

UNIVERSITY OF SOUTHAMPTON

Capturing knowledge of user preferences with recommender

systems

by

Stuart Edward Middleton

A thesis submitted for the degree of

Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

May 2003

UNIVERSITY OF SOUTHMAPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Capturing knowledge of user preferences with recommender

systems

by Stuart Edward Middleton

Capturing user preferences is a problematic task. Simply asking the users what they

want is too intrusive and prone to error, yet monitoring behaviour unobtrusively and

finding meaningful patterns is both difficult and computationally time consuming.

Capturing accurate user preferences is, however, an essential task if the information

systems of tomorrow are to respond dynamically to the changing needs of their users.

 This thesis tests the hypothesis that using an ontology to represent user profiles

offers advantages over traditional profile representations in the context of

recommender systems.

 A novel ontology-based approach to recommendation is applied to a real world

problem and empirically evaluated. Synergy between recommender systems and

ontologies is then explored to help overcome both the recommender system cold-start

problem and the ontology interest-acquisition problem. Finally, the visualization of

profiles in ontological terms is examined in a real world situation and empirically

evaluated.

List of Contents

Chapter 1 Introduction..9

1.1 Motivation..9

1.2 Scope and the central hypothesis ...9

1.2.1 Scope..9

1.2.2 Central hypothesis..10

1.3 Thesis structure ..11

1.4 Contribution ...12

1.5 Declaration ...13

Chapter 2 Recommender systems and Ontologies ...14

2.1 The problem of information overload..14

2.2 Recommender systems can help ..15

2.3 User profiling in recommender systems ..16

2.4 Features of a recommender system..17

2.5 Classification by technology..20

2.6 Classification by work domain ..23

2.7 Seminal recommender systems ..24

2.8 Recommender system examples ..24

2.9 Ontologies ..25

2.10 Ontology example ..27

2.11 Conclusion ...27

Chapter 3 Profiling techniques and machine-learning..29

3.1 Backus-Naur Format ..29

3.2 Profile representations..29

3.2.1 Ratings-based representations..30

3.2.2 Content-based representations ...30

3.2.3 Knowledge-based profile representation ...33

3.3 Profiling techniques ...33

3.3.1 Time-decay functions...33

3.3.2 Pearson-r correlation ..34

3.3.3 Other profiling techniques ...35

3.4 Machine-learning techniques ...35

3.4.1 Data mining..35

i

3.4.2 Information theoretic methods ...36

3.4.3 Instance-based methods ...38

3.4.4 Probabilistic methods...39

3.4.5 Boosting and bagging...41

3.4.6 Other machine-learning techniques..42

Chapter 4 The Quickstep recommender system ...43

4.1 The Quickstep problem domain ...43

4.2 Overview of the Quickstep system ..44

4.3 Empirical evaluation ..45

4.4 The Quickstep system approach...46

4.4.1 Research paper representation..47

4.4.2 Research paper classification ...48

4.4.3 Profiling algorithm...49

4.4.4 Recommendation algorithm...50

4.4.5 Research paper topic ontology...51

4.4.6 Feedback and the quickstep interface ..52

4.4.7 Design choices made in the Quickstep system53

4.5 Experimental evaluation of Quickstep...54

4.5.1 Details of the two trials ..54

4.5.2 Experimental data ..56

4.5.3 Post-trial questionnaires ...59

4.5.4 Discussion of trends seen in the experimental data60

4.6 Comparison with other work in the literature ..61

4.7 Conclusions from the Quickstep trials ...62

Chapter 5 Cold-start recommendation and ontology interest acquisition64

5.1 Synergy between ontologies and recommender systems64

5.1.1 The cold-start problem ...65

5.1.2 Ontologies ..66

5.1.3 The interest-acquisition problem..67

5.2 OntoCoPI ...67

5.3 Integrating Quickstep, OntoCoPI and the AKT ontology............................69

5.4 Example of integrated system operation..71

5.5 Empirical evaluation of the integrated system...75

5.5.1 Experimental approach...75

ii

5.6 Experimental results...76

5.7 Conclusions..78

Chapter 6 The Foxtrot recommender system..82

6.1 The Foxtrot problem domain ...82

6.2 Overview of the Foxtrot system...83

6.3 Empirical evaluation ..84

6.4 Interesting lessons from the Quickstep system ..84

6.5 The Foxtrot System Approach ...85

6.5.1 Research paper representation..87

6.5.2 Research paper topic ontology...87

6.5.3 Research paper classification ...89

6.5.4 Interface..90

6.5.5 Profiling ...93

6.5.6 Recommendation ...93

6.6 Experimental Evaluation..94

6.6.1 Details of the trial...94

6.6.2 Experimental Data..96

6.6.3 Post-trial Questionnaire..101

6.6.4 Discussion of the trends seen in experimental data102

6.7 Comparison with other work within the literature104

6.8 Conclusions from the Foxtrot trial ...105

Chapter 7 Conclusions and future work ...107

7.1 Conclusions..107

7.2 Future direction of work ..109

7.2.1 Incremental improvements...109

7.2.2 Fully exploiting the ontology...110

7.2.3 Applying task knowledge to the user profiling..............................111

7.2.4 Utilizing the agent metaphor..111

7.2.5 Social implications ...112

7.3 The nature of ontology and recommender systems....................................112

7.4 Recommendation is here to stay ..113

iii

List of Figures

Figure 2.1 : Technology features of a recommender system19

Figure 2.2 : Classification of recommender systems by work domain23

Figure 2.3 : GroupLens interface ...25

Figure 2.4 : CDNOW interface ..25

Figure 3.1 : Backus-Naur format ...29

Figure 3.2 : Time decay function ...33

Figure 3.3 : Pearson-r correlation...34

Figure 3.4 : Constrained Pearson-r correlation ..34

Figure 3.5 : A-Priori algorithm ..36

