further dimensionality reduction was not deemed necessary given the computing 

power and memory available. Had more dimensionality reduction been needed, term 

frequency-inverse document frequency (TF-IDF) weighting would have been useful, 
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with term weights below a threshold being removed, and latent semantic indexing 

(LSI) could also have been used. 

4.4.2 Research paper classification 

Since users can add to the training set over time and different users will pick different 

labels for specific examples, multiple labels must be supported. The classification 

requirements are thus for a multi-class learning algorithm learning from a multi-

labelled training set. To learn from a training set, inductive learning is required. There 

are quite a few inductive learning techniques to choose from, including information 

theoretic ones (e.g. Rocchio classifier), neural networks (e.g. backpropagation), 

instance-based methods (e.g. nearest neighbour), rule learners (e.g. RIPPER), decision 

trees (e.g. C4.5) and probabilistic classifiers (e.g. naïve Bayes). 

Multiple classifier techniques such as boosting exist as well, which can enhance the 

performance of individual classifiers. 

After reviewing and testing many of the above options, a nearest neighbour technique 

was chosen. The nearest neighbour approach is well suited to the problem, since the 

training set must grow over time and consists of multi-class examples. Nearest 

neighbour algorithms also degrade well, with the next closest match being reported if 

the correct one fails to be found. The IBk algorithm [aha91] was chosen as it 

outperformed naïve Bayes and a J48 decision tree in informal tests. The boosting 

technique AdaBoostM1 [freund96] is also used, as it works well for multi-class 

problems if the boosted classifier is strong enough. In informal tests the boosting 

algorithm always improved the base classifier’s performance. 

Being a nearest neighbour algorithm, IBk stores instances of all example paper 

vectors in a vector space. To classify a new paper the vector distance from each 

example instance to the new paper vector is calculated, and the closest neighbours 

returned as the most likely classes. Inverse distance weighting is used to decrease the 

likelihood of choosing distant neighbours. 

Example papers for non-leaf topics within the class hierarchy, which represent the 

more abstract topics, were selected from survey papers and review type papers of that 

topic. Papers not specific enough to be classified as a leaf node will thus generally end 
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up being classified as belonging to a more abstract topic. Survey papers were chosen 

as examples since they normally encompass a variety of sub-topics, and thus capture 

the range of concepts covered by the abstract topic. 

AdaBoostM1 extends AdaBoost to handle multi-class cases since AdaBoost itself is a 

binary classifier. AdaBoostM1 repeatedly runs a weak learning algorithm, in this case 

the IBk classifier, for a number of iterations over various parts of the training set. The 

classifiers produced, each specialized for a particular class, are combined to form a 

single composite classifier at the end when all iterations have been executed. 

4.4.3 Profiling algorithm 

The profiling algorithm performs correlation between the paper topic classifications 

and user browsing logs. Whenever a research paper is browsed that has a classified 

topic, it accumulates an interest score for that topic. Explicit feedback on 

recommendations also accumulates interest values for topics. The current interest of a 

topic is computed using the inverse time weighting algorithm below, applied to the 

user feedback instances. 

∑
no of instances

n = 1

Interest value(n) / days old(n)Topic interest  =

Event
interest values

Paper browsed = 1
Recommendation followed = 2
Topic rated interesting = 10
Topic rated not interesting = -10

Interest value for
super-class per instance = 50% of sub-class

∑
no of instances

n = 1

Interest value(n) / days old(n)Topic interest  =

Event
interest values

Paper browsed = 1
Recommendation followed = 2
Topic rated interesting = 10
Topic rated not interesting = -10

Interest value for
super-class per instance = 50% of sub-class

 

Figure 4.2 : Quickstep profiling algorithm 

The profile for each user consists of a list of topics and the current interest values 

computed for them. The interest value weighting was chosen to provide sufficient 

weight for an explicit feedback instance to dominate the profile for about a week, but 

after a week to allow browsed URLs again to become dominant. In this way the 

profile will adapt to changing user interests as time progresses. 
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Profile = (<user>,<topic>,<topic interest value>)*

e.g. ((someone,hypertext,-2.4)
(someone,agents,6.5)
(someone,machine learning,1.33))  

Figure 4.3 : Quickstep profile representation 

If the user is using the ontology based set of topics, all super classes gain a share 

when a topic receives some interest. The immediate super class receives 50% of the 

main topic’s value. The next super class receives 25% and so on until the most 

general topic in the is-a hierarchy is reached. In this way, general topics are included 

in the profile rather than just the most specific ones, producing a more rounded 

profile. A 50% value was chosen to reflect the increased uncertainty that occurs the 

further from the directly observed topic you go. This is how domain knowledge is 

used to improve the profiling process, allowing inference of unseen topics that are 

related to the specific topics browsed. 

4.4.4 Recommendation algorithm 

Recommendations are formulated from a correlation between the user’s current topics 

of interest and the papers classified as belonging to those topics. A paper is only 

recommended if it does not appear in the user’s browsed URL log, ensuring that all 

recommendations have not been seen before. For each user, the top three interesting 

topics are selected with 10 recommendations made in total (making a 4/3/3 split of 

recommendations). The top three interesting topics can come from the ontologies non-

leaf nodes as well as leaf nodes. Papers are ranked in order of the recommendation 

confidence before being presented to the user. 

Recommendation confidence =classification confidence *
topic interest value  

Figure 4.4 : Quickstep recommendation algorithm 

The classification confidence is computed from the AdaBoostM1 algorithm’s class 

probability value for that paper (somewhere between 0 and 1). Since non-leaf abstract 

topics are classified against a training set of survey and review papers they will be 

more general in nature than a leaf node topic paper. The flat-list group does not have a 

hierarchy with non-leaf nodes, so the option of recommending an abstract non-leaf 
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node never arises. The existence of non-leaf nodes is the crucial difference between 

the flat list group and ontology group. 

4.4.5 Research paper topic ontology 

The research paper topic ontology is based on the dmoz [dmoz] taxonomy of 

computer science topics, and was chosen since it is freely available, has had a 

significant amount of development and is regularly maintenance. It is an is-a 

hierarchy of paper topics, up to 4 levels deep (e.g. an “interface agents” paper is-a 

“agents” paper). Pre-trial interviews generated some additional topics that were added 

to the dmoz taxonomy, and a review by two domain experts validated the ontology for 

correctness before use in the trials. Figure 4.5 shows a section of the research paper 

topic ontology. 

Artificial Intelligence

Hypermedia

E-Commerce
Interface Agents
Mobile Agents
Multi-Agent-Systems
Recommender Systems Negotiation [multi-agent-systems]

Learning [multi-agent-systems]

Agents
Belief Networks
Fuzzy
Game Theory
Genetic Algorithms
Genetic Programming
Knowledge Representation
Information Filtering
Information Retrieval
Machine Learning
Natural Language
Neural Networks
Philosophy [AI]
Robotics [AI]
Speech [AI]
Vision [AI]

Text Classification

Ontologies

Adaptive Hypermedia
Hypertext Design
Industrial Hypermedia
Literature [hypermedia]
Open Hypermedia
Spatial Hypertext
Taxonomic Hypertext
Visualization [hypertext]
Web [hypermedia]

Content-Based Navigation
Architecture [open hypermedia]

Auctions [e-commerce]

 

Figure 4.5 : Section of the Quickstep research paper ontology 

A perfect ontology would tailor the granularity of topic size exactly to each users; if 

taken to an extreme this would require some sort of personal ontology per user and a 

mapping to shared example papers. To create such an ontology a full survey would be 

needed to elicit the types of research each user was interested in, and obtain some 

example papers for it. There is thus a balance to be made between the initial 

investment in knowledge engineering effort, which is multiplied by the number of 
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users, and what the system can learn by itself given enough time. There are also 

practical considerations, such as only maintaining a single ontology and the 

unwillingness of users to undergo a knowledge engineering exercise. 

Ontologies themselves are discussed and defined in chapter 5, where the capabilities 

of an ontology is explored more fully. 

4.4.6 Feedback and the quickstep interface 

Recommendations are presented to the user via a browser web page. Figure 4.6 shows 

the web-based interface. The web page applet loads the current recommendation set 

and records any feedback the user provides. Research papers can be jumped to by 

clicking on them, and a new browser window will open and display the paper URL. If 

the user likes/dislikes the paper topic, the interest feedback combo-box allows 

“interested” or “not interested” to replace the default “no comment”. 

 

Figure 4.6 : Quickstep’s web-based interface 

The topic of the paper can be changed by clicking on the topic and selecting a new 

one from the popup list. Figure 4.7 shows this popup menu in use. The ontology 

group has a hierarchical popup menu, the flat list group has a single level popup 

menu. 
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Figure 4.7 : Changing paper topics in Quickstep 

New examples can be added via the interface, with users providing a paper URL and a 

topic label. These are added to the group’s training set, allowing users to teach the 

system new topics or improve the classification of existing ones. 

All feedback is stored in log files, ready for the profile builder which runs each day. 

The feedback logs are also used as the primary metric for evaluation. Interest 

feedback, topic corrections and jumps to recommended papers are all recorded and 

time stamped. 

4.4.7 Design choices made in the Quickstep system 

Since an increasing number of research papers are published in postscript and PDF 

format, it was decided to only deal with these formats (along with gzipped, zipped and 

Z compressed versions). The reason was to filter noisy HTML pages, of which only a 

fraction are research papers, and thus make the classification task easier. The 

drawback is research areas that publish primarily in HTML will be ignored. 

The Weka machine-learning libraries [witten00] are used to implement the 

AdaBoostM1 classification algorithm and the IBk classifier. 

Through informal empirical evaluation, 100 boosting iterations with 5% of the 

training set used per iteration proved best and was chosen for the trial. A k value of 5 

was selected for the boosted IBk classifier. 
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The users were asked, in a pre-trial interview, to provide a few bookmarks to 

publication pages of important authors in their research areas of interest. Some of 

these bookmarks were pointed at digital libraries, a very useful source of freely 

available training examples. The bookmarks provided the Quickstep web crawler 

algorithm with somewhere to look initially. An initial set of papers was thus loaded 

into the system, making a pool of classified papers that could be recommended. 

In addition to bookmarks, a manual bootstrap training set was created for each of the 

topics mentioned in the pre-trial interview. The use of a bootstrap training set reduces 

the burden on users to train the system before it becomes useful. Both the ontology 

group and the flat list group started the trials with an identical bootstrap training set, 

which was then allowed to diverge as the trial progressed. 

To keep the trial simple (both to develop and analyse), feedback on the quality of 

individual papers was not elicited, only feedback on the interest of the paper topic to 

the user. 

4.5 Experimental evaluation of Quickstep 

Two experiments have been performed using the Quickstep system. Both compare the 

use of a flat, unstructured list of research paper topics to the use of a hierarchical is-a 

taxonomy. The profiling effectiveness is measured in addition to the overall 

usefulness of the system. In this way the benefit of using an ontological approach to 

profiling is evaluated. A binary comparison type experimental design was chosen for 

simplicity, and to reduce the number of potential causes for the effects seen. 

4.5.1 Details of the two trials 

Two trials were conducted to empirically assess both the overall effectiveness of the 

Quickstep recommender system and to quantify the effect of using an ontology in the 

profiling process. 

The first trial used 14 subjects, consisting of researchers from Southampton 

University’s Intelligence, Agents, Multimedia (IAM) research laboratory. A mixture 

of 2nd year postgraduates up to professors was taken, all using the Quickstep system 

for the duration of 1.5 months. 
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The second trial used 24 subjects, 14 from the first trial and 10 more 1st year 

postgraduates, and lasted for 1.5 months. Some minor interface improvements were 

made to make the feedback options less confusing. 

A pre-trial interview obtained details from subjects such as area of interest and 

expected frequency of browser use. These details were used when deciding to which 

experimental groups subjects were to be allocated. 

The purpose of both trials was to compare a group of users using an ontological 

approach to user profiling with a group of users using a flat, unstructured list. Subject 

selection for the groups tried to balance the groups as much as possible, evening out 

topics of interest, browser use and research experience in that order of importance. 

Both groups had the same number of subjects in them, 7 each for the first trial, 12 

each for the second trial. 

In the first trial, a bootstrap of 103 example papers covering 17 topics was used. 

In the second trial, a bootstrap of 135 example papers covering 23 topics was used. 

The bootstrap training set for the second trial was expanded to include examples from 

the final training set of the first trial. The classified papers from the first trial were 

also kept, allowing a bigger initial collection of papers from which to recommend in 

the second trial. About five new classes were added to the ontology to cover those 

suggested by the flat list group in the first trial. 

Both groups had their own separate training set of examples, which diverged from the 

bootstrap training set as the trial progressed. The classifier was run twice for each 

research paper, classifying once with the flat list group’s training set and once with 

the ontology group’s training set. The classifier algorithm was identical for both 

groups; only the training set changed. 

The system interface used by both groups was identical, except for the popup menu 

for choosing paper topics. The ontology group had a hierarchical menu which used 

the ontology; the flat list group had a single level menu. 

The system recorded each time the user declared an interest in a topic by selecting it 

“interesting” or “not interesting”, jumped to a recommended paper or corrected the 
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topic of a recommended paper. These feedback events were date stamped and 

recorded in a log file for later analysis, along with a log of all recommendations made. 

Feedback recording was performed automatically by the system, whenever the 

subjects looked at their recommendations. The subjects were not aware of this 

recording process other than being told about it at the start of the trial. 

A post-trial questionnaire was filled out after each trial, asking qualitative questions 

about the Quickstep system. 

4.5.2 Experimental data 

Since feedback is only collected when subjects check their recommendations, this 

data occurs at irregular times over the duration of the trial. Cumulative frequency of 

feedback events for each group is computed over the period of the trial, allowing 

trends to be seen as they develop during the trial. The total number of jumps and 

topics will differ between the two groups, hence the figures presented are normalized 

by dividing by the number of topics or recommendations up to that date. This avoids 

bias towards the group that provided feedback most frequently. 

Figure 4.8 shows the topic interest feedback results. Topic interest feedback is where 

the user comments on a recommended topic, declaring it “interesting” or “not 

interesting”. If no feedback is offered, the result is “no comment”. 

Topic interest feedback is an indication of the accuracy of the current profile. When a 

recommended topic is correct for a period of time, the user will tend to become 

content with it and stop rating it as “interesting”. On the other hand, an uninteresting 

topic is likely to always attract a “not interesting” rating. The absence of a “not 

interesting” rating is thus an indication of the acceptance of that topic, since “lazy” 

users will not go to the effort of looking at the recommendation page at all. Good 

topics are thus defined as either “no comment” or “interesting” topics. The cumulative 

frequency figures are presented as a ratio of the number of good topics to the total 

number of topics recommended. The not interesting ratio, bad topics, can be 

computed from these figures by subtracting the good topic value from 1. 

The ontology groups have a 7% and 15% higher topic acceptance. In addition to this 

trend, the first trial ratios are about 10% lower than the second trial ratios. 
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Figure 4.9 shows the jump feedback results. Jump feedback is where the user jumps to 

a recommended paper by opening it via the web browser. Jumps are correlated with 

topic interest feedback, so a good jump is a jump to a paper on a good topic. Jump 

feedback is an indication of the quality of the recommendations being made as well as 

the accuracy of the profile. The cumulative frequency figures are presented as a ratio 

of the number of good jumps to total number of recommendations made. 
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Figure 4.8 : Ratio of good topics / total topics 
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Figure 4.9 : Ratio of good jumps / total recommendations 
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Figure 4.10 : Ratio of topic corrections / total recommendations 
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There is a small 1% improvement in good jumps by the ontology group. Both trials 

show between 8-10% of recommendations leading to good jumps. 

Figure 4.10 shows the topic correction results. Topic corrections are where the user 

corrects the topic of a recommended paper by providing a new one. A topic correction 

will add to or modify a group’s training set so that the classification for that group 

will improve. The number of corrections made is an indication of classifier accuracy. 

The cumulative frequency figures are presented as a ratio of the number of corrections 

to total number of recommended papers seen. 

Although the flat list group has more corrections, the difference is only by about 1%. 

A clearer trend is for the flat list group corrections to peak around 10-20 days into the 

trial, and for both groups to improve as time goes on. 

At the end of the first trial, the ontology group training set had 157 examples, and the 

flat list group had 162 examples. The paper repository had about 3000 classified 

research papers. 

At the end of the second trial, the ontology group training set had 209 examples, and 

the flat list group had 212 examples. The paper repository had about 3500 classified 

research papers. 

A cross-validation test was run on each group’s final training set, to assess the 

precision and recall of the classifier using those training sets. The results are shown in 

table 4.1. The precision value is a measure of how many correctly classified 

documents there were as a proportion of the number classified. The recall value is a 

measure of how many documents were classified as a proportion of the total number 

of documents. Since the classifier does not use the ontological structure, the small 

variability seen in the precision and recall figures are due to the individual 

discriminating power of the example document terms found in each training set. 
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Group (trial) Precision Recall Classes 

Trial 1, Ontology 0.484 0.903 27 

Trial 1, Flat list 0.52 1.0 25 

Trial 2, Ontology 0.457 0.888 32 

Trial 2, Flat list 0.456 0.972 32 

Table 4.1 : Quickstep classifier recall and precision 

4.5.3 Post-trial questionnaires 

Each subject was given a post-trial questionnaire to fill out. The questionnaire asked 

users to select topics that were of interest during the trial from a list of all topics 

known to the system. Some 5-point scale questions were asked, to elicit qualitative 

information about the usefulness of the system. A free form comment section was also 

included so improvements could be suggested to the system. 

The second trial’s questionnaire replies are presented in table 4.2; some subjects felt 

unable to answer the questions so left some of them blank. The 5-point scale ranged 

from the lowest 1 to highest 5 value of answer, with textual comments associated with 

each value to guide the users. 

Question  1 2 3 4 5 Mean 

How much paper searching/reading did you do during 

the period of the trial?  
 11 8 2 2 2.78 

How much did you use quickstep during the period of 

the trial?  
 10 7 6  2.83 

Overall, were you interested in the topics 

recommended by quickstep?  
 4 11 7  3.14 

Overall, how useful were the papers recommended by 

the quickstep system?  
 7 11 4  2.86 

How accurate was quickstep at classifying papers?   1 13 8  3.32 

Table 4.2 : Post-trial answers for Quickstep’s second trial 

The results indicate that the system recommended papers on topics that were fairly 

interesting but with only average usefulness. This is to be expected since the 

recommendation algorithm does not consider paper quality.  
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4.5.4 Discussion of trends seen in the experimental data 

From the experimental data of both trials, several suggestive trends are apparent. The 

initial ratios of good topics were lower than the final ratios, reflecting the time it takes 

for enough log information to be accumulated to let the profiles settle down. The 

ontology users were 7-15% happier overall with the topics suggested to them. 

A hypothesis for the ontology groups’ apparently superior performance is that the is-a 

hierarchy produces a rounder, more complete profile by including general super class 

topics when a user browses a specific topic. This in turn helps the profiler to discover 

a broad range of interests, rather than just latching on to one correct topic. 

The first trial showed fewer good topics than the second trial with a 10% difference 

seen by both groups. This is probably because of interface improvements made for the 

second trial, where the topic feedback interface was made less confusing. Subjects 

were sometimes rating interesting topics as not interesting if the paper quality was 

poor. As there are more poor quality papers than good quality ones, this introduced a 

bias to not interesting topic feedback resulting in a lower overall ratio. 

About 10% of recommendations led to good jumps. Since ten recommendations were 

given to the users at a time, on average one good jump was made from each set of 

recommendations received. As with the topic feedback, the ontology group again was 

marginally superior but only by a 1% margin. This smaller difference is probably due 

to people having time to follow only one or two recommendations. Thus, although the 

ontology group has more good topics, only the top topic of the three recommended 

will really be looked at; the result is a smaller difference between the good jumps 

made and the good topics seen. 

The flat list group has a poor correction / recommendation ratio 10-20 days into the 

trial. This is probably due to new topics being added to the system. Most new topics 

were added after the users became familiar with the system, and know which topics 

they feel are missing. The familiarization process appeared to take about ten days. The 

classification accuracy of these new topics is poor until enough examples have been 

entered, typically after another ten days. 
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The ontology group has about 1% fewer corrections for both trials. This small 

difference may indicate the utility of imposing a uniform conceptual model of paper 

topics on the subjects by using the common topic hierarchy. Classifying papers is a 

subjective process, and will surely be helped if people have similar ideas as to where 

topics fit in a groups overall classification scheme. 

These preliminary results need to be extended to enable the application of more 

rigorous statistical analysis. Nevertheless, the trend in the data appears to be 

encouraging as to the utility of ontologies in recommender systems. 

4.6 Comparison with other work in the literature 

When compared with other published systems, the classification accuracy figures are 

similar, if on the low side, primarily because of the use of multi-class classification. 

Nearest neighbour systems such as NewsDude [billsus98] and Personal Webwatcher 

[mladenić96] report 60-90% classification accuracy based on binary classification. 

The higher figures tend to be seen with benchmark document collections, not real-

world data. NewsWeeder [lang95] reports 40-60% classification accuracy using real 

user browsing data from two users over a period of time, so this would be the best 

comparison. If the number of classes classified is taken into consideration, Quickstep 

compares well. Multi-class classification is not normally applied to recommender 

systems, making direct comparison of other multi-class systems difficult. 

This really highlights a problem in the recommender system literature today. There 

are virtually no experiments being performed with real users on realistic problems. As 

can be seen from the literature review in appendix A, most systems evaluate their 

performance by measuring classification accuracy using benchmark data or using one 

of the standard benchmark usage logs such as the movie lens dataset. While these 

metrics are good for comparison, they do not reveal how such systems work in 

practice, under the rigorous conditions of a real user trial. Running user trials is a long 

and expensive business, but such experiments are essential if the correlation between 

good benchmark performance and good real world performance is to be proved. 

A comparison of the usefulness of our Quickstep to that of other systems was 

attempted, but the lack of published experimental data of this kind meant that only 

classification accuracy could be usefully compared. While the results found for 
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usefulness were not statistically significant, this was because of the attenuation that 

occurs when noisy, real world data is used for evaluation. While the exact size of the 

trends seen is not clear, the fact that they occurred in both trials is a significant 

indication of the benefits of an ontological approach to user profiling. 

Chapter 2 and appendix A lists many recommender systems in the literature today. 

The systems most related to Quickstep are Entrée [burke00], which uses a knowledge 

base and case-based reasoning to recommend restaurant data, and RAAP [delgado98] 

that uses categories to represent user profiles with unshared individual training sets 

for each user. None of the reviewed systems use ontological categories to represent 

user profiles. 

4.7 Conclusions from the Quickstep trials 

Most recommender systems use a simple binary class approach, using a user profile of 

what is interesting or not interesting to the user. The Quickstep recommender system 

uses a multi-class approach, allowing a profile to be represented in terms of domain 

concepts, i.e. research paper topics, to be built. Multi-class classification is less 

accurate than binary classification, but allows class specific feedback and the use of 

domain knowledge, via an is-a hierarchy, to enhance the profiling process. 

Two experiments were performed in a real work setting, using 14 and 24 subjects over 

a period of 1.5 months. The results suggest how using an ontology in the profiling 

process results in superior performance over using a flat list of topics. The ontology 

users tended to have “rounded” profiles, including more general topics of interest that 

were not directly suggested. This increased the accuracy of the profiles, and hence 

usefulness of the recommendations. 

An informal result was seen in the nearest neighbour classifier’s robustness. Even 

when classification was incorrect, 60% of the time in fact, the class chosen was 

normally in the correct area. For example, for an “interface agent” paper the 

classification would more likely be “agent” than “human computer interaction”. The 

users liked this as it showed the system was at least making a reasonable attempt at 

classification, even if it was getting things wrong. 
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Although hard to compare, owing to the lack of a standard for reporting results, the 

overall recommender performance does appear to compare reasonably with other 

recommender systems in the literature. 

 

This chapter thus provides the evidence to support the first sub-hypothesis, that the 

loss of information which occurs while representing a profile using an ontology is 

compensated for by the information gained by any inferences which are now possible. 

The next chapter examines the evidence to supports the second sub-hypothesis. 
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Chapter 5 Cold-start recommendation and ontology interest 
acquisition 

Chapter summary 

The cold-start and interest acquisition problems are defined. 

Quickstep is introduced in the context of this integration. 

OntoCoPI is introduced, a communities of practice identifier. 

The integration of Quickstep and OntoCoPI is detailed. 

An evaluation of the effectiveness of bootstrapping Quickstep is performed. 

Conclusions are drawn and evidence to support the second sub-hypothesis found. 

 

Recommender systems learn about user preferences over time, automatically finding 

things of similar interest. This reduces the burden of creating explicit queries. 

Recommender systems do, however, suffer from cold-start problems where no 

information is available early on upon which to base recommendations. 

Semantic knowledge structures, such as ontologies, can provide valuable domain 

knowledge and user information. However, acquiring such knowledge and keeping it 

up to date is not a trivial task and user interests are particularly difficult to acquire and 

maintain. 

This chapter investigates the synergy between a web-based research paper 

recommender system and an ontology containing information automatically extracted 

from departmental databases available on the web. The ontology is used to address the 

recommender system’s cold-start problem. The recommender system addresses the 

ontology’s interest-acquisition problem. An empirical evaluation of this approach is 

conducted and the performance of the integrated systems measured. 

Evidence of enhanced cold-start performance in this chapter provided the evidence 

required to prove the second sub-hypothesis of this thesis. 

5.1 Synergy between ontologies and recommender systems 

Recommender systems [resnick97] learn about user preferences over time and 

automatically find things of similar interest, thus reducing the burden of creating 
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explicit queries. They track users dynamically as their interests change. However, 

such systems require an initial learning phase where behaviour information is built up 

to form a user profile. During this initial learning phase performance is often poor due 

to the lack of user information; this is known as the cold-start problem [maltz95]. 

There has been increasing interest in developing and using tools for creating 

annotated content and making it available over the semantic web. Ontologies are one 

such tool, used to maintain and provide access to specific knowledge repositories. 

Such sources could complement the behavioural information held within 

recommender systems, by providing some initial knowledge about users and their 

domains of interest. It should thus be possible to bootstrap the initial learning phase of 

a recommender system with such knowledge, easing the cold-start problem. 

In return for any bootstrap information the recommender system could provide details 

of dynamic user interests to the ontology. This would reduce the effort involved in 

acquiring and maintaining knowledge of people’s research interests. This chapter 

investigates the integration of Quickstep, a web-based recommender system, an 

ontology for the academic domain and OntoCoPI, a community of practice identifier 

that can pick out similar users. 

5.1.1 The cold-start problem 

One difficult problem commonly faced by recommender systems is the cold-start 

problem [maltz95], where recommendations are required for new items or users for 

whom little or no information has yet been acquired. Poor performance resulting from 

a cold-start can deter user uptake of a recommender system. This effect is thus self-

destructive, since the recommender never achieves good performance because users 

never use it for long enough. Two types of cold-start problem are examined in this 

chapter. 

The new-system cold-start problem is where there are no initial ratings by users, and 

hence no profiles of users. In this situation recommender systems have no basis on 

which to recommend, and hence perform very poorly. 
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The new-user cold-start problem is where the system has been running for a while 

and a set of user profiles and ratings exist, but no information is available about a new 

user. Recommender systems perform poorly in this situation too.  

Collaborative recommender systems fail to help in cold-start situations, as they cannot 

discover similar user behaviour because there is not enough previously logged 

behaviour data upon which to base any correlations. Content-based and hybrid 

recommender systems perform a little better since they need just a few examples of 

user interest in order to find similar items. 

No recommender system can cope alone with a totally cold-start, however, since even 

content-based recommenders require a small number of examples on which to base 

recommendations. The work in this chapter links together a recommender system and 

an ontology to address this problem. The ontology can provide a variety of 

information on users and their publications. Publications provide important 

information about what interests a user has had in the past, and so provide a basis 

upon which to create initial profiles that can address the new-system cold-start 

problem. Personnel records allow similar users to be identified. This will address the 

new-user cold-start problem by providing a set of similar users on which to base a 

new-user profile. 

5.1.2 Ontologies 

An ontology is a conceptualisation of a domain into a human-understandable, but 

machine-readable format consisting of entities, attributes, relationships and axioms 

[guarino95]. Ontologies can provide a rich conceptualisation of the working domain 

of an organisation, representing the main concepts and relationships of the work 

activities. These relationships could represent isolated information such as an 

employee’s home phone number, or they could represent an activity such as authoring 

a document, or attending a conference. 

Throughout this thesis the term ontology is used to refer to the classification structure 

and instances within the knowledge base. 

The ontology [akt-ontology] used in this work is designed to represent the academic 

domain, and was developed by the Southampton’s Advanced Knowledge 

66 



 

Technologies (AKT) team. It models people, projects, papers, events and research 

interests. The ontology itself is implemented in Protégé 2000 [eriksson99], a graphical 

tool for developing knowledge-based systems. It is populated with information 

extracted automatically from a departmental personnel database and publication 

database. The ontology consists of around 80 classes, 40 slots, over 13000 instances 

and is focused on people, projects and publications. 

5.1.3 The interest-acquisition problem 

People’s areas of expertise and interests are an important type of knowledge for many 

applications, for example expert finders [dunlop00]. Semantic web technology can be 

a good source of such information, but usually requires substantial maintenance to 

keep the web pages up-to-date. Since web page maintenance is time consuming, the 

majority of web pages receive little maintenance, holding information that does not 

age quickly. Since interests and areas of expertise will often change, they are not often 

held within web pages. It is thus particularly difficult for an ontology to acquire such 

information; this is the interest-acquisition problem. 

Many existing systems force users to perform self-assessment to gather such 

information, but this has numerous disadvantages [becerra-fernandez00]. Lotus have 

developed a system that monitors user interaction with a document to capture interests 

and expertise [lotus01]. Their system does not, however, consider the online 

documents that users browse. 

This chapter investigates linking an ontology with a recommender system to help 

overcome the interest acquisition problem. The recommender system will regularly 

provide the ontology with interest profiles for users, obtained by monitoring user web 

browsing and analysing feedback on recommended research papers. 

5.2 OntoCoPI 

The Ontology-based Communities of Practice Identifier (OntoCoPI) [alani02] is an 

experimental system developed by the AKT project, which uses the Southampton 

populated AKT ontology to help identify communities of practice (CoP). The 

community of practice of a person is taken here to be the closest group of people, 

based on specific features they have in common with that given person. A community 
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of practice is thus an informal group of people who share some common interest in a 

particular practice [brown00] [wenger00]. Workplace communities of practice 

improve organisational performance by maintaining implicit knowledge, helping the 

spread of new ideas and solutions, acting as a focus for innovation and driving 

organisational strategy.  

Identifying communities of practice is an essential first step to understanding the 

knowledge resources of an organization [wenger99]. Organisations can bring the right 

people together to help the identified communities of practice to flourish and expand, 

for example by providing them with appropriate infrastructure and giving them 

support and recognition. However, community of practice identification is currently a 

resource-heavy process largely based on interviews, mainly because of the informal 

nature of such community structures that are normally hidden within and across 

organisations.  

OntoCoPI is a tool that uses ontology-based network analysis to support the task of 

community of practice identification. A breadth-first spreading activation algorithm is 

applied by OntoCoPI to crawl the ontology network of instances and relationships to 

extract patterns of certain relations between entities relating to a community of 

practice. The crawl can be limited to a given set of ontology relationships. These 

relationships can be traced to find specific information, such as who attended the 

same events, who co-authored papers and who are members of the same project or 

organisation. Communities of practice are based on informal sets of relationships 

while ontologies are normally made up of formal relationships. The hypothesis 

underlying OntoCoPI is that some informal relationships can be inferred from the 

presence of formal ones. For instance, if A and B have no formal relationships, but 

they have both authored papers with C, then that could indicate a shared interest.  