Figure 3.6 : Features used in TF-IDF algorithm ..36

Figure 3.7 : Features used in Cosine similarity algorithm ...37

Figure 3.8 : Features used in Rocchio algorithm ...37

Figure 3.9 : Features used in kNN algorithm...38

Figure 3.10 : Bayes theorem ..39

Figure 3.11 : Features used in Naive Bayes classifier ...40

Figure 3.12 : EM algorithm..40

Figure 3.13 : AdaBoostM1 algorithm ..41

Figure 4.1 : The Quickstep system...45

Figure 4.2 : Quickstep profiling algorithm ..49

Figure 4.3 : Quickstep profile representation...50

Figure 4.4 : Quickstep recommendation algorithm ...50

Figure 4.5 : Section of the Quickstep research paper ontology51

Figure 4.6 : Quickstep’s web-based interface..52

Figure 4.7 : Changing paper topics in Quickstep...53

Figure 4.8 : Ratio of good topics / total topics...57

iv

Figure 4.9 : Ratio of good jumps / total recommendations..57

Figure 4.10 : Ratio of topic corrections / total recommendations................................57

Figure 5.1 : Ontology and recommender system integration.......................................69

Figure 5.2 : New-system initial profile algorithm..70

Figure 5.3 : New-user initial profile algorithm ..70

Figure 5.4 : Daily profiles sent to the AKT ontology ..71

Figure 5.5 : Evaluation metrics ..77

Figure 5.6 : Profile precision..78

Figure 5.7 : Profile error rate ...78

Figure 6.1 : Foxtrot overview ..83

Figure 6.2 : Section from the research paper topic ontology88

Figure 6.3 : k-Nearest Neighbour algorithm..89

Figure 6.4 : AdaBoostM1 boosting algorithm ...90

Figure 6.5 : Recommendation and search interface ...91

Figure 6.6 : Profile visualization interface, drawing interests92

Figure 6.7 : Profile visualization interface, picking topics ..92

Figure 6.8 : Email notification interface ..93

Figure 6.9 : Profiling algorithm ...93

Figure 6.10 : Recommendation algorithm ...94

Figure 6.11 : Metrics measured during the Foxtrot trial ..96

Figure 6.12 : Web page and email recommendation accuracy98

Figure 6.13 : Jumps to rec’s and profile topics as a ratio of all jumps.........................99

Figure 6.14 : Interest ratings as a ratio of all interest ratings.....................................100

Figure 6.15 : Profile accuracy and profile predictive accuracy101

Figure B.1 : Quickstep process map ..125

Figure B.2 : Proxy server design..126

v

Figure B.3 : Recommendation server/applet design ..127

Figure B.4 : Training set compiler/profiler/recommender design128

Figure B.5 : Classifier design...129

Figure B.6 : Web crawler design..129

Figure B.7 : Quickstep log files ...130

Figure C.1 : Foxtrot process map...131

Figure C.2 : Squid web proxy and the URL log generator design.............................132

Figure C.3 : Interface server design ...133

Figure C.4 : Interface applet design ...134

Figure C.5 : Profiler design..135

Figure C.6 : Training set compiler design..136

Figure C.7 : Web search design ..137

Figure C.8 : Classifier design...138

Figure C.9 : Recommender design...139

List of Tables

Table 2.1 : Technology feature one-line definitions ..20

Table 2.2 : Classification of recommender systems by technology.............................21

Table 4.1 : Quickstep classifier recall and precision..59

Table 4.2 : Post-trial answers for Quickstep’s second trial..59

Table 5.1 : Publication list for Shadbolt ..72

Table 5.2 : Example of new-system profile for Shadbolt ..73

Table 5.3 : OntoCoPI results for Middleton ..73

Table 5.4 : Profiles of similar people to Middleton ...74

Table 5.5 : New-user profile for Middleton...74

Table 6.1 : Foxtrot classifier precision and recall ..101

vi

Table 6.2 : Foxtrot post trial questionnaire results...102

vii

Acknowledgements

I would firstly like to thank my supervisor Dave De Roure for his wise advice and

foresight in letting me run with my own ideas and allowing them to flourish. I must

also thank Nigel Shadbolt for his support of my work and thoughtful ideas. From both

Dave and Nigel I have learnt much about how to write papers and perform academic

research.

Also of note is Harith Alani, whom I must thank for working with me to integrate his

OntoCoPI system with my work. This resulted in a good quality publication and led to

a whole new chapter in this thesis.

Lastly, I would like to thank Mark Weal, Chris Bailey, Mark Thompson and

Srinandan Dasmahapatra for their help in reading and commenting on the numerous

drafts of this thesis. Their selflessness in providing their own time is much

appreciated.

8

Chapter 1 Introduction

Chapter summary

The motivation behind this thesis is described.

The objectives and scope of this thesis are specified.

The structure to this thesis is explained.

The thesis contribution is detailed.

A declaration of originality is made.

1.1 Motivation

Capturing user preferences is a problematic task. Simply asking the users what they

want is too intrusive and prone to error, yet monitoring behaviour unobtrusively and

then finding meaningful patterns is difficult and computationally time consuming.

Capturing accurate user preferences is however, an essential task if the information

systems of tomorrow are to respond dynamically to the changing needs of their users.

This thesis examines issues associated with building user profiles for a recommender

system by unobtrusively monitoring user behaviour. The thesis explores the idea of

using an ontology to represent dynamic user behaviour profiles, and empirically

evaluates some of the benefits associated with such an approach. The evaluations

presented are grounded in the problem domain of recommending academic research

papers.

If the work presented here sheds some light on the path to truly personalized systems

it will have been worthwhile.