One of the advantages of using an ontology to identify communities of practice, rather 

than other traditional information networks [albert02], is that relationships can be 

selected according to their semantics and can have different weights to reflect relative 

importance. For example the relations of document authorship and project 

membership can be selected if it is required to identify communities of practice based 

on publications and project work. OntoCoPI allows manual selection of relationships 

or automatic selection based on the frequency of relationship use within the 

knowledge base. Selecting the right relationships and weights is an experimental 

68 



 

process that is dependent on the ontology structure, the type and amount of 

information in the ontology, and the type of community of practice required.  

When working with a new community of practice, some experiments will be needed 

to see which relationships are relevant to the desired community of practice, and how 

to set relative weights. In the experiments described in this chapter, certain 

relationships were selected manually and weighted based on our preferences. The 

most highly weighted relationships were supervision, project membership and 

authorship relations. The AKT ontology research topic labels were manually altered 

to match those labels used by the Quickstep system to avoid ontological label 

mapping issues. Further trials would be needed to determine the most effective 

relationship weightings. 

5.3 Integrating Quickstep, OntoCoPI and the AKT ontology 

This chapter integrates the ontology, OntoCoPI and Quickstep recommender system 

to provide a solution to both the cold-start problem and interest-acquisition problem. 

Figure 5.1 shows the experimental systems after integration. 
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Figure 5.1 : Ontology and recommender system integration 

Upon start-up, the ontology provides the recommender system with an initial set of 

publications for each of its registered users.  Each user’s known publications are then 

correlated with the recommender systems classified paper database, and a set of 

historical interests compiled for that user. These historical interests form the basis of 

an initial profile, overcoming the new-system cold-start problem. Figure 5.2 details 

the initial profile algorithm. As per the Quickstep profiling algorithm, fractional 

interest in topic super-classes are inferred when a specific topic is added. 
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∑
publications belonging

to class t

n=1

1 / publication age(n)topic interest(t)  =

t = <research paper topic>

new-system initial profile = (t, topic interest(t))*

∑
publications belonging

to class t

n=1

1 / publication age(n)topic interest(t)  =

t = <research paper topic>

new-system initial profile = (t, topic interest(t))*

 

Figure 5.2 : New-system initial profile algorithm 

When a new user is added to the recommender system after an initial period of use, 

the ontology provides the historical publication list of the new user and the OntoCoPI 

system provides a ranked list of similar users. The initial profile of the new user is 

formed from a correlation between historical publications and any similar user 

profiles. This algorithm is detailed in figure 5.3, and addresses the new-user cold-start 

problem. 

t = research paper topic
u = user
γ = weighting constant >= 0
Nsimilar = number of similar users
Npubs t = number of publications belonging to class t
CoP confidence = Communities of practice confidence

topic interest(t)  =

∑
Npubs t

n = 1

1 / publication age(n)+

∑
Nsimilar

u = 1

profile interest(u,t)_____
Nsimilar

γ

profile interest(u,t) = interest of user u in topic t * CoP confidence
new-user initial profile = (t, topic interest(t))*

 

Figure 5.3 : New-user initial profile algorithm 

While only publications were directly mapped, the bootstrapping functions could be 

expanded to include other ontological concepts such as research areas. This would 

give access to specific user communities of practice, rather than ones dynamically 

generated by network analysis, and would probably have a higher confidence value. 

The task of populating and maintaining the ontology of user research interests is left 

to the recommender system. The recommender system compiles user profiles on a 

daily basis, and these profiles are added into the ontology when ready. Figure 5.4 

details the structure of these profiles. In this way up-to-date interests are maintained, 
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providing a solution to the interest acquisition problem. The interest data is used 

alongside the more static information within the ontology to improve the accuracy of 

the OntoCoPI system. 

 user profile = (topic, interest)*
topic = <research topic>
interest = <interest value>  

Figure 5.4 : Daily profiles sent to the AKT ontology 

The issue of mapping the Quickstep’s research topic classes to those in the AKT 

ontology was avoided by changing the AKT ontology class names to match the 

Quickstep ontology class names. A more scalable solution would need to employ a set 

of mappings between ontological concepts. If more than one external ontology was to 

be integrated then it would make sense to build a specific module within the 

Quickstep recommender system to manage these mappings, and use a soft-coded 

description of each mappings, in a language like XML, for easy maintenance. 

5.4 Example of integrated system operation 

When the Quickstep recommender system is first initialised, it retrieves a list of 

people and their publication URLs from the ontology. Quickstep analyses these 

publications and classifies them according to the research topic hierarchy in the 

ontology. Paper topics are associated with their date of publication, and the ‘new-

system initial profile’ algorithm used to compute a set of initial profiles for each user. 

Tables 5.1 and 5.2 show an example of this for the user Nigel Shadbolt. His 

publications are analysed and a set of topics and dates formulated. The ‘new-system 

initial profile’ algorithm then computes the interest values for each topic. For 

example, ‘Knowledge Acquisition’ has one publication two years old (round up) so its 

value is 1.0 / 2 = 0.5. 

71 



 

Publication Date Topic 

Capturing Knowledge of User Preferences: 

ontologies on recommender systems 
2001 Recommender systems 

Knowledge Technologies 2001 Knowledge Technology 

The Use of Ontologies for Knowledge Acquisition 2001 Ontology 

Certifying KBSs: Using CommonKADS to 

Provide Supporting Evidence for Fitness for Purpose of KBSs 
2000 Knowledge Management 

Extracting Focused Knowledge from the Semantic Web 2000 Knowledge Acquisition 

Knowledge Engineering and Management 2000 Knowledge Management 

…   

Table 5.1 : Publication list for Shadbolt 
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Topic Interest 

Knowledge Technology\Knowledge Management 1.5 

Knowledge Technology\Ontology 1.0 

AI\Agents\Recommender Systems 1.0 

Knowledge Technology\Knowledge Acquisition 0.5 

…  

Table 5.2 : Example of new-system profile for Shadbolt 

At a later stage, after Quickstep has been running for a while, a new user registers 

with email address sem99r@ecs.soton.ac.uk. OntoCoPI identifies this email account 

as that of Stuart Middleton, a PhD candidate within the department, and returns the 

ranked and normalised communities of practice list displayed in table 5.3. This 

communities of practice list is identified using relations on conference attendance, 

supervision, authorship, research interest and project membership, using the weights 

0.4, 0.7, 0.3, 0.8, and 0.5 respectively. De Roure was found to be the closest person as 

he is Middleton’s supervisor, and has one joint publication co-authored with 

Middleton and Shadbolt. The people with 0.82 values are other supervisees of De 

Roure. Alani attended the same conference as Middleton went to in 2001.  

Person Relevance value Person Relevance value 

DeRoure 1.0 Alani 0.47 

Revill 0.82 Shadbolt 0.46 

Beales 0.82   

Table 5.3 : OntoCoPI results for Middleton 

The communities of practice list is then sent to Quickstep, which searches for 

matching user profiles. These profiles will be more accurate and up to date than those 

initially created profiles based on publications. Quickstep manages to find the profiles 

shown in table 5.4 in its logs. 
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Person Topic Interest 

AI\Distributed Systems 1.2 
DeRoure 

AI\Agents\Recommender Systems … 0.73 

AI\Agents\Mobile Agents 1.0 
Revill 

AI\Agents\Recommender Systems … 0.4 

Knowledge Technology\Knowledge Devices 0.9 
Beals 

AI\Agents\Mobile Agents … 0.87 

Knowledge Technology\Ontology 1.8 
Alani 

Knowledge Technology\Knowledge Management\ CoP … 0.7 

Knowledge Technology\Knowledge Management 1.5 
Shadbolt 

AI\Agents\Recommender Systems … 1.0 

Table 5.4 : Profiles of similar people to Middleton 

These profiles are merged to create a profile for the new user, Middleton, using the 

‘new-user initial profile’ algorithm with a γ value of 2.5. For example, Middleton has 

a publication on ‘Recommender Systems’ that is one year old and De Roure, Revill 

and Shadbolt have an interest in ‘Recommender Systems’ – this topic’s value is 

therefore 1/1 + 2.5/5 * (1.0*0.73+0.82*0.4+0.46*1.0) = 1.76. Table 5.5 shows the 

resulting profile. 

Topic Interest 

AI\Agents\Recommender Systems 1.76 

AI\Agents\Mobile Agents 0.77 

AI\Distributed Systems 0.6 

Knowledge Technology\Ontology 0.42 

Knowledge Technology\Knowledge Devices 0.37 

Knowledge Technology\Knowledge Management  0.35 

Knowledge Technology\Knowledge Management\ CoP 0.16 

…  

Table 5.5 : New-user profile for Middleton 

Every day Quickstep’s profiles are updated and automatically fed back to the 

ontology, where they are used to populate the research interest relationships of the 

relevant people. 
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5.5 Empirical evaluation of the integrated system 

In order to evaluate the effect both the new-system and new-user initial profiling 

algorithms have on the integrated system, an experiment was conducted based around 

the browsing behaviour logs obtained from the Quickstep [middleton01b] user trials. 

The algorithms previously described are used, as per the example in the previous 

section, and the average performance for all users calculated. 

5.5.1 Experimental approach 

Users were selected from the Quickstep trials had entries within the departmental 

publication database. Nine users were selected in total, with each user typically 

having one or two publications. 

The URL browsing logs of these users, extracted from three months of browsing 

behaviour recorded during the Quickstep trials, were then broken up into weekly log 

entries. Seven weeks of browsing behaviour were taken from the start of the 

Quickstep trials, and an empty log created to simulate the very start of the trial. 

Eight iterations of the integrated system were thus run, the first simulating the start of 

the trial and others simulating the following weeks 1 to 7. Interest profiles were 

recorded after each iteration. Two complete runs were made, one with the ‘new-

system initial profiling’ algorithm and one without. The control run without the ‘new-

system initial profiling’ algorithm started with blank profiles for each of its users. 

An additional iteration was run to evaluate the effectiveness of the ‘new-user initial 

profile’ algorithm. The communities of practice for each user were taken, based on 

data from week 7, and used with the ‘new-user initial profile’ algorithm to compute 

initial profiles for each user as if they were being entered onto the system during the 

trial. These profiles were recorded. Because an early prototype version of OntoCoPI 

was used, communities of practice confidence values were not available; the 

confidence values were thus all of value 1 throughout this experiment. 

In order to evaluate the algorithms effect on the cold-start problem, all recorded 

profiles were compared to the benchmark week 7 profile. This allowed measurement 

of how quickly profiles converge to the stable state existing after a reasonable amount 
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of behaviour data has been accumulated. The quicker the profiles move to this state 

the quicker they will have overcome the cold-start. 

Week 7 was chosen as the cut-off point of our analysis since after about 7 weeks of 

use the behaviour data gathered by Quickstep will dominate the user profiles. The 

effects of bootstrapping beyond this point would not be significant. If the system were 

run beyond week 7 it would simply continually adjust the profiles to the behaviour 

logged each week. 

5.6 Experimental results 

Two measurements were made when comparing profiles to the benchmark week 7 

profile. The first, profile precision, measures how many topics were mentioned in 

both the current profile and benchmark profile. Profile precision is an indication of 

how quickly the profile is converging to the final state, and thus how quickly the 

effects of the cold-start are overcome. The second, profile error rate, measures how 

many topics appeared in the current profile that did not appear within the benchmark 

profile. Profile error rate is an indication of the errors introduced by the two 

bootstrapping algorithms. Figure 5.5 describes these metrics. 

It should be noted that the absolute precision and error rate of the profiles are not 

measured – only the relative precision and error rate compared to the week 7 steady 

state profiles. Measuring absolute profile accuracy is a very subjective matter, and is 

not attempted here; only how quickly profiles reach their steady states is measured. A 

more complete evaluation of Quickstep’s overall profiling and recommendation 

performance can be found in [middleton01b]. 
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Ncorrect Number of user topics that appear in current
profile and benchmark profile

Nmissing Number of user topics that appear in benchmark 
profile but not in current profile

Nincorrect Number of user topics that appear in current
profile but not in benchmark profile

Nusers Total number of users

profile error rate = ______________________
Ncorrect + Nincorrect + Nmissing

Nincorrect

profile precision =
Ncorrect + Nmissing

Ncorrect_____________
Nusers

1
_____ ∑

user = 1

Nusers

Nusers

1
_____ ∑

user = 1

Nusers

Ncorrect Number of user topics that appear in current
profile and benchmark profile

Nmissing Number of user topics that appear in benchmark 
profile but not in current profile

Nincorrect Number of user topics that appear in current
profile but not in benchmark profile

Nusers Total number of users

profile error rate = ______________________
Ncorrect + Nincorrect + Nmissing

Nincorrect

profile precision =
Ncorrect + Nmissing

Ncorrect

Ncorrect + Nmissing

Ncorrect_____________
Nusers

1
_____ ∑

user = 1

Nusers

Nusers

1
_____ ∑

user = 1

Nusers

 

Figure 5.5 : Evaluation metrics 

The results of our experimental runs are detailed in figures 5.6 and 5.7. The new-user 

results consist of a single iteration, so appear on the graphs as a single point. 

At the start, week 0, no browsing behaviour log data is available to the system so the 

profiles without bootstrapping are empty. The new-system algorithm, however, can 

bootstrap the initial user profiles and achieves a reasonable precision of 0.35 and a 

low error rate of 0.06. It was found that the new-system profiles accurately captured 

interests users had a year or so ago, but tended to miss current interests. This is 

because publications are generally not available for up-to-date interests. 

As expected, once the weekly behaviour logs become available to the system the 

profiles adjust accordingly, moving away from the initial bootstrapping. On week 7 

the profiles converge to the benchmark profile. 

The new-user algorithm result show a more dramatic increase in precision to 0.84, but 

comes at the price of a significant error rate of 0.55. The profiles produced by the 

new-user algorithm tended to be very inclusive, taking the set of similar user interests 

and producing a union of these interests. While this captures many of the new user’s 

real interests, it also included a large number of interests not relevant to the new user 

but which were interesting to the people similar to the new user. 
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Figure 5.6 : Profile precision 
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Figure 5.7 : Profile error rate 

Since error rate is measured relative to the final benchmark profile of week 7, all the 

topics seen in the behaviour logs will be present within the benchmark profile. 

Incorrect topics must thus come from another source – in this case the bootstrapping 

on week 0. This causes error rates to be constant over the 7 weeks, since the incorrect 

topics introduced on week 0 remain for all subsequent weeks. 

5.7 Conclusions 

Cold-starts in recommender systems and interest acquisition in ontologies are 

significant problems. If initial recommendations are inaccurate, user confidence in the 

recommender system may drop with the result that not enough usage data is gathered 

to overcome the cold-start. With regard to ontologies, up-to-date interests are not 

generally available from periodically updated information sources such as web pages, 

personnel records or publication databases. 

The integration of the Quickstep recommender system, AKT ontology and OntoCoPI 

system has demonstrated one approach to reduce both the cold-start and interest-

acquisition problems. The practical work suggests that using an ontology to bootstrap 
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user profiles can significantly reduce the impact of the recommender system cold-start 

problem. It is particularly useful for the new-system cold-start problem, where the 

alternative is to start with no information at all. Regularly feeding the recommender 

system’s interest profiles back to the ontology also clearly assists in the acquisition of 

up-to-date interests. A number of issues have, however, arisen from the integration. 

The new-system algorithm produced profiles with a low error rate and a reasonable 

precision of 0.35. This reflects that previous publications are a good indication of 

user’s current interests, and so can produce a good starting point for a bootstrap 

profile. Where the new-system algorithm fails is for more recent interests, which 

make up the remaining 65% of the topics in the final benchmark profile. To discover 

these more recent interests, it is possible that the new-system algorithm could be 

extended to take some of the other information available within the ontology into 

account, such as the projects a user is working on. To what degree these relationships 

will help is difficult to predict however, since the ontology itself has great difficulty in 

acquiring knowledge of recent interests. 

For the purposes of this experiment, those users who had some entries within the 

university’s on-line publication database were selected. There were some users who 

had not entered their publications into this database or who have yet to publish their 

work. For these users there is little information within the ontology, making any new-

system initial profiles of little use. In a larger scale system, more sources of 

information would be needed from the ontology to build the new-system profiles. 

This would allow some redundancy, and hence improve robustness in the realistic 

situation where information is only sparsely available.  