1.2 Scope and the central hypothesis

1.2.1 Scope

Recommender systems learn their users’ preferences over time via both unobtrusive

monitoring and relevance feedback. The construction of accurate user profiles is a

difficult process. Typically, a recommender system has to work with noisy, indirect

evidence of user interest, such as web browsing logs or product purchase records. To

9

be successful, an appropriate profile representation must be selected for the specific

domain, and appropriate profiling techniques employed.

Recommendations are formulated either by finding similar users and recommending

the things they liked, collaborative filtering, or by finding similar things to the things

a user liked before, content-based filtering. Content-based recommendation normally

requires machine-learning techniques to find patterns in the things users like.

Collaborative filtering requires a statistical technique to match other user profiles to

the profile of the things a user has liked.

As such, the scope of this thesis includes both profiling techniques and machine-

learning, in addition to recommender systems.

1.2.2 Central hypothesis

The central hypothesis of this thesis is that representing user profiles using an

ontology offers advantages over traditional profile representations. Three sub-

hypotheses are examined in order to test the central hypothesis.

The first sub-hypothesis is that inferences gained about profiles outweigh the loss of

information that occurs when a profile is constrained to use only ontological terms.

Specifically, the profile accuracy lost by representing profiles in terms of ontological

concepts, when compared to a traditional representation, is compensated for by the

profile accuracy gained by using the ontology to infer information about a profile.

The second sub-hypothesis is that using an ontology allows other knowledge-bases,

which use the same ontological concepts, to be used to draw on additional information

not normally available to the recommender system. Specifically, using a publications

and personnel knowledge-base to bootstrap interest profiles helps reduce the

recommender cold-start problem.

The third sub-hypothesis is that explicit feedback on user profiles offers advantages

over traditional relevance feedback. Specifically, visualizing a profile in ontological

terms allows users to explicitly comment on their own profile, providing a rich source

of information that will improve profiling accuracy.

10

If the first sub-hypothesis is true, then an ontological approach to user profiling is at

least as good as a more traditional approach. If the second and third sub-hypotheses

are true, then an ontological approach to user profiling offers clear advantages, and

hence the central hypothesis is true. The objective of the three experiments within this

thesis is thus to prove the three sub-hypotheses, and hence the central hypothesis.

1.3 Thesis structure

This thesis begins by introducing recommender systems and the techniques associated

with them, setting the context in which this work is set. Three experiments are then

discussed, each with the aim of providing supporting evidence to one of the three sub-

hypotheses. The evidence is then collated and summarized in order to show support

for the sub- hypotheses, and in turn prove the central hypothesis of this thesis.

Chapter 2, Recommender systems, reviews recommender systems in detail by

examining the current recommender systems work within the literature. A

categorization is proposed for recommender systems, and the reviewed systems

placed within this structure.

Chapter 3, Profiling techniques and machine-learning, introduces techniques and

concepts in both profiling and machine-learning research that are used by

recommender systems.

Chapter 4, The Quickstep recommender system, introduces and describes the

Quickstep recommender system. The representations and algorithms are specified,

design discussed and experimental details revealed. An ontology is used to represent

user profiles, and an evaluation is performed to measure the effectiveness of this

approach. Overall usefulness is measured and the system is compared to others in the

literature. The conclusions drawn provide evidence to support the first sub-hypothesis.

Chapter 5, Cold-start recommendation and ontology interest acquisition, explores the

idea of using both an ontology and a communities of practice identifier to bootstrap

the Quickstep recommender system, hence overcoming the classic recommender

system cold-start problem. This integration also allows Quickstep to provide up-to-

date interests to the ontology, hence addressing the interest acquisition problem

11

ontologies often have. An experimental analysis is performed and conclusions drawn

to provide evidence for the second sub-hypothesis.

Chapter 6, The Foxtrot recommender system, introduces and describes the Foxtrot

recommender system. The representations and algorithms are specified, design

discussed and experimental details revealed. The idea of visualizing user profiles

using ontological terms is explored, allowing users to both see and update their own

profiles. An empirical analysis is performed and conclusions drawn to provide

evidence for the third sub-hypothesis.

Chapter 7, Conclusions and future work, concludes this thesis by collating the

evidence for each sub-hypothesis, and examining how the three sub-hypotheses prove

the central hypothesis. The future direction for the work detailed within this thesis is

then discussed.

1.4 Contribution

This thesis provides two contributions.

Novel approach

Both the Quickstep and Foxtrot systems use a novel, ontological approach to user

profiling within recommender systems. It is novel since most other recommender

systems use a binary class approach, using “interesting” and “not interesting” classes

specific to each user.

The ontological profile representation used by both Foxtrot and Quickstep represents

each profile interest type as an ontological class. The relationships within the

ontology are used to infer new knowledge about interests that could not be observed

directly. Profiles are also visualized, using the ontological terms that are

understandable to users, and profile feedback elicited.

Lastly, the recommender cold-start problem is addressed by applying a knowledge-

base, based on publications and personnel data, which uses the same ontology to

bootstrap new user profiles.

12

New evaluation results for an existing concept

The current literature seriously lacks quantitative evaluations of recommender

systems addressing real world problems. Both the Quickstep and Foxtrot systems are

evaluated using real people while performing a real world task. This in itself is an

important contribution to the recommender systems community.

1.5 Declaration

This thesis is based upon work undertaken by the author. What is presented is the

original work of the author with the exception of OntoCoPI and the AKT ontology

detailed in chapter 5; OntoCoPI and the AKT ontology are part of the advanced

knowledge technologies (AKT) EPSRC project at the University of Southampton.

This work has been supported by EPSRC studentship grant number 99308831.

13

Chapter 2 Recommender systems and Ontologies

Chapter summary

The problem domain recommender systems seek to solve is presented.

Common approaches to recommender systems are described, with respect to both the

recommendation process and user profiling techniques.

A set of characteristics for recommender systems is defined in terms of the technology

and work domain.

A review of the state of the art is conducted, both for commercial systems and those

published within the research literature. Systems are categorized according to the

previously defined characteristics.

Seminal works are identified and trends in the field discussed.

Recommender systems have become popular since the mid 1990’s, offering solutions

to the problem of information overload on the World Wide Web. There are several

approaches employed, each with its own benefits and drawbacks. Since recommender

systems are normally grounded to solve real world problems, the field is both exciting

and rewarding to business and academics alike.

In this chapter, current recommender system work is discussed and the approaches

used by today’s recommender systems described. A set of characteristics for

recommender systems is defined and a review of the current state of the art conducted.

Interface agents share many properties with recommender systems, especially in the

way they learn about users; interface agents are comprehensively reviewed in

[middleton01a].

2.1 The problem of information overload

The mass of content available on the World Wide Web raises important questions

over its effective use. With largely unstructured pages authored by a massive range of

people on a diverse range of topics, simple browsing has given way to filtering as the

practical way to manage web-based information, and this normally means search

engines.

14

Search engines are effective at filtering pages to match explicit queries.

Unfortunately, people find articulating what they want as a search query difficult,

especially if forced to use a limited vocabulary such as keywords. The result is large

lists of search results that contain a handful of useful pages, defeating the purpose of

filtering in the first place.

The semantic web offers the potential for help, allowing more intelligent search

queries based on web pages marked up with semantic metadata. Semantic web

technology is very dependent, however, on the degree to which web pages are

annotated by their authors. Annotation requires a degree of selflessness in authors,

since the annotations provided will only help others searching their pages. Because of

this, and the huge numbers of web pages that require annotation, in the foreseeable

future it s likely tat most web pages will remain unannotated. The semantic web will

thus only be of partial benefit to the problem of formulating explicit search queries.

2.2 Recommender systems can help

People find articulating what they want hard, but they are very good at recognizing it

when they see it. This insight has led to the utilization of relevance feedback, where

people rate web pages as interesting or not interesting and the system tries to find

pages that match the “interesting”, positive examples and do not match the “not

interesting”, negative examples. With sufficient positive and negative examples,

modern machine-learning techniques can classify new pages with impressive

accuracy; in some cases text classification accuracy exceeding human capability has

been demonstrated [larkey98].

Obtaining sufficient examples is difficult, however, especially when trying to obtain

negative examples. The problem with asking people for examples is that the cost, in

terms of time and effort, of providing the examples generally outweighs the reward

people will eventually receive. Negative examples are particularly unrewarding, since

there could be many irrelevant items to any typical query.

Unobtrusive monitoring provides positive examples of what the user is looking for,

without interfering with the user’s normal work activity. Heuristics can also be

applied to infer negative examples from observed behaviour, although generally with

less confidence. This idea has led to content-based recommender systems, which

15

unobtrusively watch user behaviour and recommend new items that correlate with a

user’s profile.

Another way to recommend pages is based on the ratings provided by other people

who have seen the page before. Collaborative recommender systems do this by asking

people to rate items explicitly, which allows the system to recommend new items that

similar users have rated highly. An issue with collaborative filtering is that there is no

direct reward for providing examples since they only help other people. This leads to

initial difficulties in obtaining a sufficient number of ratings for the system to be

useful, a problem known as the cold-start problem [maltz95].

Hybrid systems, attempting to combine the advantages of content-based and

collaborative recommender systems, have also proved popular to date. The feedback

required for content-based recommendation is shared, allowing collaborative

recommendation as well.

2.3 User profiling in recommender systems

User profiling is typically either knowledge-based or behaviour-based. Knowledge-

based approaches engineer static models of users and dynamically match users to the

closest model. Questionnaires and interviews are often employed to obtain this user

knowledge. Behaviour-based approaches use the user’s behaviour as a model,

commonly using machine-learning techniques to discover useful patterns in the

behaviour. Some sort of behavioural logging is employed to obtain the data necessary

from which to extract patterns in behaviour. Kobsa [kobsa93] provides a good survey

of user modelling techniques.

The user profiling approach used by recommender systems is behaviour-based,

commonly using a binary, two-class model to represent what users find interesting

and uninteresting. Machine-learning techniques are then used to find potential items

of interest with respect to the binary model. There are a lot of effective machine-

learning algorithms based on two classes. Sebastiani [sebastiani02] provides a good

survey of current machine-learning techniques, as does chapter 3 of this thesis.

16

2.4 Features of a recommender system

There are five main issues a recommender system must address; Figure 2.1 lists them

all. Firstly, a knowledge acquisition technique must be employed to gather

information about the user from which a profile can be constructed. This knowledge is

processed to provide the basis for an individual’s user profile; it must thus be

represented in a convenient way. There must be a knowledge source from which items

can be recommended. Recommender systems allow information to be shared amongst

users to enhance the overall recommendation performance; this shared information

must be clearly defined. The final requirement is for an appropriate recommendation

technique to be employed, allowing recommendations to be formulated for each of the

users of the system.

Knowledge can either be implicitly or explicitly acquired from the user. Implicit

knowledge acquisition is often the preferred mechanism since it has little or no impact

on the user’s normal work activity. Unobtrusive monitoring of the user discovers

behavioural data about the user’s normal work activity over a period of time; this data

can be used to infer preferences for frequently occurring items. Heuristics can also be

employed to infer facts from existing data. Implicitly acquired knowledge requires

some degree of interpretation to understand the user’s real goals; this is an inherently

error prone process, reducing overall confidence in any resulting user profiles.