The community of practice for a user was found not to be always relevant based on 

our selection of relationships and weights. For example, David De Roure supervises 

Stuart Middleton, but he also supervises a lot of other students interested in mobile 

agents. These topics are not relevant to Stuart, which raises the question of how 

relevant the supervision relationship is to our requirements, and how best to weight 

such a relationship. The prototype version of OntoCoPI used in this experiment 

contained relationship weights biased towards this supervision relationship. Further 

experiments are needed to identify the most relevant settings for community of 

practice identification. The accuracy of our communities of practice are also linked to 
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the accuracy of the research interest information as identified by the recommender 

system. 

The new-user algorithm achieved good precision of 0.84 at the expense of a 

significant 0.55 error rate. This was because both the communities of practice 

generated for users were not always precise, and because the new-user algorithm 

included all interests from the similar users. An improvement would be to only use 

those interests held by the majority of the people within a community of practice. This 

would exclude some of the less common interests that would otherwise be included 

into the new-user profile. 

The new-user initial profile algorithm uses the constant γ, which determines the 

proportional significance of previous publications and similar users. Factors such as 

the availability of relationship data within the ontology and quality of the publication 

database will affect the choice of value for γ. A value of 2.5 was used, but empirical 

evaluation would be needed to determine the best value. 

There is an issue as to how best to calculate the “semantic distance” between topics 

within the is-a hierarchy. The simplifying assumption that all is-a links have equal 

relevance is used here, but the exact relevance will depend on each topic in question. 

If individual weightings were allowed for each topic, a method for determination of 

these weights would have to be considered. Alternatively the is-a hierarchy could be 

carefully constructed to ensure equal semantic distance. 

A positive feedback loop exists between the recommender system and ontology, 

making data incest a potential problem. For new users there are no initial interest 

entries within the ontology, so new user profiles are not incestuous. If the 

recommender system were to use the communities of practice for more than just 

initial profiles, however, a self-confirming loop would exist; the recommender system 

would derived its interests from the communities of practice, which would derive its 

interests from the recommender system, and so on in an incestuous loop. However, if 

the ontology were to obtain research interest information from another source then the 

interests could be used to refine the list of users in a community of practice further, 

and thus increase the accuracy of the bootstrapping algorithms.  
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Finally, a question still remains as to just how good an initial profile must be to fully 

overcome the effects of the cold-start problem. If initial recommendations are poor 

users will not use the recommender system and hence it will never get a chance to 

improve. It has been shown that improvements can be made to initial profiles, but 

further empirical evaluation would be needed to evaluate exactly how much 

improvement is needed before the system is “good enough” for users to give it a 

chance. 

 

The bootstrapping used in this chapter was made possible because user profiles were 

represented using an ontology. Knowledge held within the ontology was thus able to 

provide the information required for initial bootstrapping. The benefits seen in using 

such knowledge thus provide the evidence required to support the second sub-

hypothesis. Chapter 6 provides evidence to support the third sub-hypothesis, showing 

a further way in which an ontological representation of user profiles can offer benefits 

to a recommender system. 
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Chapter 6 The Foxtrot recommender system 

Chapter summary 

The Foxtrot problem domain is presented. 

An overview of the Foxtrot system is detailed, and the empirical evaluation 

summarized. 

Detailed descriptions of the approaches used by Foxtrot are laid out. 

Experimental set-up is described along with subject selection, experimental conditions 

and the metrics recorded. 

The experimental data is detailed and significant trends identified. 

The trends seen are discussed and hypotheses offered for the effects seen. Comparison 

is made with other published data from similar systems. 

Conclusions are drawn and evidence to support the third sub-hypothesis found. 

 

This chapter investigates the Foxtrot recommender system, an evolution of the 

Quickstep system described in chapter 4. It addresses the problem domain of 

recommending academic research papers, as does Quickstep, but tackles a larger 

range of research topics and provides a service over a much longer time. Several 

enhancements are made to the interface, classification and recommendation processes 

and the recommendation facility is built upon a database search facility. Profile 

visualization is explored as an additional benefit of representing profiles in 

ontological terms, hence providing the evidence to support the third sub-hypothesis. 

An evaluation is carried out and both recommendation and profiling effectiveness 

assessed and compared to other recommender systems within the literature. 

Appendix C contains details of the Foxtrot implementation and a set of data flow 

diagrams detailing the system design. 

6.1 The Foxtrot problem domain 

Foxtrot addresses the problem of recommending on-line research papers to over 300 

computer science staff and students at the University of Southampton for a full 

academic year. The first user requirement is thus for a system that can search a 

research paper database and return on-line papers, and the second requirement for a 
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recommendation facility that can help suggest useful papers missed by explicit 

searching. Unobtrusive monitoring methods are preferred because researchers have 

their normal work to perform and would not welcome interruptions from a new 

system. Very high accuracy on recommendations is not required since users will have 

the option to simply ignore poor recommendations. 

6.2 Overview of the Foxtrot system 

The Foxtrot recommender system is a hybrid recommender system and searchable 

paper database. Collaborative and content-based recommendation is supported, in 

addition to direct database searching. Figure 6.1 shows an overview of the Foxtrot 

architecture. Foxtrot is an evolution of the Quickstep [middleton01b] recommender 

system, described in chapter 4. 

Classifier

World Wide
Web

Research Paper
Database

Recommender

ProfilerUsers Web
Proxy

 

Figure 6.1 : Foxtrot overview 

A web proxy is used to monitor unobtrusively each user’s web browsing, adding new 

research papers to the central database as users discover them. The research paper 

database thus acts as a pool of shared knowledge, available to all users via search and 

recommendation. The database of research papers is classified using a research paper 

topic ontology and a set of training examples for each topic. 

Recorded web browsing and relevance feedback elicited from users is used to 

compute daily profiles of users’ research interests. Interest profiles are represented in 

ontological terms, allowing other interests to be inferred that go beyond that just seen 
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from directly observed behaviour. These interest profiles are visualized to allow 

elicitation of direct profile feedback, thus providing an additional source of 

information from which profiles can be computed. 

Recommendations are compiled daily and suggested when a user goes to the Foxtrot 

web page or receives a weekly email. Collaborative filtering is used to compute the 

recommendations, using only the current topics of interests in each user’s content-

based profile. 

6.3 Empirical evaluation 

An empirical evaluation of the Foxtrot system was conducted with the computer 

science staff and students of the University of Southampton, over the period of an 

academic year. The aim of the evaluation was to assess the benefits of using direct 

profile visualization and feedback and to assess the overall effectiveness of the 

recommender system. 

Subjects registered to use the system were randomly divided into two groups. The 

first group was allowed to see their profile and provide direct profile feedback, the 

second group was not allowed. Both groups had full access to the system and could 

provide traditional relevance feedback on the recommended papers and search results 

found when using the system.  

Performance metrics were measured over the duration of the trial, and the 

effectiveness of both groups compared. 

6.4 Interesting lessons from the Quickstep system 

Before the Foxtrot recommender system design was finalized, a number of issues that 

were raised with the Quickstep system were addressed. These mainly came from the 

implementation of the interface, and the way researchers appeared to prefer to work. 

Firstly there was a clear need for a searchable database in addition to the 

recommendation web page interface. Researchers often wanted to find a specific 

paper, or search for a paper on a specific topic, and did this via a normal search engine 

such as Google; they did not want to wait for the recommender to eventually suggest 

the paper. Interestingly, the Quickstep database of research papers would have been 
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an ideal place to look. Therefore it seemed useful to allow users to enter immediate 

search queries for the papers they know they need. The recommendation facility could 

then be used in conjunction to normal searching, recommending extra papers that a 

user might not have realized was out there or not bothered to find. 

In addition to a search facility, it became clear that there was a lot to be gained from a 

collaborative approach in addition to a content-based approach to recommendation. 

Since the research topics were quite broad in nature, there were often cases when the 

system had to choose from several papers on the same topic; a collaborative filter here 

would allow the system to recommend papers on a topic which other users liked 

before papers that were untried. 

Users tended to have difficulty with the concept of interest feedback. Some users 

thought this was for papers they liked and others for good quality papers. The solution 

to this semantic dilemma was to introduce an explicit quality rating in addition to the 

interest rating of the Quickstep system. This removed completely the ambiguity. 

6.5 The Foxtrot System Approach 

Two approaches are taken to help researchers effectively find the papers they need. 

In the case where a researcher is looking for a specific paper, a search facility can 

access the Foxtrot research paper database. This allows researchers to enter search 

keywords and search the title, content and classification of papers in the database. A 

search facility is well suited to this problem since computer science researchers are 

normally experienced in using the web and formulating useful search queries. 

In the case where the researcher is interested in keeping up-to-date in a research area, 

a recommendation facility has been built to suggest previously unseen papers that 

might be of interest. A recommender system approach is useful here because user 

interests will change over time and hence need to be continuously monitored. The 

recommender regularly generates user profiles from observed behaviour and uses this 

as the basis for recommending research papers. 

Combining both the search engine and recommender system approaches allows the 

advantages of both to be combined and hence provides a more effective tool for 

researchers. 
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Regularly asking for a set of interests would be intrusive, imposing an extra work 

burden on the researchers, and thus result in a reduced uptake of the system. For this 

reason unobtrusive monitoring of web browsing via a proxy server was chosen to 

acquire positive examples of user interest. Optional feedback is elicited from both 

normal search results and recommendation lists, recording any information 

volunteered on the interest and quality of particular papers. This approach offers 

feedback options as an addition to the normal working of the system, and hence 

should not prove too intrusive. Profile visualization is available as an option to those 

who choose to use it, and is based on a drawing metaphor so that users can both see 

their current profile and literally draw any modification to it. Again, profile feedback 

is volunteered by users so should not interfere with their normal use of the system. 

Research papers are represented as term-frequency vectors, a common representation 

in the machine-learning community. This allows use of a boosted k-nearest neighbour 

document classifier, described later in this chapter, to classify new vectors in terms of 

the classes within the topic ontology. Term frequency vectors are computed by 

counting the number of times words, or terms, appear within the textual content of a 

paper. 

Recommender systems typically use a binary approach to classification, holding 

example of positive and negative interest for each user and classifying new papers 

based on how well they match these two training sets. One problem with this 

approach is that the training sets are personal to each user, so there is no easy basis on 

which they can be shared. Without the option of sharing, the number of training 

examples per user will be limited. This means that to gather a sufficiently large 

training set to allow accurate classification of interests, the users will either have to 

volunteer numerous examples of interest or be monitored for a significant duration to 

gather enough behaviour data. This places a significant burden on users to train the 

system, which will deter user uptake of the tool. 

Foxtrot uses an ontological approach to interest profiling, representing user interests 

in terms of a research topic ontology. Since all users share the topic ontology, training 

examples of topic classes within the ontology can also be shared. A multi-class 

classifier is used to classify research papers in terms of the classes within this research 

paper topic ontology. Having represented interests in ontological terms we can then 
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use the relationships between classes to infer more interests than are available from 

direct observation only. Interest profiles can also be visualized using ontological 

terms, which are understandable to the users, and hence it is possible to elicit 

feedback on the profiles directly. 

The interests held within each user’s profile are computed from the research topics of 

browsed papers and from any feedback provided. A topic interest history is created 

for each user, and a time-decay function used to compute the current topics of interest. 

Inference is also applied, using the is-a relationships between classes defined by the 

research topic ontology to infer interest in more general classes when interest is seen 

in a specific class. 

6.5.1 Research paper representation 

Research papers are represented as term vectors, with term frequency / total number 

of terms used for a terms weight. Since many words are either too common or too rare 

to have useful discriminating power to the classifier, a few dimensionality reduction 

techniques are used to reduce the number of dimensions of the term-frequency 

vectors. Porter stemming [porter80] is used to remove term suffixes and the SMART 

[smart74] stop list is used to remove very common words. Term frequencies below 2 

are removed and for each topic class only the top 50 terms, ranked by document 

frequency, are added to the vector. Dimensionality reduction is common in 

information systems; [sebastiani02] provides a good discussion of the issues. 

Foxtrot supports papers in HTML, PS, PDF formats and various compressed versions 

of these formats, all of which are converted to plain text and then used to create term 

vectors. This covers the majority of research paper formats available on the web, with 

other formats or corrupt formats ignored. Several heuristics are used to determine if 

the research papers are converted to text correctly and look like a typical research 

paper with terms such as ‘abstract’ and ‘references’. In the Foxtrot trial, term-vectors 

for papers had, after dimensionality reduction, around 1000 dimensions. 

6.5.2 Research paper topic ontology 

Foxtrot uses a research paper topic ontology to represent research interests of its 

users. A class is defined for each research topic and is-a relationships defined where 

appropriate. The ontology is based on the classification ontology used by the CORA 
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[mccallum00] digital library with a few customised modifications. Figure 6.2 shows 

some of the classes within the ontology. CORA was chosen, as opposed to the [dmoz] 

classification used by Quickstep, since it provided a readily accessible source of pre-

classified research papers over a wide range of computer science topics, helpful when 

you need over 700 example papers. 

Human-Computer Interaction

Data Structures Algorthms & Theory
Information Retrieval
Databases
Networking
Encryption & Compression
Operating Systems
Hardware & Architecture
Programming

E-Commerce
Interface Agents
Mobile Agents
Multi-Agent-Systems
Recommender Systems

Agents
Data Mining
Expert Systems
Games and Search
Knowledge Representation
Machine Learning
Natural Language Processing
Planning
Robotics
Speech
Theorem Proving
Vision & Pattern Recognition

Case-Based [machine learning]
Genetic Algorithms
Neural Networks
Probabilistic Methods
Reinforcement Learning
Rule Learning
Theory [machine learning]

Artificial Intelligence

Cooperative [hci]
Hypermedia
Multimedia
Graphics & Virtual Reality
Interface Design
Wearable Computers
User Modelling

 

Figure 6.2 : Section from the research paper topic ontology 

Approximately 5-10 labelled examples of research papers were manually added to the 

classifier training set, many taken from the results of the Quickstep trial and papers 

downloaded from the CORA system. There totalled 97 classes and 714 training 

examples. The ontology remains fixed through the Foxtrot trial, but could be updated 

as time goes on to reflect changes in the research domain. For every new ontology 

class a new set of 5-10 example papers would be required. Since the vector space used 

by the classifier is re-built every day, adding new examples mid-trial would not cause 

a problem to the system. 

The effect changing ontology has on a system, i.e. from dmoz in Quickstep to CORA 

in Foxtrot, is a like the effect changing a document corpus has on a machine learning 

algorithm. The classification performance figures will be very much dependent on the 
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discriminating power of the training examples associated with each ontological class; 

this will in turn effect the profiling accuracy. Since the domains addressed by the 

CORA and dmoz ontology are similar, with CORA just being a little wider and 

broader in scope, we think the results from Quickstep and Foxtrot should be 

comparable. Certainly if the fit between ontological classes and the actual topics being 

read by users is good then the profiling accuracy will be good too, and thus the 

recommendation accuracy will be superior to a system where the ontological classes 

do not fit so well to the browsed topics. 

6.5.3 Research paper classification 

Research papers in the central database are classified by an IBk [aha91] classifier, 

which is boosted by the AdaBoostM1 [freund96] algorithm. The IBk classifier is a k-

Nearest Neighbour type classifier that uses example documents, called a training set, 

added to a term-vector space. Figure 6.3 shows the basic k-Nearest Neighbour 

algorithm. The closeness of an unclassified vector to its neighbours within the term-

vector space determines its classification.  
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____________
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w(da,db) kNN distance between document a and b
da,db document vectors
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Figure 6.3 : k-Nearest Neighbour algorithm 

Classifiers like k-Nearest Neighbour allow more training examples to be added to 

their term-vector space without the need to re-build the entire classifier. They also 

degrade well, so even when incorrect the class returned is normally in the right 

“neighbourhood” and so at least partially relevant. This makes k-Nearest Neighbour a 

robust choice of algorithm for research paper classification. 
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Boosting works by repeatedly running a weak learning algorithm on various 

distributions of the training set, and then combining the classifiers produced by the 

weak learner into a single composite classifier. The “weak” learning algorithm here is 

the IBk classifier. Figure 6.4 shows the AdaBoostM1 algorithm. 

Initialise all values of D to 1/N
Do for t=1..T

call weak-learn(Dt)
calculate error et
calculate βt = et/(1-et)
calculate Dt+1

Dt class weight distribution on iteration t
N number of classes
T number of iterations
weak-learn(Dt) weak learner with distribution Dt
et weak_learn error on iteration t
βt error adjustment value on iteration t
classifier final boosted classifier
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t = all iterations
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c ∈ C βt
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Figure 6.4 : AdaBoostM1 boosting algorithm 

AdaBoostM1 has been shown to improve [freund96] the performance of weak learner 

algorithms, particularly for the stronger learning algorithms like k-Nearest Neighbour. 

It is thus a sensible choice to boost our IBk classifier. 

Other types of classifier were considered, including the naïve Bayes classifier and the 

C4.5 decision tree, and informal tests run to evaluate their performance. The boosted 

IBk classifier was found to give superior performance for this domain. 

6.5.4 Interface 

Users interact with Foxtrot via a web page. The basic interface is shown in figure 6.5. 

A web search engine metaphor has been used for the interface design, allowing users 

to enter search queries via edit boxes and click on a search button to initiate a search. 

Search results are returned in the area below the edit boxes, showing the details of 

each research paper found. Two sets of radio buttons appear below each search result 

to allow users to provide relevance and quality feedback if they so desire. When users 

first go to the Foxtrot web page, their daily recommendations are automatically 
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presented in the search result area. In this way, users can then choose to read the 

recommendations or just enter a search query and use the system normally. 

 

Figure 6.5 : Recommendation and search interface 

Users who are in the profile group can visualize their interest profiles by clicking on a 

profile tab. Figures 6.6 and 6.7 show the profile interface. Profiles are displayed as a 

time/interest graph, showing what the system thinks their top interests are over the 

period of the trial. Direct profile feedback can be drawn onto this graph by using the 

controls to the side. A drawing package metaphor is used here, and users can draw 

coloured horizontal bars to represent a level of interest in a topic over a period of 

time. In this way a user can literally draw their own profiles. 
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Figure 6.6 : Profile visualization interface, drawing interests 

 

Figure 6.7 : Profile visualization interface, picking topics 

In addition to the Foxtrot web page, a weekly email notification feature was added 

three months from the end of the trial. This provided a weekly email stating the top 

three recommendations from the current nine recommendations. Users could then 

jump to these papers or load the Foxtrot web page and review all nine 

recommendations. Figure 6.8 shows the email notification message. 
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Figure 6.8 : Email notification interface 

6.5.5 Profiling 

Interest profiles are computed daily by correlating previously browsed research papers 

with their classification. User profiles thus hold a set of topics and interest values in 

their topics for each day of the trial. User feedback also adjusts the interest of topics 

within the profile and a time decay function weights recently seen papers as being 

more important than older ones. Ontological relationships between topics of interest 

are used to infer other topics of interest, which might not have been browsed 

explicitly; an instance of an interest value for a specific class adds 50% of its value to 

the super-class. Figure 6.9 shows the profiling algorithm. 

∑
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Paper browsed = 1
Recommendation followed = 2
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Figure 6.9 : Profiling algorithm 

6.5.6 Recommendation 

Daily recommendations are formulated by a hybrid recommendation approach. A list 

of similar people to a specific user is compiled, using a Pearson-r correlation on the 

93 



 

content-based user profiles. Recommendations for a user are then taken from those 

papers on the current topics of interest, which have also been read by similar people to 

that user. Figure 6.10 shows the recommendation algorithm. During the Foxtrot trial 

three papers were recommended each day on the three most interesting topics, making 

a total of nine recommended papers. Previously read papers were not recommended 

twice and if more than three papers were available for a topic they were ranked by 

quality rating. 

(Ib(t) – Ib)2
_

Σ
t = 1

topics
(Ia(t) – Ia)2

_
Σ
t = 1

topics

*

(Ib(t) – Ib)
_

Σ
t = 1

topics
(Ia(t) – Ia)

_
*

Pearson r coefficientab =

√
Ia(t) = User a’s interest in topic t
Ia = User a’s mean interest value over all topics

Pearson r coefficientab = similarity of user a’s profile to user b’s profile
Recommended papers = papers on user’s current interests  ∩ papers read by similar users

3 papers recommended on the 3 most interesting topics, totalling 9 papers per day
If more than 3 papers meet above criteria, papers ranked by quality rating

_

(Ib(t) – Ib)2
_

(Ib(t) – Ib)2
_

Σ
t = 1

topics
(Ia(t) – Ia)2

_
(Ia(t) – Ia)2

_
Σ
t = 1

topics

*

(Ib(t) – Ib)
_

(Ib(t) – Ib)
_

Σ
t = 1

topics
(Ia(t) – Ia)

_
(Ia(t) – Ia)

_
*

Pearson r coefficientab =

√
Ia(t) = User a’s interest in topic t
Ia = User a’s mean interest value over all topics

Pearson r coefficientab = similarity of user a’s profile to user b’s profile
Recommended papers = papers on user’s current interests  ∩ papers read by similar users

3 papers recommended on the 3 most interesting topics, totalling 9 papers per day
If more than 3 papers meet above criteria, papers ranked by quality rating

_

 

Figure 6.10 : Recommendation algorithm 

6.6 Experimental Evaluation 

An experiment was carried out over the period of a single academic year to assess the 

performance of the Foxtrot recommender system. Test subjects were taken from both 

the staff and students of the computer science department at the University of 

Southampton. Foxtrot was used by the test subjects to assist in their everyday 

research. The overall recommendation and user profiling performance was measured, 

in addition to measuring the relative performance of those who used the profile 

visualization option. 

6.6.1 Details of the trial 

The user trial took place over the academic year 2001/2002, starting in November and 

ending in July. Of the 260 subjects registered to use the system, 103 logged onto the 

system, and of these 37 subjects used the system three or more times. All 260 subjects 

used the web proxy and hence their browsing was recorded and daily profiles built.  
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58 subjects joined the trial as it progressed, hearing about the system from advertising 

posters and word of mouth. At the start of the trial a bootstrap of about 6,000 

documents where loaded into the central database by a web crawler. By the end of the 

trial the database had grown to 15,792 documents as a result of subject web browsing. 

When registering to use the system subjects were randomly divided into two groups. 

The first ‘profile feedback’ group had full access to the system and its profile 

visualization and profile feedback options; the second ‘relevance feedback’ group 

were denied access to the profile interface. The objective of this subject grouping was 

to measure what difference, if any, visualizing profiles and providing profile feedback 

makes to the performance of the recommender system. It was found that many in the 

‘profile feedback’ group did not provide any profile feedback at all, so in the later 

analysis these subjects are moved into the ‘relevance feedback’ group. 

A binary comparison style experiment was chosen over other types of experimental 

design in order to test the relative effectiveness of the using profile feedback. It was 

felt that such a simple experimental design would yield the greatest chance of success, 

important for such a lengthy experiment with no chance of a re-run. Both groups used 

identical systems, except for one group’s profiling features being disabled, in order to 

minimise effect causations other than the use of profile feedback. The university’s 

major operating systems and web browsers were supported, along with a consistent 

web interface to allow subjects to use the system in their normal environment. 

Towards the end of the trial, an additional email feature was added to the 

recommender system. This email feature send out weekly emails to all users who had 

used the system at least once, detailing the top three papers in their current 

recommendation list. Users could then follow URL links to the papers held in the 

email or go to the Foxtrot web page to see the full recommendation list of nine papers. 

Email notification was started in May and ran for the remaining three months of the 

trial. 

Throughout the trial various metrics were logged. Jumps to paper URLs and relevance 

feedback were recorded in addition to profile feedback. Browsed URLs were also 

recorded via the web proxy. Relevance feedback on individual papers was recorded 

on a 5-point scale, as was quality feedback. Profile feedback generated a set of 
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interest bars, declaring a degree of interest in a topic over a period of time; it was 

possible for interests to be declared as ongoing. All recommended URLs and 

recommendations sent via email were recorded. 

A post-trial questionnaire was send via email to all users who used the system at least 

once. A 5-point scale was used to record answers to the questions in the questionnaire. 

6.6.2 Experimental Data 

The raw data obtained from the trial occurs at irregular time intervals, based on when 

subjects looked at recommendations or browsed the web. For ease of analysis data is 

collated into weekly figures by summing interactions throughout each week. Group 

data is computed by summing the weekly contribution of each subject within a group. 

Figure 6.11 shows the metrics measured during the trial and derived values computed 

from them. 

Explicit feedback
Interest = User declaring an interest on a paper URL
Jump = User following links to a paper URL
Profile feedback = User drawing a profile

Web proxy monitoring
Browsed URL = URL browsed by user

System logging
Recommended = URL recommended to user via web page
Email = URL recommended to user via email

Metric types
Interest = (URL,<interest type>,time)
Jump = (URL,time)
Profile feedback = (topic,<interest value>,start date,end date)
Browsed URL = (URL,time)
Browsed paper = browsed URL appearing in paper database
Recommended paper = (URL,time)
Emailed paper = (URL,time)
<interest type> = (high,average,low,unknown)
<interest value> = value between –10 and 10

Derived metric types
<future papers> = browsed/jumped papers in the 4 weeks after profile
<papers> = browsed/jumped papers over duration of profile (normally 1 day)
<top topics> = top 3 topics of profile

Predicted profile accuracy = No of <future papers> matching <top topics>
No of <future papers>

Profile accuracy = No of <papers> matching <top topics>
No of <papers>

Web page rec accuracy = No of recommended papers browsed or jumped to
No of recommended papers

Email rec accuracy = No of emailed papers browsed or jumped to
No of emailed papers

Jumps to recommendations ratio = No of jumps to recommended papers
No of jumps

Jumps to profile topics ratio = No of jumps to papers matching <top topics>
No of jumps

High interest ratio = No of high interest feedback cases
No of interest feedback cases

Low interest ratio = No of low interest feedback cases
No of interest feedback cases

 

Figure 6.11 : Metrics measured during the Foxtrot trial 

Subject selection for the ‘profile feedback’ group was taken from those subjects who 

had provided profile feedback, with all other subjects placed into the ‘relevance 

feedback’ group. The subject selection could be made more favourable by only 

including subjects who used the system a few times, but it was felt that including 
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subjects who gave up on the system would be more representative of how the trial 

went. 

The total number of subjects who registered with the system was 260, of which nine 

were in the ‘profile feedback’ group and 251 were in the ‘relevance feedback’ group. 

Of these 260 subjects 37 used the system three or more times, making a system uptake 

rate of 14%. This is representative of the fact that the system was offered as an 

optional tool that could be used in addition to normal work practices; as such only a 

fraction of potential subjects chose to invest the time and effort required to get the 

most out of the system. 

Basic trial measurements come from the recorded subject interaction with the 

recommender web page and logged data from the web proxy. 

Explicit feedback includes jumping to search results and jumping to recommendations 

via the web page interface, interest feedback on search results and feedback on 

profiles via the profile visualization interface. 

Implicit feedback is obtained from unobtrusive monitoring via the web proxy. The 

proxy logs are parsed to extract the subject’s browsed URLs, which are recorded with 

a timestamp. These URLs are later correlated with the research paper database to 

obtain a set of browsed research papers. 

In addition to feedback, the system records when web page and email 

recommendations are issued. This allows various derived metrics to be computed to 

compare the relative effectiveness of different types of system operation. 

The recommendation accuracy metric takes explicit feedback and computes accuracy 

figures for both web page and email recommendations. A simple ratio is used to 

obtain the number of recommendations followed as a fraction of the total number of 

recommendations; this provides a measure of the effectiveness of the 

recommendations. Figure 6.12 shows the recommendation accuracy for web page and 

email recommendations. 

The small number of subjects within the ‘profile feedback’ group accounts for the 

larger confidence intervals. While not statistically significant, there is an apparent 
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trend for more accurate recommendation when using profile feedback, especially in 

the earlier weeks. Email recommendations appeared to be preferred by the ‘relevance 

feedback’ group, slightly out performing the ‘profile feedback’ group. 

Web page and email recommendation accuracy
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Final week 95% confidence intervals 

Profile feedback [web page recs] 0.043 Relevance feedback [web page recs] 0.0028 

Profile feedback [email recs] 0.018 Relevance feedback [email recs] 0.011 

Figure 6.12 : Web page and email recommendation accuracy 

In addition to recommendation accuracy, the ratio of jumps to recommendations 

against all jumps total and the ratio of jumps to papers with a top three topic against 

all jumps were computed. Jumps to recommendations measure the degree to which 

subjects use the recommendation facility as opposed to just using the search facility of 

the database. Jumps to papers with a top three profile topic measures how well the 

profiles fitted the subject’s actual interests. Figure 6.13 shows the figures for jumps to 

recommended papers. 

The ‘profile feedback’ group made a greater proportion of jumps to recommendations 

than the ‘relevance feedback’ group; this trend is statistically significant. A similar 

trend is seen in jumps to papers on top profile topics, but is less clear.  
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Jumps to recommendations and profile topics
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Final week 95% confidence intervals 

Profile feedback [topic] 0.27 Relevance feedback [topic] 0.041 

Profile feedback [rec] 0.14 Relevance feedback [rec] 0.039 

Figure 6.13 : Jumps to rec’s and profile topics as a ratio of all jumps 

Interest feedback is primarily used by the system to compute profiles, but it does also 

provide an indication as to the utility of recommended papers. If subjects rate pages as 

highly interesting then this is a sign the recommendations are good. Figure 6.14 

shows both high and low interest ratings as a proportion of all interest ratings. 

Subjects were reluctant to provide feedback, with just 72 interest ratings being 

recorded during the trial. Only two ‘profile feedback’ subjects provided interest 

feedback, hence the larger confidence interval. Even so, the ‘profile feedback’ 

subjects clearly expressed a higher level of interest in their papers than the ‘relevance 

feedback’ group, who rated most papers as of low interest. In both groups there was a 

trend for subjects to provide all their interest feedback in the first few weeks after 

registering with the system. 
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Interest rating as a proportion of all interest ratings
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Profile feedback [high] 0.3 Relevance feedback [high] 0.011 

Profile feedback [low] 0.3 Relevance feedback [low] 0.017 

Figure 6.14 : Interest ratings as a ratio of all interest ratings 

Since user browsing is recorded, both the profile accuracy and profile predictive 

accuracy can be measured. Profile accuracy measures the number of papers browsed 

or jumped to that match the top three profile topics for the duration of that profile; 

since profiles are normally updated daily, the average life of a profile is one day. This 

is a good measure of the accuracy of the current interests within a profile at any given 

time. Profile predictive accuracy measures the number of papers browsed or jumped 

to that match the top three profile topics in a four-week period after the profile was 

created. This measures the ability of a profile to predict subject interests. Metrics are 

measured for every profile computed over the period of the trial, providing a view on 

how the quality of the profiles varies over the length of the trial. Figure 6.15 shows 

the figures for the profile metrics. 

While not statistically significant, there is a trend for the ‘profile feedback’ group to 

have profiles that are better at predicting future browsing interests. This trend is not 

reflected in the daily profile accuracy figures however, where the two groups are 

similar. This would appear to show that the two groups are profiling slightly different 

interest sets, with the ‘profile feedback’ interests of a longer term nature. 
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Profile accuracy and profile predictive accuracy
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Profile feedback [profile] 0.23 Relevance feedback [profile] 0.036 

Profile feedback [predictive] 0.23 Relevance feedback [predictive] 0.036 

Figure 6.15 : Profile accuracy and profile predictive accuracy 

In addition to measuring subject group interactions with the system, the AdaBoostM1 

boosted IBk classifier performance was computed. A standard cross-validation test 

was applied to the classifier training set, to obtain the figures for precision and recall. 

Table 6.1 shows the results. The precision value is a measure of how many correctly 

classified documents there were as a proportion of the number classified. The recall 

value is a measure of how many documents were classified as a proportion of the total 

number of documents. 