Explicit knowledge acquisition requires the user to interrupt their normal work to

provide feedback or conduct some sort of programming of the system. Explicit

knowledge is generally high confidence information, since it is provided by the users

themselves and not acquired from indirect inference. Feedback types include item

relevance, interest and quality. User programming occurs when the user is asked to

create filter rules, either visually or via a programming language, or to tell the system

about groups or categories of items that exist in the domain.

User feedback can be shared for the purpose of recommendation. If collaborative

filtering is to be used, other users’ feedback on unseen items can be used as a basis for

recommendations for a particular user. Examples of interesting items can be shared

between similar users to increase the size of the training set and hence improve

classification accuracy. Previous navigation patterns are also useful to share, as they

17

allow new users to receive the benefit from other people’s previous mistakes and

successes.

Domain knowledge can also be shared, since it is normally programmed in and hence

available to the system from the start. Categorizations of items can be used to provide

order to a domain, and common sets of domain heuristics, potentially part of a

knowledge base, can be useful when computing recommendations.

Profiles can be represented as a feature vector in a vector-space model. This is a

standard representation and allows easy application of machine-learning techniques

when formulating recommendations. For content-based recommendation the features

in the vectors might be the word frequencies of interesting documents, while for

collaborative filtering the features could be the keywords commonly used by users in

their search queries. Navigation trails can be used to represent time-variant user

behaviour. If some initial knowledge engineering has been conducted there may also

be knowledge about the users available to a profile.

The domain itself will contain sources of information to be recommended to the users.

These could be from a database held by the recommender system, such as movie

titles, or available dynamically via the web, such as links from the currently browsed

page or web pages crawled from a web site. Systems can also rely on external events,

such as incoming emails, to provide items for recommendation.

There is a wide variety of recommendation techniques employed today, with most

techniques falling into three broad categories. Rule filters apply heuristics to rank

items in order of potential interest. Machine-learning techniques employ similarity

matching to rank items in order of interest. Collaborative filtering finds similar users

and recommends items they have seen and liked before.

18

To summarize, the set of features important to a recommender system are:

� Knowledge acquisition technique

o Implicit

� Monitoring behaviour

� Heuristics to infer information

o Explicit

� User feedback

� User programming

• Filter rules

• User-created groups/categories

� Shared information

o User feedback

� Item feedback

� Examples of items

� Navigation history

o Domain knowledge

� Item groups / categorizations

� Domain heuristics

� Profile representation

o Vector model

o Navigation trails

o Knowledge-based profile

� Knowledge source

o Internal database of items

o Crawled web pages

o External domain events

� Recommendation technique

o Heuristics

o Similarity matching

o Collaborative filtering
Figure 2.1 : Technology features of a recommender system

19

One line definitions of each technology feature are available in table 2.1.

Technology feature One-line description

Monitoring behaviour System observes users using it and records this behaviour.

Heuristics to infer information Rules are used to infer information about users

User feedback Users provide explicit feedback e.g. item relevance, item examples, etc.

Filter rules Users provide filter rules to the system

User-created groups/categories Users define system groups or categories

Item feedback Item feedback is used by the system to help other users

Examples of items System pools examples of items to form a collective training set

Navigation history System uses recorded navigation histories to help other users

Item groups / categorizations System shares communal groups and categories, whether defined by the
system or other users

Domain heuristics System shares a set of domain filter rules between all users

Vector model System uses vectors to model for documents or interest profiles

Navigation trails System holds a navigation history e.g. a web browsing history

Knowledge-based profile System uses knowledge-based profiles

Internal database of items System recommends from an internal database of items

Crawled web pages System crawls the web for items to recommend

External domain events Events occur that trigger recommendation e.g. an email arrives

Heuristics Rules are used to find best items to recommend

Similarity matching Similarity function is used to find items matching a content-based profile

Collaborative filtering Statistical functions are used to find people with similar profiles, then items
liked by those people are recommended

Table 2.1 : Technology feature one-line definitions

2.5 Classification by technology

Table 2.2 lists the recommender systems reviewed in appendix A and shows how they

are classified according to the technological features identified previously; forty-four

recommender systems are reviewed in total. Entries in this table are sorted by

knowledge-acquisition technique and entries marked by a “-” are due to the

information being unavailable. It is common for commercial systems to withhold their

technologies to maintain commercial advantage. This table provides a clear

representation of the recommender system domain as it is today. Commercial systems

are highlighted in a bold typeface.

20

The Quickstep and Foxtrot recommender systems are included within table 2.2 to

show where they fit in the literature. Details of these experimental systems can be

found in chapters 4 to 6.