 Precision Recall Number of classes Number of examples Number of terms 

Classifier 0.42 1.0 97 714 1152 

Table 6.1 : Foxtrot classifier precision and recall 

6.6.3 Post-trial Questionnaire 

A post trial questionnaire was sent out via email to every subject who used the system 

at least once. Table 6.2 shows the results of this survey, completed by 13 subjects. It 

clearly shows that the search facility was most useful to the subjects, with the 

recommendation facility being only partially used. This is borne out by the relatively 

small amount of feedback provided by users during the trial. 

101 



 

Question 1 2 3 4 5 Mean 

How useful did you find the Foxtrot database? 4 2 5 2  2.38 

How much did you use the recommendation facility? 7 5  1  1.62 

How accurate were the recommended topics? 3 3 2 3 1 2.67 

How useful were the recommended papers? 4 2 4  2 2.5 

Table 6.2 : Foxtrot post trial questionnaire results 

6.6.4 Discussion of the trends seen in experimental data 

Generally speaking the ‘profile feedback’ group outperformed the ‘relevance 

feedback’ group for most of the metrics. The experimental data reveals several 

specific trends however. 

Web page recommendations, and jumps to those recommendations, were better for the 

‘profile feedback’ group, especially early on in the first few weeks after registering. 

This is probably because the ‘profile feedback’ users tended to draw their interest 

profiles when they first registered with the system, and only update them 

occasionally. This has the effect that the profiles are most accurate early on and 

become dated as time goes on. This aging effect on the profile accuracy is shown by 

the ‘profile feedback’ group performance gradually falling towards that of the 

‘relevance feedback’ group as time goes on. 

One interesting observation is that the initial performance enhancement gained using 

profile feedback appears to help overcome the cold-start problem [middleton02], a 

problem inherent to all recommender systems. 

Email recommendation appeared to be preferred by the ‘relevance feedback’ group, 

and especially by those users who did not regularly check their web page 

recommendations. A reason for this could be that since the ‘profile feedback’ group 

used the web page recommendations more, they needed to use the email 

recommendations less. There is certainly a limit to how many recommendations any 

user needs over a given time period; in our case nobody regularly checked for 

recommendations more than once a week. 

The overall recommendation accuracy was between 1-2%, 2-3% for the profile 

feedback group. This may appear low, especially when compared to other 

recommendation systems such as Quickstep, but it reflects the optional nature of the 
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recommendation service offered. Users had the choice to simply ignore 

recommendations if they did not help to achieve their current work goal. This optional 

nature of the system assisted system uptake and acceptance on a wide scale. In 

comments made via the post-trial questionnaire some users preferred email 

recommendations because they could address emails when they were not very busy, 

as opposed to when they were searching for specific papers for a particular task. 

The profile accuracy of both groups was similar, but there was a significant difference 

between the accuracy of profile predictions. This probably reflects the different types 

of interests held in the profiles of the two groups. The ‘profile feedback’ group’s 

profiles appeared to be longer term, based on knowledge of the user’s general 

research interests provided via the profile interface. The ‘relevance feedback’ profiles 

were based solely on the browsing behaviour of the user’s current task, hence 

contained shorter-term interests. Perhaps a combination of profile feedback-based 

longer-term profiles and behaviour-based short-term profiles would be most 

successful. 

The overall profile accuracy was around 30%, reflecting perhaps the difficulty of 

predicting user interests in a real multi-task environment. Perhaps integrating some 

knowledge of which task the user is performing would allow access to some of the 

other 70% of their research interests. These interests were in the profile but did not 

make it to the top three topics of current interest. 

The post-trial questionnaires showed that the overall usage of the recommendation 

facility was limited, with users preferring to use just the search facility. This was also 

born out by the interest rating results, where most ‘relevance feedback’ users appeared 

unhappy with their recommendations. Profile feedback users appeared to be more 

content with their recommendations, and tended to check recommendations regularly 

for about a week or two after drawing a profile. This appeared to be because users had 

acquired a conceptual model of how the system worked, and wanted to keep checking 

to see if it had done what they expected. If a profile was required to be drawn before 

registering on the system, this behaviour pattern could be exploited to increase system 

uptake and gain some early feedback. This may in turn increase initial profile 

accuracy and would certainly leave users with a better understanding of how they 
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system worked, beneficial for both gaining user trust and encouraging effective use of 

the system. 

6.7 Comparison with other work within the literature 

Group Lens [konstan97] is an example of a collaborative filter, recommending 

newsgroup articles based on a Pearson-r correlation of other users’ ratings. Fab 

[balabanović97] is a content-based recommender, recommending web pages based on 

a nearest-neighbour algorithm working with each individual user’s set of positive 

examples. Foxtrot is a hybrid recommender system, combining both these types of 

approach. 

Personal web-based agents such as NewsDude [billsus98] and NewsWeeder [lang95] 

build profiles from observed user behaviour. These systems filter new stories and 

recommend unseen ones based on content. Personal sets of positive and negative 

example are maintained for each user’s profile. In contrast, by using an ontology to 

represent user profiles Foxtrot pools these limited training examples for all its classes. 

Digital libraries classify and store research papers, such as CiteSeer [bollacker98]. 

While Foxtrot is a digital library, its content is dynamically and autonomously 

updated from the browsing behaviour of its users. 

Very few systems in the recommender system literature perform user trials using real 

users, making direct comparison difficult. Most use either labelled benchmark 

document collections to test classifier accuracy or logged user data taken from sources 

such as newsgroups. NewsWeeder reports a 40-60% classification accuracy with real 

users, while Personal Webwatcher [mladenić96] reports a 60-90% classification 

accuracy using benchmark data. Foxtrot’s classifier is on the low side with 41% 

accuracy, but this appears much better when the number of classes used in 

classification is taken into account and the potential this allows for improving 

profiling via inference and profile feedback. 

The Quickstep [middleton01b] system had a recommendation accuracy of about 10% 

with real users, and provides a useful system for comparison. Foxtrot manages 2-3% 

recommendation accuracy, which reflects the different types of subjects involved in 

the two trials. The Quickstep subjects were willing researchers taken from a computer 
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science laboratory, while the Foxtrot subjects were staff and students of a large 

department who would only be willing to use the system if it was perceived to offer 

direct benefits to their work. A recommendation accuracy of 3% means that roughly 

one in three sets of recommendations contained a paper that was downloaded. While 

initially appearing low, this result is good when the problem domain is taken into 

account; most systems in the literature do not attempt such hard and realistic 

problems. 

Mladenic [mladenić99] provides a good survey of text-learning and agent systems, 

including content-based and collaborative approaches. Chapter 2 and appendix A lists 

many recommender systems in the literature today. The systems most related to 

Foxtrot are Entrée [burke00], which uses a knowledge base and case-based reasoning 

to recommend restaurant data, and RAAP [delgado98] that uses categories to 

represent user profiles with unshared individual training sets for each user. None of 

the reviewed systems use ontological categories to represent user profiles. 

6.8 Conclusions from the Foxtrot trial 

The experiment detailed in this chapter provides empirical evidence as to the 

effectiveness of using an ontological approach to user profiling in recommender 

systems. As with the predecessor system Quickstep, Foxtrot uses an ontology to 

represent user profiles, allowing training examples to be shared and knowledge of 

interests inferred without the need for direct observation. 

Profile visualization and profile feedback were explored as mechanisms to further 

improve the profiling process, and were found to enhance both profiling accuracy and 

the resulting recommendation usefulness. The ontological approach to profiling 

provides a suitable basis to create a profile visualization that is understandable to 

users. 

The overall performance of the Foxtrot system was found to be favourably 

comparable with other recommender systems when the difficult real-world problem 

domain was taken into account. While the recommendations were far from perfect, 

the system did provide a useful service to those users who chose to invest time and 

effort in using the system. 
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Individual aspects of the system could be enhanced further to gain a relatively small 

performance increase, such as increasing the training set size, fine tuning the 

ontological relationships and trying alternative classification algorithms. However, the 

main problem is that the systems profiler is not capturing about 70% of the user’s 

interests. Obtaining an understanding of the current task a user is performing would 

be advantageous here. 

Knowledge of a user’s current task would allow the profiler to distinguish between 

short and long term tasks, separate concurrently running tasks and adjust 

recommendations accordingly. While 70% of users’ browsing interests were not in the 

current profile’s top three topics, they were in the profile somewhere at a lower level 

of relevance. Having separate profiles for each user task would allow a finer grained 

profiling approach, significantly improving performance. 

It is interesting to note that the visualization of profiles could be extended to visualize 

the systems current task for a user. In this way direct task feedback by users could be 

elicited in much the same way as profile feedback can be. Even so, task modelling is 

far from easy to achieve in practice, but it does appears to be an important aspect of 

user profiling and one that future versions of this system may well investigate. 

 

The Foxtrot recommender system described in this chapter uses an ontological 

approach to profiling, allowing profiles to be visualized and profile feedback 

acquired. It was shown that visualizing profiles allows performance gains in profiling 

and recommendation accuracy. Since profile visualization is a direct benefit of taking 

an ontological approach to user profiling, this chapter thus provides the evidence to 

prove the third sub-hypothesis of this thesis. 
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Chapter 7 Conclusions and future work 

Chapter summary 

Evidence from work in this thesis is collated in light of each sub-hypothesis. 

The central hypothesis is proved. 

The future direction of this work is discussed. 

 

Information overload on the World Wide Web is an ever-growing problem. There are 

too many pages to browse effectively, and searching requires an explicit search query, 

which is all too often difficult to construct. What is needed is knowledge of where to 

look for information and what information is worth looking at. 

Recommender systems learn the type of thing that you and others are interested in. 

They then use the knowledge from other people to recommend new items of 

information that you have not seen before, which similar people to you have found 

helpful before. Being collaborative in nature the knowledge of where to look and what 

is good is pooled for the common good. 

In conjunction with a traditional search service, recommendation is a powerful tool 

that can increase the effectiveness of everyday work, removing some of the burden 

involved with finding new information and regularly checking existing information. 

7.1 Conclusions 

The central hypothesis of this thesis is that representing user profiles using an 

ontology offers advantages over traditional profile representations. In order to prove 

this hypothesis, this thesis describes three sets of experiments aimed at proving three 

sub-hypotheses. 

The first sub-hypothesis is that inferences gained about profiles outweigh the loss of 

information that occurs when a profile is constrained to use only ontological terms. 

Chapter 4 described the Quickstep recommender system and two trials that 

investigated what difference using an ontological approach to user profiling made 

when compared to a more basic flat-list of topics. Profiles represented using the 

ontology were able to infer new interests, thus adding interests to the profile that 
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could not be observed directly. The ontology also provided a mechanism for users to 

share training examples and gave a common structure to each user’s interpretation of 

the classification of research papers. 

Experimentation found that not only did the ontology group exhibit superior 

performance, but the overall performance of the recommender system was 

comparable with recommender systems reported within the literature. Therefore, the 

loss of information that occurs by using ontological representation was outweighed by 

the profile accuracy gained from inference. In short, an ontological profile 

representation is at least as good as the other, more traditional representations in the 

recommender system literature. 

The second sub-hypothesis is that using an ontology allows other knowledge-bases, 

which use the same ontological concepts, to be used to draw on additional information 

not normally available to the recommender system.  

Chapter 5 describes an integration of the Quickstep recommender system with a 

knowledge-base made up from personnel and publication information. The 

knowledge-base is used to reduce the recommender system cold-start effect by 

bootstrapping new profiles to the system. Because the ontological concepts in the 

profiles appear within the knowledge-base, direct inference about potential topics of 

interest to a new user can be made. 

Experimentation found that the Quickstep recommender system cold-start problem 

could be significantly reduced by bootstrapping from the knowledge-base. As such 

this proves the second sub-hypothesis, and in doing so shows that representing a 

profile using an ontological representation has not just comparable performance, but 

clear advantages over more traditional representations. 

The third sub-hypothesis is that explicit feedback on user profiles offers advantages 

over traditional relevance feedback. 

Chapter 6 describes the Foxtrot recommender system and an experiment that 

investigates whether visualizing a profile and acquiring profile feedback increases the 

performance of a recommender system. The user profiles could only be visualized 

because they were represented in ontological terms, terms that the users were able to 
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understand. The ontology again allowed for inference to discover interests that were 

not observed directly, but this time there was an additional mechanism to tie profiles 

to the interests stated in the profile feedback provided by users. 

Experimentation found that those users that provided profile feedback received more 

useful recommendations and had better profiles than those users that relied only on 

relevance feedback. This proves the third sub-hypothesis, and shows an additional 

advantage that ontological profile representation can offer over more traditional 

profile representation methods. 

Taking the evidence shown from the three sub-hypotheses into account, it is clear that 

the central hypothesis of this thesis is thus proved. Representing user profiles using an 

ontology does offer advantages over traditional profile representations. 

7.2 Future direction of work 

7.2.1 Incremental improvements 

The way to make immediate improvements in the performance of either the Quickstep 

or Foxtrot recommender system is fairly clear. 

Increasing the size of the training sets used will improve classification accuracy, as 

would adjusting some of the classifier algorithm parameters such as the number of 

boosting iterations or the value of k for the k-nearest neighbour algorithm. The 

classification algorithm itself could be changed too, but any of these alterations would 

probably only result in a small total increase of no more than 10% in the accuracy 

figures. The effect this would have on the profiling and recommendations would be 

less noticeable still. 

The profiling algorithm could be improved, taking into account the shape of the time-

interest behaviour graphs that are acquired for each profile topic. This would increase 

the profiling accuracy slightly, but the simple time-decay function is good at 

capturing current interests anyway. The other transient or task related interests, missed 

by both the Quickstep and Foxtrot recommender systems, would still be missing from 

the profile. 
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The Pearson r recommendation algorithm is well used within the literature, and 

performs very well. As such it is hard to see much improvement being made to the 

basic collaborative recommendation algorithm. However, alternative algorithms could 

be tried. 

All these incremental improvements could easily be made, but the overall 

performance gain would still be relatively small, leaving the recommender system still 

far from 100% profiling accuracy. 

7.2.2 Fully exploiting the ontology 

The existing Quickstep and Foxtrot recommender systems use only a simple is-a 

ontology. There is a potential for significant improvement in profiling accuracy by 

maintaining more relationships that model various aspects of the academic domain. 

Knowledge about concepts such as related research fields, common technologies 

within a field, key authors and their publications and many more could all be used to 

infer significantly more about a user’s browsing behaviour than just the topic. 

Both the “project” relationship, indicating who is a member of which project, and the 

“research area” relationships are perhaps the most promising in this respect. In an 

academic or commercial organization there are likely to be many projects at any given 

time, and the people on those projects are likely to share at least some project related 

interests. Projects often have well defined research areas, so this links in “research 

area” which already has strong links to academic paper classification. A rich, well-

maintained ontology could also link in well with task knowledge discussed in the next 

section, maintaining knowledge about people, projects and the related technologies 

they use. 

Of course, maintaining such a large ontology is always a difficult and expensive task. 

One potential for improving system scalability is to use modern clustering techniques 

to discover classes for the ontology automatically, maybe as a support tool or 

consistency checker. Certainly it would be possible to apply clustering to an existing 

ontology of research topics to find areas of research where new topics are emerging, 

flagging an area of the ontology as ripe for analysis and potentially ready for splitting 

into a sub-topic or new area completely. Tools such as this would make ontology 
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maintenance more automatic, reducing the end cost in terms of human effort; this 

would in turn improve the scalability of using ontologies in recommender systems. 

7.2.3 Applying task knowledge to the user profiling 

The next step to make a significant improvement in profile accuracy, and hence 

recommendation usefulness, is likely to be exploring the concept of task modelling. If 

the profiling algorithm can be made more task orientated, then the 70% or so of 

interests missed by the Foxtrot system could be recognised and assigned to tasks other 

than general interest. This would mean that the overall recommendations could be 

more focused and of more active help to users’ everyday work, rather than something 

they just check to keep up-to-date like a general reading list. Evidence for the need to 

introduce task modelling can be found in chapter 7, from the results of evaluating the 

Foxtrot recommender system. 

This is far from a trivial task as acquiring knowledge of what tasks the user is doing 

and when is particularly difficult to do in a non-obtrusive way. However, if 

recommender systems, and in particularly user profiling methods, are to make major 

progress in the future it is an area of research that must be addressed. 

7.2.4 Utilizing the agent metaphor 

A recommender system is really a type of interface agent [maes94]. All that would be 

required to make the Quickstep or Foxtrot recommender systems into an interface 

agent is to encapsulate the system in terms of an agent wrapper, with one copy of the 

agent made for each user. The user’s recommender agent could then offer a set of 

recommendations to its user, share knowledge of its user’s preferences with other 

trusted agents and participate in a multi-agent systems, perhaps to trade information 

about the user in order to build a better profile and acquire a better set of 

recommendations. 

Such a multi-agent system could provide the framework to bring in ontological 

knowledge from other sources and task knowledge about the user. Potentially this 

could be a very powerful technology indeed. 

Another aspect of the interface agent metaphor is the potential for indirect HCI 

[kay90]. Traditional direct manipulation style interfaces use a simple metaphor, such 
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as the desktop, to provide visual iconic representations of different aspects of the 

computer, such as a filing cabinet. Actions can be sent to the computer by directly 

manipulating icons via a mouse, and the results of actions seen immediately via direct 

feedback. Indirect HCI is the opposite, where the user tells a trusted agent what is 

required, for example “download all document files on the alpha project from this ftp 

site”, and the agent carries out the users wishes behind the scenes. There are obvious 

trust issues here and the need for users to feel in control, but indirect HCI offers 

significant potential alongside direct manipulation as a power interface metaphor. In 

many respects, the recommendation process is an indirect HCI process. 

7.2.5 Social implications 

Recommendation is not a new thing, since all that is required is a social medium for 

which people can share ideas and value judgments. Internet discussion groups have 

served this purpose for some time, as has email communication and simple verbal 

exchanges in the company coffee room. A recommender system is really an 

automated system that avoids some of the time consuming activities associated with 

traditional media, such a regularly checking a bulletin board. As such, the 

implementation of a recommendation service to an organization could have an impact 

on the traditional social fabric within that organization. Would people feel less need to 

participate in normal social activity, or would the recommendation facility simply 

serve as an additional source of value judgements? Can recommendations be trusted 

on sensitive issues, and who would compensate those people who acted on bad 

information? These sorts of social issues have not been investigated in the literature 

today, but could have a significant impact to an organization proposing to use such a 

system. 

7.3 The nature of ontology and recommender systems 

Recommender systems and ontologies hold, as we explored in chapter 5, many 

complementary features. Recommender systems are driven by the need to model 

dynamic, behaviour information about people and are well placed to respond quickly 

to the inevitable changing nature of people’s work. In many ways a recommender 

system provides a window into the current state of a social organisation. 
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Ontologies on the other hand are mostly driven by knowledge engineering, 

representing statically true facts about a domain. The knowledge they represent is 

specifically chosen not to become out of date too quickly, and therefore tends to be 

constantly useful over long periods. In this respect an ontology is a well engineered 

window on the historical and more permanent state of an organisation. 

Integrating these two approaches offers the potential for significant step forwards in 

both areas. Recommender systems can overcome the cold start problem through 

ontological bootstrapping, and if closely linked to external ontological structures can 

respond dynamically to occasional, well-considered high-quality changes to those 

ontological structures. Such ontological changes will occur as the years go by and an 

organization changes, and provide a mechanism to keep the recommendation 

framework up-to-date. On the flip side a recommender system will be responding to 

the here and now, and as such is an ideal source of up-to-date information for an 

ontology. It could also be used to identify emerging areas of ontological interests, 

such as new research fields, through modern clustering techniques, for example, to 

identify potential new classes. This could be fed back to the maintainers of the 

ontology to trigger investigation and possible future change. 

Recommender systems can thus drive ontological population, with dynamically 

acquired information, and ontological development, through the identification of 

emergent domain structure. Ontologies in return can bootstrap recommender systems 

and provide a slowly evolving, well-considered structure for its recommendation 

framework that closely matches the organisation it supports. 

7.4 Recommendation is here to stay 

Throughout history people have learnt from the experience of others, and with the 

information systems of today the situation is no different. Be it the sharing of web 

URLs, recommendation of exciting authors or simple gossip about the number one 

music CD, recommendation is a social process we all participate in. It really does not 

matter how much information is out there, be it on web pages, databases or rich well 

maintained ontologies, the most useful information of all is the knowledge from other 

experts as to what is worth knowing and what is not. This is why recommendation 
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plays a role in the information systems of today, and will continue to do so in the 

information systems of tomorrow. 
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Appendix A Summary of reviewed systems 

What follows is a summary of the recommender systems reviewed in this thesis. The 

recommender systems are listed by application domain, so that similar types can be 

compared together. The machine-learning terminology used here is described in the 

glossary. 

When reviewing commercial systems the exact algorithms used are often not 

published, so can only be surmised. A more detailed review of commercial E-

commerce recommender systems can be found in [schafer99].  

Quantitative results are detailed where seen so that comparisons (however difficult) 

can be drawn between systems. 

E-commerce domain 

Amazon.com is a commercial book shop/recommendation service. Customers can rate 

books they have read using a five star rating, and attach a textual review of the book. 

This feedback information is shared and used to collaboratively recommend books to 

other users. Recommendations are based on either the most frequently purchased 

books or books purchased by similar people to the current user (based on a match 

between the current user’s previously purchased books and other user’s previously 

purchased books). 

In addition to the recommendation service, a conventional search engine can be used 

to find specific books. 

Dietorecs [arslan02] is a recommender system for travel products and services. Users 

fill out a set of requirements, which form the basis of a logic filter of potential 

options. Case-based reasoning is used to identify the closest case within a case-base. 

A similarity function is then used to determine a likely set of items that can be 

recommended. 

eBay is a commercial system which allows buyers and sellers to contribute to profiles 

of other customers with whom they have done business. A satisfaction rating is 

elicited from users, which is shared and used when recommending potential sellers. 
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EFOL [svensson01] is a shopping program in which recipes are selected and the 

ingredients ordered on-line. Collections of recipes are created by users (using an 

editor) and made available to others. Discussion about individual choices of recipe is 

facilitated using a chat area. Collaborative recommendation is supported where 

clusters of similar users are formulated (using a system editor) and made available for 

others to take suggestions from. 

Results: 12 people (all researchers) used the system on two separate occasions. Half 

the users reported other people’s recipes influenced them, and the pictures of food 

made them feel hungry. 

Entrée [burke00] is a recommender system for a restaurant database. It uses a hand-

crafted knowledge-base of local restaurant information to perform similarity matching 

based on user queries. The use of a knowledge-base reduces the cold-start problem. 

Results: three year trial, 20,000 system interactions, random 55-60% recommendation 

precision, collaborative filtering algorithm 65-70% precision. 

Levis is a commercial clothing recommender system. Feedback on three categories 

(music, looks and fun) is elicited from the user using a 7-point scale. Six items of 

clothing are then recommended from the Levis range and feedback elicited on the 

recommendations. Recommendations are thus based on what similar people preferred. 

FAIRWIS [buono01] recommends trade fare information via an on-line catalogue 

system. Interaction with the system such as web page access or printing is logged and 

user profiles created. A Pearson r correlation finds similar profiles. Groups of similar 

users are then stereotyped and the on-line information customized based on the 

assumptions made for that stereotype. 

Ghani [ghani02] describes a recommender system for an on-line clothing retailer. A 

knowledge base of clothing information is maintained, recording the web pages of 

various clothing retailers with price, clothing etc. information. Using a training set of 

about 700 pages with log-odds ratio term weights, Expectation-Maximization is used 

to dynamically create a profile for the user bases on their web browsing. Real-time 

recommendations are thus generated to help the user, based on this dynamic profile. 
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LIBRA [mooney00] is a book recommender system. The Amazon.com database of 

books is taken as a labelled dataset and represented using a bag-of-words 

representation after removing stop-list words. Users provided book ratings on a 10 

point scale and a naïve Bayes classifier used to classify books as interesting or not. 

Results: 0.49 to 0.88 precision depending upon book genre in Amazon.com book 

dataset. 

MIAU [bauer02] recommends items from an electronic catalogue on cars. System 

interactions and explicit feedback build up a value tree for catalogue items, forming 

the basis of a user model. Stereotypical user profiles are also added to the system to 

bootstrap it initially. A statistical average profile is computed from those users whose 

profiles do not conflict with the current users profile. This average profile is used as 

the basis for recommendations. 

RIND [cöster02] is a recommender system to help with buying a PC. Hardware 

configurations that other people have bought are recorded into a database. Users 

provide attributes that they require from their computer, forming a feature vector. A k-

nearest neighbour classifier and naïve Bayes classifier are then used to compute the 

most similar configuration option to the feature vector. 

Ski-europe.com [delgado02] recommends ski holidays. User interaction with the ski 

web site is recorded to form a user profile. Both a short-term session profile and 

longer-term historical profile is formed. A cosine similarity algorithm is used to 

provide ratings on potential holiday options, and thus recommendation of specific 

packages. 

Email filtering domain 

Tapestry [goldberg92] is an email recommendation system. Users annotate documents 

as they read them, and collaboratively share this information with others. Users’ email 

habits are monitored and implicit feedback obtained (such as user x replied to email 

y). Users can program filter rules into the system, which are regularly executed. Rules 

are things like “I want all documents read by user x”. As the implicit feedback is 

shared, the had-crafted rules are simple collaborative filters. A SQL like language 

allows users to enter rules. 
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Expertise finder domain 

Expertise Recommender [mcdonald00] assists technical support help desk staff in 

finding the right expert for a task. Recommendations are based on prior requests, so 

people who helped successfully with a problem before can be selected by the user to 

do so again. The user can choose which pre-programmed heuristics are used to 

recommend suitable people (e.g. select by minimum current workload). 

Hand crafted heuristics mine an eight-year change-control database to extract initial 

profile records of who can handle what sort of problem. Profile records are stored 

with a vector-space model, with features identified using a set of thesauri (a stop list is 

used but no stemming applied).  

The recommender only filters the set of possible people to handle a task. An 

interactive interface allows the help desk staff to pick the particular person they need. 

Referral Web [kautz97] models a social network by monitoring social communication 

sources (email, net news, home pages etc.) and extracting a network model. Heuristics 

extract names of other people from an individual’s communications, which are then 

refined by computing the Jaccard coefficient between the individual and other names. 

Once built, the social network can be browsed, and questions asked of it. 

Recommendations of related people to talk to about an area can thus be extracted (e.g. 

list documents close to Tom Mitchell). 

Movie domain 

CBCF [melville02] Content-boosted collaborative filtering (CBCF) is a technique 

used by Melville to produce a movie recommender system. A naïve bayes classifier is 

run on the EachMovie dataset to provide content-based movie predictions. A Pearson-

r correlation is then used to recommend movies liked by other similar users. 

Result: 4% improvement on absolute error when using hybrid approach as opposed to 

just collaborative filtering. 

MovieFinder.com is a commercial system that recommends movies. Previous interests 

are recorded using a 5-point feedback scale, and new recommendations based on the 
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average customer rating. Individual movies also contain a textual prediction when 

they are browsed. 

MovieLens [rashid02] is a movie recommender system. The movies are held in a 

database along with data on film genre etc. Users review movies and share this 

feedback with others for collaborative filtering purposes. A simple popularity/entropy 

recommendation strategy was used live in experiments. This project is ongoing and 

the MovieLens dataset is shared for other systems to use as a benchmark dataset. 

Nakif [funakoshi01] is a movie recommender, using the MovieLens dataset of movie 

information. An incremental adaptation of the Pearson-r correlation algorithm is 

applied to user ratings within the dataset. 

Results: 0.7 precision, 1.0 recall on the MovieLens dataset. 

Recommendation Explorer [efron01] is a film recommender system, using the 

reel.com movie dataset. It uses latent semantic indexing (LSI) to discover interesting 

movies from an initial seed of 10 or so movie ratings. 

Results: 0.1 precision, 0.75 recall on the reel.com dataset. 

Reel.com is a commercial system that recommends movies based on customer 

reviews. The customers enter their movie requirements (genre, viewing format, price 

etc.) and a set of recommendations is computed based on the habits of other 

customers. 

Tatemura’s [tatemura00] system uses virtual reviewers for recommendation of 

movies. Users can explicitly rate movies they have seen. Users can collate movies 

together to form a new viewpoint (a virtual reviewer), and ask for recommendations 

from this viewpoint. A vector-space model is used to compute the similarity between 

a particular viewpoint and known movies, and a scatter/gather method used to 

navigate this space. 

Music domain 

CDNOW is a commercial music CD shop/recommender system. Customers provide 

feedback as to which artists they prefer and own. Likes and dislikes can be indicated 

119 



 

and a set of 6 albums recommended upon request. Feedback on these 

recommendations is also elicited. 

A standard search facility is provided, and 10 other related albums to any single 

album recommended. A list of albums the customer owns is maintained, and new 

purchases are added to this list. 

CoCoA [aguzzoli01] is a music recommender system. As users add and delete tracks 

for their own music compilations, the recommender system will suggest potential 

tracks. Case-based reasoning is used to classify tracks into genres, and a pearson-r 

correlation used to find other people who have similar tastes to this user. 

Recommendations are then based on a cosine similarity measure of those track 

compilations liked by the set of similar people. 

Results: 0.563 precision on Medline dataset. 

Ringo [maes94] is a music recommender system. It uses collaborative filtering based 

on user’s ratings of music albums. Virtual users are created to bootstrap the system, 

providing some initial stereotypical ratings (e.g. a virtual Madonna fan). Pearson r 

correlation coefficients are used to determine similarity. 

Results: A real/predicted scatter plot is presented 

News filtering domain 

GroupLens [konstan97] collaboratively recommends Usenet newsgroup articles. A 

ratings database containing user ratings for each message, and a correlations database 

containing pairs of similar users, is maintained. A Pearson correlation algorithm was 

used to find similar users (applied within single newsgroups since ratings were too 

sparse to work for all newsgroups). 

Results: Various Usenet use figures are presented. 

PHOAKS [terveen97] recommends web references found in Usenet news articles. A 

hand-crafted set of filter rules is used to classify web resources into categories. Web 

references are then given a rating based on the number of authors that recommend the 

reference (the idea being frequently referenced web pages are good ones).  Each 

newsgroup thus has a set of ranked recommendations to web pages. 
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Results: The filter rules have a precision of 88% with a recall of 87%. When 

compared to the newsgroups FAQ, the 1st place URL had a 30% probability of 

appearing in the FAQ. 

P-Tango [claypool99] is an on-line newspaper article recommender. Users provide 

explicit keywords of the type of articles they are interested in and the system 

recommends other articles that may be of interest. A separate Pearson r correlation 

and content-based overlap coefficient method is used, using a dynamically weighted 

combination function to choose between methods of recommendation. 

Web domain 

Community Search Assistant [glance01] is a meta-search engine, which maintains a 

database of previous search queries from which to recommend. No user feedback is 

required, as similar search queries are identified using heuristics that find similarity 

within the search graphs. User search queries are shared. Similarity is based on query 

keyword correlation. 

Fab [balabanović97] recommends web pages based on relevance feedback from users. 

User’s rate recommended web pages on a 7-point scale. A set of collection agents 

dynamically formulates useful groups of pages, with successful agents duplicated and 

unsuccessful agents removed (success is a measure of feedback scores). Several agent 

heuristics are used to create page groups, including using commercial search engine 

results, random picks and human selected “cool” sites. 

Selection agents pick pages from the collection agent topics for recommendation (thus 

sharing topics between users). A profile is built from the terms of the pages (selection 

agents have user profiles, collection agents have topic profiles). 

Results: ndpm measure (distance of user rankings from profile rankings) 0.2 - 0.4 

using Fab system, 0.75 – 0.5 using random selection 

ifWeb [asnicar97] assists web navigation and recommends pages similar to example 

pages provided by the user. A vector-based user profile is maintained using features 

of web pages (host, size etc.) and a semantic network for term page co-occurrence 

relationships. The users provide explicit feedback on page relevance (positive and 

negative). A temporal decay function weights features within the user model, which is 
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represented using UMT. A tree interface can be displayed showing where the current 

web page is located in relation to its links, and how interesting the links are from it 

(based on correlation between the crawled pages and the user profile). A search for 

similar documents is also available, using the same mechanism. 