 Knowledge acquisition
technique

Shared
information

Profile
representation

Knowledge
source

 Recommendation
 technique

 Mo
nit

or
ing

 be
ha

vio
ur

He
ur

ist
ics

 to
 in

fer
 in

for
ma

tio
n

Us
er

 fe
ed

ba
ck

Fil
ter

 ru
les

Us
er

-cr
ea

ted
 gr

ou
ps

/ca
teg

or
ies

Ite
m

fee
db

ac
k

Ex
am

ple
s o

f it
em

s

Na
vig

ati
on

 hi
sto

ry

Ite
m

gr
ou

ps
/ca

teg
or

ies

Do
ma

in
he

ur
ist

ics

Ve
cto

r m
od

el

Na
vig

ati
on

 tr
ail

s

Kn
ow

led
ge

-b
as

ed
 pr

ofi
le

Int
er

na
l d

ata
ba

se
 of

 ite
ms

Cr
aw

led
 w

eb
 pa

ge
s

Ex
ter

na
l d

om
ain

 ev
en

ts

He
ur

ist
ics

Si
mi

lar
ity

 m
atc

hin
g

Co
lla

bo
ra

tiv
e f

ilte
rin

g

CoCoA o o o o o o o o o
Comm’ty search ass’nt o o o o o

ELFI o o o o o
FAIRWIS o o o o o o o

Foxtrot o o o o o o o o o o o
Ghani o o o o o o

MEMOIR o o o o o o
OWL o o o o

ProfBuilder o o o o o o
QuIC o o o o o o o

Quickstep o o o o o o o o o o o o
Referral Web o o o o o o

SOAP o o o o o o
SurfLen o o o o o o

Tapestry o o o o o o o o
Entree o o o o o o o

PHOAKS o o o o o
Amazon.com o o o o - - - o o

Campiello o o o o o o
CBCF o o o o o o o

CDNOW o o o o - - - o o
Dietorecs o o o o o o

eBay o o o - - - o o
EFOL o o o o o o

Expertise Recom’er o o o o o o o o o
Fab o o o o o o o o

GroupLens o o o o o o
ifWeb o o o o o
Levis o o o - - - o o

LIBRA o o o o o o
METIOREW o o o o o

MIAU o o o o o
Moviefinder.com o o o - - - o o

MovieLens o o o o o o
Nakif o o o o o

P-Tango o o o o o o o
RAAP o o o o o o o

Recommend’ Explorer o o o o o o
Reel.com o o o - - - o o

RIND o o o o o o o
Ringo o o o o o o

Siteseer o o o o o
Ski-europe.com o o o o o o

Virtual rev’s (Tatemura) o o o o o o o

Table 2.2 : Classification of recommender systems by technology

From this classification we can see that most recommender systems today explicitly

ask users for feedback and share that feedback between users to provide collaborative

recommendation from an internal database of items.

This trend is understandable when you consider the technology available. Eliciting

user feedback is an optional task and normally requires minimal effort from the user if

21

eliciting at the point of recommendation. The feedback device is often associated with

a reward to encourage participation, for example a feedback control next to a

recommended web page.

Casual users are often reluctant to either register or install software, making

monitoring of their behaviour difficult. It is also unlikely that users will accept the

invasion of privacy that occurs with monitoring unless the reward offered is

substantial. Heuristics can successfully infer information about users but they

normally need data to work on, be it from existing logs or monitored behaviour. Filter

rules are generally too complex to define in any useful detail, and creating categories

or groups for a system requires a substantial investment of human effort for little

immediate reward.

Perhaps the most compelling evidence for the benefits of a simple

feedback/collaborative filtering approach is the marketplace. All the commercial

recommender systems reviewed use this technology. It thus appears clear that this

approach is the only one to have yet reached maturity. This is not the full story,

however. While unsuitable for the type of mass-market operation the commercial

systems are targeting, other approaches would work for a smaller user base from

corporations down to a groups of individuals.

Monitoring user behaviour is useful in a corporate environment, where software is

installed for everyone and computers are used for work purposes only. Several of the

reviewed systems do indeed use monitoring techniques, which tend to share

navigation histories and implicit user feedback. Here, a mix of collaborative and

content-based approaches to recommendations are seen, with the content-based

systems using vector-space models to perform similarity matches between the domain

content and user profiles.

For information systems with large databases, heuristics can be used to infer

knowledge about the users. If a large corpus of information exists of users and their

relationships, this could be mined and recommendations generated from it. User

relationships can be found from email messages, newsgroup archives mined for web

references, bookmarks utilized etc. These systems tend use filter rules to select

22

appropriate items for recommendation, avoiding the need for user feedback

completely.

2.6 Classification by work domain

Figure 2.2 lists the recommender systems reviewed in appendix A by work domain.

This classification provides an overview of the different types of work domain current

recommender systems address. Commercial systems are highlighted in a bold

typeface.

Tapestry

CDNOW
CoCoA
Ringo

GroupLens
PHOAKS
P-Tango

CBCF
Nakif
Moviefinder.com
MovieLens

Expertise Recom’er
Referral Web

Campiello
ELFI
OWL

E-commerce

Web

Movie

News filtering Email filtering

Expertise finder

Other

Music

Amazon.com
Dietorecs
eBay
EFOL
entree
FAIRWIS

Ghani
Levis
LIBRA
MIAU
RIND
Ski-europe.com

Comm’ty search
ass’nt
Fab
Foxtrot
ifWeb
MEMOIR
METIOREW
ProfBuilder

QuIC
Quickstep
RAAP
Siteseer
SOAP
SurfLen

Recommend’ Explorer
Reel.com
Virtual rev’s (Tatemura)

Figure 2.2 : Classification of recommender systems by work domain

The majority of systems lie in either the web domain or the e-commerce domain. For

commercial systems only the e-commerce, music and movie domains are used. This

reflects the reality that successful commercial recommender systems must offer the

customer a service they value enough to invest time and money. E-commerce and

music systems tend to sell products while movie systems tend to make money from

web advertising to repeat users. Perhaps the failure of web recommender systems to

make a significant commercial impact reflects the immaturity of the technology

23

behind them, and the difficulty of the technical problems they face to make them good

enough in the marketplace.

2.7 Seminal recommender systems

The first recommender system, Tapestry [goldberg92], coined the phrase

“collaborative filtering” that has been used by many others since. Seminal examples

of collaborative recommender systems include GroupLens [konstan97] and PHOAKS

[terveen97], both published in the influential 1997 special issue of the

Communications of the ACM on recommender systems. Content-based recommender

systems are exemplified by Fab [balabanović97], a seminal hybrid recommender

system.

Other systems of note are SOAP [voss97], which was one of the first recommender

systems to use an agent metaphor and ReferralWeb [kautz97], which looked into

recommending people with useful expertise.

2.8 Recommender system examples

The GroupLens [konstan97] recommender system is a classic recommender system

which recommends Usenet newsgroup articles. As users browse their usenet news a

split screen interface presents some recommendations, as shown in figure 2.3, along

with the ratings provided by other GroupLens users. The aim of the split screen

interface is to blend into the normal usenet interface. With 50,000+ new messages

posted each day this recommendation interface provides some way to identify what is

worth reading and what is not.

CDNOW is a commercial music CD shop/recommender system. It is now integrated

into the wider application of Amazon.com. Customers buy CD’s through a standard

electronic shop web-based interface as shown in figure 2.4. As customers shop, by

navigating through the sites web pages, CDNOW presents opportunistic

recommendations of items that the user might want. These recommendations are

based on the previous navigation pattern and buying habits of the customer.

If a customer wants they can provide feedback as to which artists they prefer and own.

Likes and dislikes can be indicated and a set of 6 albums recommended upon request.

Feedback on these recommendations is also elicited.

24

Figure 2.3 : GroupLens interface

Figure 2.4 : CDNOW interface

2.9 Ontologies

An ontology is a conceptualisation of a domain into a human-understandable, but

machine-readable format consisting of entities, attributes, relationships, and axioms

[guarino95]. Ontologies can provide a rich conceptualisation of the working domain

25

of an organisation, representing the main concepts and relationships of the work

activities. These relationships could represent isolated information such as an

employee’s home phone number, or they could represent an activity such as authoring

a document, or attending a conference.

Ontologies are normally used within knowledge-based systems to define the classes

and structure of the domain models supported. The experimental recommender

systems in this thesis use ontologies in such a way, defining the classes used to

represent research paper topics and the structure of the generalization relationships

between these classes. Ontologies are employed in such a way that we can further

employ inference, mappings to external knowledge-bases and mappings to human

understandable concepts.

The two experimental recommender systems described in this thesis represent user

profiles using the classes defined in the system’s research paper topic ontology. The

user profiles thus form a dynamic knowledge-base, holding interest information about

the users of the recommender system. This profile knowledge-base is used to drive the

recommendation process. Further to just recommendation, however, the ontological

representation of user profiles allows inference of interests via the is-a relationships

defined within the ontology, bootstrapping from information gleaned by mappings to

an external ontology and profile visualization based on the ontological profile classes.

In the three experiments described in this thesis only a simple is-a taxonomy is used;

this is perhaps one of the simplest ontological representations. The reason for this

simplicity is to reduce the number of potential causes of experimental observations to

a minimum. However, many more relationships and concepts could be employed in

the recommender system ontology than just research paper topics and generalization

relationships. The second experiment in this thesis alludes to some of the potential

benefits of a more capable ontology, making use of project and personnel knowledge

held in external sources. As discussed in the concluding chapter, expanding the

ontology by including additional concepts and relationships is a clear way to increase

the potential for inference and hence improve profiling accuracy.

26

2.10 Ontology example

An example of an ontological system is the ScholOnto system [shum00]. ScholOnto

is a digital library of academic research papers which allows researchers to

semantically mark-up papers and share this mark-up for collaborative interpretation

and discourse. ScholOnto maintains an ontology supporting claims made by

researchers about papers; claims in this context are personal assertions of relationships

between supported concepts and/or other claims. The concepts supported by this

ontology include a papers “approach”, “ideas”, “language” and “methodology”; the

relationships supported include “uses”, “envisages”, “confirms” and “raises problem”.

The ontology is thus well suited to represent scholarly discourse over the significance

of ideas and concepts within their field.

ScholOnto’s ontology is presented to the users via HTML web pages, generated by a

knowledge representation tool. These web pages allow users to see the complex

relationships between each ontological concept. A schema language allows rules to be

created to operate on the supported knowledge model; such rules can be used to signal

inconsistencies within a model.

Various interface views to this knowledge are supported, including a conventional

form/menu interface, direct annotation interface and semantic network interface.

These interfaces make it possible for researchers to see different perspectives on a

body of research, such as a “European” perspective on EU driven research work.

There is a significant need for researchers to provide the initial knowledge capture to

populate the knowledge models. This is made an easier task with the helpful

interfaces, but the authors will be looking into methods such as machine learning to

automatically detect perspectives within the ontology.

2.11 Conclusion

Current recommender systems use a wide variety of techniques, often adopting a

hybrid approach with both collaborative and content-based filtering techniques being

employed. The commercial systems, however, use a smaller subset of the potential

techniques available, concentrating on offering a collaborative filtering service to sell

products.

27

The Quickstep and Foxtrot experimental systems described later in this thesis use a

hybrid approach, using both similarity matching and collaborative filtering. They

unobtrusively monitor users in addition to eliciting feedback, forming a basis upon

which to run advanced profiling algorithms and techniques. The classification in table

2.2 and figure 2.2 clearly places these systems in the context of the recommender

system literature.

The next chapter describes in detail the profiling and machine-learning techniques

used by recommender systems in the literature.

28

Chapter 3 Profiling techniques and machine-learning

Chapter summary

The profiling representations used by recommender systems are discussed.

The profiling techniques used with these representations are detailed.

The machine-learning algorithms commonly used in recommender systems are

described.

This chapter introduces the machine-learning and profiling techniques commonly

employed by recommender systems, along with the profile representations that they

use. Many techniques have been published in the user-modelling [kobsa93] and

machine-learning [sebastiani02] literature. The techniques described here are the

subset commonly used by the recommender systems community. Generally speaking,

once a profile representation is decided upon, the technique that you can apply to that

representation can be chosen.

3.1 Backus-Naur Format

This thesis uses a non-rigorous version of Backus-Naur format (BNF) in the figures to

describe data formats. Figure 3.1 briefly describes BNF for easy reference.