Results: Results on tests using 4 subjects on a limited set of documents (4-6). 9 

sessions were conducted, with learning from feedback occurring between each 

session. Precision 65%, ndpm 0.2 

MEMOIR [de roure01] records user web navigation trials and provides a framework 

for recommendation of web pages. Users must manually enter URL trials into the 

system, which are then shared with all users. MEMOIR monitors user web browsing 

and tries to correlate the current web position with a trial. Web pages (based on trial 

end points) are recommended when a correlation is made. In addition to web pages, 

similar users can be recommended based on keyword profiles derived from their 

trials. 

METIOREW [bueno01] is a web page recommender. A user model is created for each 

user detailing pages visited and feedback provided. Profile keywords are extracted 

from relevant web pages and stored in A TF representation. New pages are classified 

for relevance using a naïve Bayes classifier. A Pearson-r correlation is used to find 

similar users and thus discover people with similar objectives, allowing keywords to 

be shared. 

ProfBuilder [wasfi99] monitors web site use and recommends pages from that site to 

new visitors. A vector-space user profile is constructed from the pages a visitor has 

seen so far. The content of the pages make up the vectors using TF-IDF weightings. 

Stemming and stop words are used to reduce vector dimensionality, and a vector 

cosine measure used to measure vector similarity. For each page in the web site, the 

probability of previous users moving down a link is computed from historical 

navigation patterns. Both similar pages and pages historically likely to be navigated 

from the current page are selected for recommendation. 

QuIC [el-beltagy01] recommends web pages based on the currently browsed page. A 

set of link-bases are created and shared by users. A custom clustering algorithm 

clusters sets of web pages represented in a bag-of-words format using TF-IDF term 
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weighting. These clusters are associated with the pages in the link-bases. The users 

currently browsed  web page is then matched to a cluster and the most relevant link-

base of web pages recommended. 

RAAP [delgado98] recommends web pages. It uses a multi-class profile 

representation, but classes are not shared among users. Users explicitly rate pages as 

interesting, and provide a class in which to place these pages. Negative examples are 

inferred by monitoring deletion operations or provided explicitly. A TF-IDF 

document weighting is used along with a modified Rocchio classifier. Stemming, stop 

list and an information gain measures is used to reduce term dimensionality. Pearson-r 

correlation is used to find similar users upon which to base recommendations. 

Siteseer [rucker97] recommends web pages collaboratively. Bookmarks are used to 

find similar users (by computing the overlap of a user’s bookmarks with the other 

users’ bookmarks). Recommended URLs thus derive from the bookmark lists of 

similar users. 

Results: 1000 users, 18% confidence recommending 88% of the time. 

SOAP [voss97] is a multi-agent system that recommends web sites. User, search and 

recommender agents communicate to achieve recommendation for multiple users. 

Users can submit queries to an agent, which calls a search engine. The search results 

are associated with the query (taken as the “topic” of the resulting URLs). Users can 

explicitly rate pages using a 5-point scale and can provide free-text annotations. User 

bookmarks are used to infer interest in URLs too. Recommender agents use the topic 

(query) and rating to filter known URLs and hence provide recommendations. Since 

annotations and ratings are shared, any user can inspect them. Page content is 

represented using keyword vectors. 

SurfLen [fu00] monitors user browsing and recommends web pages. User browser 

history logs are mined for association rules using the A-Priori algorithm. These rules 

associate URLs with other URLs. When a user opens a known URL, the associated 

URLs are immediately recommended.  

Results: Some quantitative figures for 100 simulated users (based on Yahoo log data) 
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Other domains 

Campiello [grasso99] is a recommender system for leisure activities in a local 

community. Campiello elicits feedback on leisure events and places using postcard 

type forms. Freeform textual comments and scaled ratings are recorded. 

Recommendations can be requested on particular events and places, and both 

contend-based and collaborative recommendation is used. The Pearson algorithm is 

used to find similar users. 

An internal database is maintained for a particular city, with a newscard reader 

installed at the leisure facilities (such as within museums) to accept feedback and 

provide recommendations. 

ELFI [schwab00] recommends research funding program information to users. Users 

are monitored as they use the system, and positive examples obtained from 

observations of the type of thing they are interested in. This training set is applied to 

both a simple Bayes classifier and k-nearest neighbour (kNN) classifier. Funding 

information is held as feature vectors, and univariate significance analysis used to 

reduce vector dimensionality. The classifiers are used to measure the similarity of 

unseen database entries to the interesting training set. The closest matching pages are 

recommended to the user. 

Results: 220 users, divided into 5 groups. The user activity logs were used as 

training/test data using a cross validation method. simple Bayes classifier 91-97% 

accuracy, kNN 94-97% accuracy 

OWL [linton99] recommends new Word commands that other users have used before. 

User’s are monitored as they use Word and behaviour log files extracted. A statistical 

method is used to recommend un-used Word commands that others have used. 

Appendix B The Quickstep system design 

This section details some of the design documents generated as part of creating the 

Quickstep system. 

Nine independent processes make up the Quickstep system, all interacting to provide 

the recommendation service to its users. Figure B.1 shows the process map, detailing 
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how these 9 processes (the ellipses) interact. Basically, each process reads information 

from a data store, processes it and stores the results to another data store. File locking 

prevents multiple processes corrupting a data store. Processes are timed to run at 

periods during the day and night, and sequenced so that the results of one process (e.g. 

classification process) will be ready for the next process (e.g. profile builder). 
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Figure B.1 : Quickstep process map 

Each process is functionally decomposed in the detailed design. 
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Figure B.2 : Proxy server design 

The proxy server process handles requests by users for web pages. The web pages are 

retrieved from the web without any modification, and the URL request logged (with a 

time stamp). An on-line registration service is also supported, so users can register 

with the Quickstep system and allocate a port number. The system emails users their 

individual proxy port number, allowing them to enter the correct proxy server 

configuration details into their browsers. Once allocated, a thread is spawned to 

handle the new port connections. Figure B.2 shows the proxy server design. 
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Figure B.3 : Recommendation server/applet design 

The recommender server process (and its associated recommender applet process) 

allows the user to access their pre-computed recommendations. The users will load 

the applet via a web page, and it will attempt to connect to the recommendation 

server. A client-server set-up is required to overcome Java security restrictions, since 

file access is needed on the host machine to read the recommendation log file. Once 

the user has logged on (and the recommendation server authorised the logon), the 

recommendations for that user will be sent to the recommendation applet for display. 

These recommendations can be examined via the interface and feedback provided. 

When the user logs out (or closes the applet by closing the browser) the feedback is 

sent to the recommendation server and saved in the feedback log file. Figure B.3 

shows the recommendation server/applet design. 
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Figure B.4 : Training set compiler/profiler/recommender design 

The training set compiler process loads the training set update log (created as part of 

the feedback saved by the recommendation server) and loads each document. The 

loaded documents are then saved into the training set log. The profile compiler loads 

the classified document store and feedback logs, and computes a profile for each user. 

The URL logs are correlated with the classified documents to build a time log of 

topics browsed. Interest values can then be calculated from this topic history and the 

feedback logs. The recommendation compiler loads the user’s profiles and correlates 

them with the classified documents to build a ranked list of potential 

recommendations. The top 10 recommendations are stored in the user’s 

recommendation log. Figure B.4 details the design of these processes. 
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Figure B.5 : Classifier design 

The classifier process loads the current training set and builds a new classifier each 

time it is run. It then iterates over the pending document store and classifies each one. 

These classified documents are then moved to the classified document store. This is a 

slow process, so is run overnight. Figure B.5 details the classifier process. 
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Figure B.6 : Web crawler design 

The last process is the web crawler. This loads new documents from the web by 

crawling bookmarks (loaded into the system at the start) and loading each URL found 
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in the user’s URL log files. Only PS or PDF documents are kept (compressed versions 

are decompressed and used too). The documents kept are saved in the pending 

document store, ready for the classifier to handle them. Figure B.6 describes the web 

crawler process. 
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Figure B.7 : Quickstep log files 

The log file formats are also detailed here. This gives some idea of what sort of data is 

being stored in each of the log files. Figure B.7 shows this. 

Appendix C The Foxtrot system design 

This section details some of the design documents generated as part of creating the 

Foxtrot system. 

Nine independent processes make up the Foxtrot system, all interacting to provide the 

recommendation service to its users. Figure C.1 shows the process map, detailing how 

these 9 processes (the circles) interact. Basically, each process reads information from 

a data store, processes it and stores the results to another data store. File locking 

prevents multiple processes corrupting a data store. Processes are timed to run at 

periods during the day and night, and sequenced so that the results of one process (e.g. 

classification process) will be ready for the next process (e.g. profiler). 
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Figure C.1 : Foxtrot process map 

 

Each process is functionally decomposed in the detailed design. 
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Figure C.2 : Squid web proxy and the URL log generator design 

The Squid web proxy process handles requests by users for web pages. Squid is a 

well-respected third party web proxy, written in C. It is open source and supports the 

latest HTTP protocols. Foxtrot will use a modified version, logging port numbers with 

the user’s normal URL logging information. As Squid rotates its log files a second 

URL log generator process will regularly copy the log files, parse them and save each 

URL log entry to a separate user log file. Figure C.2 shows these two processes. 
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Figure C.3 : Interface server design 

The interface server handles requests from the interface applet for recommendations. 

The client/server set-up is needed to overcome security restrictions applied by most 

browsers on applets. Once a login request is received the user’s recommendations, 

profile and the current topic ontology are sent to the applet. Upon logout, any user 

feedback is appended to the feedback log (and any topic labels added to the training 

set update list). The server handles search requests by reading a search query and 

spawning a thread to handle it. The applet will regularly check on the status of the 

search query and will be sent a busy signal until it is complete. When ready, the 

search result (a set of URLs) is returned. Figure C.3 shows the interface server 

process. 
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Figure C.4 : Interface applet design 

The interface applet is run in a web page, and is Foxtrot’s interface to the users. Users 

must first logon, where they are presented with a search interface and a set of 

recommendations. These recommendations are sent by the interface server, and are 

the URLs Foxtrot thinks will be most interesting to the user. These recommendations 

can be examined, and feedback provided (paper quality, paper topic interest, 

corrections to paper topic). A popup menu allows topic corrections to be effected. The 

user can visually see their profile (if they are in the subject group with this feature 

enabled) and provide absolute reference points for the interest graph; this is the direct 

profile feedback. 

The major functionality of Foxtrot to the users is the search system. Users can enter 

keywords for title search, topics for category search etc. The final search query is sent 

to the interface server and processes. The applet regularly checks with the interface 

server to see if the search query has been handled. A busy indication (such as the 

hourglass and a “searching…” message) is displayed until it has, when the full search 

results are shown (a list of ranked URLs). 
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Upon logout the user’s feedback is sent to the interface server. Figure C.4 shows the 

interface applet design. 
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Figure C.5 : Profiler design 

The profiler reads the URL logs generated by the web proxy, and correlates them with 

the classified documents to formulate an interest event time-line. Feedback events are 

also added as interest events. The interest events are then used to formulate a profile 

via a time-decay function. If any direct profile feedback exists, this is also used to 

improve the profile. Newly computed profiles overwrite the existing ones with a 

backup made for later analysis work. Figure C.5 shows the profiler design. 
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Figure C.6 : Training set compiler design 

The training set compiler reads from the training set update list and downloads any 

URLs found. They are then given a label and saved in the training set. If the document 

exists already in the training set its label is updated. Figure C.6 shows the training set 

compiler design. 
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Figure C.7 :  Web search design 

The web search process loads all URLs browsed by the user and adds them to the 

pending set. They will be loaded later and classified by the classifier process. A set of 

bookmarks are also crawled and downloaded if changed. A status file (which includes 

document links and the last modified date) is kept to avoid re-loading documents that 

have not changed. A garbage check is made before keeping downloaded documents as 

the text conversion utility can sometimes fail and produce garbled words. Figure C.7 

shows the web search design. 
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Figure C.8 : Classifier design 

The classifier process loads all documents in the pending set and attempts to classify 

them. The current training set is used to build the classifier. Once built the classifier is 

applied to all pending documents and labels generated. The labelled documents are 

added to the document set. Figure C.8 shows the classifier design. 
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Figure C.9 : Recommender design 

Lastly we have the recommender process, which takes the user profiles and 

formulates a set of recommendations for each user. The top three topics are extracted 

from the user’s profile and correlated with the classified documents. Previously seen 

documents are removed so that the same thing is not recommended twice. The 

remaining recommendation set is ranked by recommendation confidence (based on 

quality feedback and classification confidence). The existing recommendation set is 

then pruned for any unread recommendations and the new set appended. Thus, the 

next time the user opens the interface applet this recommendation set will be read. 

Figure C.9 shows the recommender design. 
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Glossary of machine-learning terms 

For a more detailed description of machine-learning, [sebastiani02] provides an 

excellent overview of machine-learning techniques, as does [mitchell97]. 

A-Priori algorithm – An optimisation algorithm for reducing the number of large 

itemsets. Used in data mining (for example when finding association rules). 

Backpropagation - Neural network algorithm for updating hidden layer weights. A 

reliable technique, it is the backbone of many neural networks. 

Bag of words – Document representation consisting of a list of words and the number 

of times the words appear (term frequency). 

C4.5 – ID3 variant, applying rule post-pruning and other additional techniques. 

Cosine similarity – dot product measure of the distance between two vectors. This is 

used to measure similarity between two documents when the vector space represents 

document features. 

Decision tree – Algorithm using a tree, with each node of the tree dividing the 

hypothesis space using an attribute. As the tree is traversed, from top to bottom, the 

hypothesis space is increasingly sub-divided until only one hypothesis is left. 

Decision trees can be easily converted into classification rules. 

Entropy – A measure of the “purity” of a collection of examples. It measures the 

difference between the number of positive and negative examples (zero is a “pure” or 

perfectly balanced set). 

FAQ – Frequently Asked Questions – A document with often asked questions 

answered aimed at helping novice users. 

ID3 – Classic decision tree learning algorithm. Uses information gain to select node 

terms. 

ID4 – Variant on ID3. 

Information gain – Measure of the expected reduction in entropy of a term. 
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Jaccard coefficient – No. of pages containing two entities / no. of pages with either 

entities 

Keyword vector – A vector of keywords. Vector has length equal to the number of 

terms in a document set, and values are the frequency of each term (usually applied to 

a document to give a document vector). 

LSI – Latent semantic indexing [deerwester90]. A term weighting algorithm used for 

dimensionality reduction, meant to bring out the “latent” semantic structure of the 

vocabulary used in a document corpus. 

Naïve Bayes classifier – Probabilistic classifier based around Bayes theorem. Term 

probabilities are assigned to classes, and for a new document the probability of 

belonging to any particular class is computed. 

Nearest neighbour – Learning algorithm that measures the distance between 

document vectors within a vector-space representation. The distance indicates 

similarity of documents (the nearest neighbours) – cosine similarity is often used. 

Neural network – Network of units, with inputs usually representing terms and 

outputs classes. Connections between units have weights, which are trained by 

loading examples (using a training rule such as backpropagation to update weights). 

Pearson r correlation – Type of information measure, used to weight terms with 

respect to positive and negative examples. 

Reinforcement learning – Learning algorithm where actions produce rewards or 

penalties, thus the most rewarding sequence of actions is reinforced (hence learnt). 

Rocchio classifier – Learning algorithm, often used with TF-IDF weightings. Class 

term vectors are computed by summing positive example weights and subtracting 

negative example weights. 

SMART – An indexing engine, which converts documents into document vectors. It 

uses TF-IDF weighting. 

Stemming – Removal of suffixes from words. Used to reduce the number of terms 

that are synonyms in a textual document. 
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TF – Term frequency. The number of times a term (often a word or phrase) occurs 

within a document. 

TF-IDF – Term frequency – Inverse Document Frequency. Algorithm for assigning 

weights to terms in a document set, biased to weight the most discriminating terms 

highest. 
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