Data types represented by angled brackets <>
Items are assigned a data type item = <data type>
Sets of items are enclosed by parentheses set = (item1,item2 … itemn)
List of 0 or more items use a * list = (item1)*

= (item1)(item1)…(item1)
List of 1 or more items use a o list = (item1,item2)o

= (item1,item2)(item1,item2)…(item1,item2)

Figure 3.1 : Backus-Naur format

3.2 Profile representations

Profile representations falls into two types, which are not mutually exclusive. Ratings-

based representations store every user’s ratings on available items so correlation

techniques can be used to find similar users. Content-based representations store

representations of specific items of interest to a single user so machine-learning

techniques can find similar items.

29

3.2.1 Ratings-based representations

Relevance feedback

When users receive recommendations it is common to elicit feedback on how

interesting the recommendations are to the needs of the user. This type of feedback is

called relevance feedback.

Relevance feedback is elicited by offering the user a rating scale for each

recommendation; the choice is commonly either “interesting” and “not interesting” or

a 3 to 5-point scale of interest. The representation of relevance feedback is thus a set

of recommended items and the associated interest values provided by each user.

Relevance feedback is often incomplete since users are often reluctant to invest time

and effort to provide the feedback.

Relevance feedback can be acquired implicitly, allowing inference from observed user

behaviour. The problem with implicit feedback is that the assumptions made to allow

inference often introduce errors. For example, a user may read an initially interesting

looking document, only to find it was actually not interesting after all when its details

are known; if all documents that are read are inferred to be interesting this situation

would clearly introduce an error into the relevance feedback acquired. Implicit

feedback is commonly in a positive/negative form, implied by clear positive or

negative actions in an attempt to reduce the number of assumptions required.

A balance must be made between interrupting the user to acquire high quality explicit

feedback and unobtrusive methods to obtain lower quality implicit feedback. Exactly

how much interruption users will tolerate will depend upon the specific application

domain.

3.2.2 Content-based representations

Most content-based analysis is performed on textual documents such as web pages,

newspaper articles or document abstracts. The reason for this is that textual

documents easily break down into individual words, whereas video and audio sources

require sophisticated analysis to decompose into useful sub-components. All content-

based recommender systems work with textual content.

30

Term-frequency vector representation

The most common abstraction of a textual document in the machine-learning context

is a term-frequency (TF) vector. Terms consist of single words or phrases, and the

frequency count is simply the number of times a term appears within the document

text. To create a term-frequency vector the terms within a document are counted and

the frequency values stored in an n-dimensional vector. The number of dimensions of

the vector is the number of unique terms within a document.

It is common to reduce the dimensionality of term-frequency vectors to improve

processing efficiency. Common terms, called stop words, are removed since they have

little discriminating power as all documents contain them; examples of stop words are

“and”, “if” and “the”. The removal of stop words is normally performed using a

standard stop list, removing all terms that match the stop list.

Low frequency terms are also removed, since they too have little discriminating

power, often appearing in just one document; an example of low frequency term is a

web URL.

Another dimensionality reduction technique commonly employed is to stem terms.

This involves removing suffixes so that basically similar words are grouped together;

an example would be to use the stemmed term “recommend” for the terms like

“recommender”, “recommendation” and “recommends”.

In practice, stemming, stop lists and low frequency term removal are all applied to

reduce the dimensionality of the term vectors as much as possible. Sebastiani

[sebastiani02] covers the subject of dimensionality reduction in more detail.

Term-frequency representations are often called “bag of words” representations, since

the structure of the document is lost. It has been shown [lewis92] that the loss of

structural information such as sentences and paragraphs does not significantly degrade

the performance of subsequent analysis and classification.

Recommender systems usually normalize the frequency data based on the length of

the document, and some systems weight individual terms in favour of the more

discriminating ones. This avoids larger documents always having highly weighted

terms.

31

Binary class profile representation

The most common profile representation for content-based recommender systems is

the binary class profile, representing user interests as a set of positive and negative

examples. The positive, or “interesting”, examples are represented as a collection of

term-frequency vectors of documents that the user has rated as “interesting”. The

negative, or “not interesting”, examples are likewise represented. This binary class

representation is very suitable for a great many machine-learning techniques.

Since relevance feedback is required to obtain the sets of positive and negative

examples, a ratings-based profile is often additionally implemented to create a hybrid

recommender system.

Multi-class profile representation using an ontology

The alternative to the binary class representation is a multi-class representation.

Rather than simply having positive and negative classes, an ontology of classes can be

created that map to domain concepts such as newspaper topics like “sport”. A user’s

profile is thus represented in terms of which classes they are most interested in,

abstracting away from the specific examples of interest. When relevance feedback is

acquired, examples of interest are classified according to the classes within the

ontology, and the user’s interest in that class recorded.

Multi-class classification is considerably more complex than binary class

classification. Having more than two classes reduces the number of examples

available for each class, thus reducing the accuracy of the machine-learning technique

employed. In addition, since classes are shared between users, there will be a loss of

information about individual user interests when compared to a binary representation

where each user has their own set of examples; sharing examples does allow for a

larger training set, however. These factors are the reason why very few recommender

systems adopt this approach.

Most ontologies are created manually by a knowledge engineer and domain experts.

They thus capture the relevant classes within a domain and relationships between

them. It is possible to create classes automatically using clustering machine-learning

algorithms. Clustering finds similar term frequency vectors and groups them together

32

to make a class. Classes created by clustering, however, have no domain knowledge

associated with them, making useful inference from them difficult.

3.2.3 Knowledge-based profile representation

Knowledge-based profile representations appear in the user modelling literature.

Typically these approaches require questionnaires and interviews with users to

acquire information about their requirements before a profile can be built. Profiles

consist of asserted facts about a user in a knowledge-base, from which inferences can

be drawn about user stereotypes and interests. Knowledge-based profiles are often

used in the related fields of agent and intelligent tutoring systems, however. Kobsa

[kobsa93] provides a good introduction to the field of user modelling and profile

representation.

3.3 Profiling techniques

3.3.1 Time-decay functions

Time decay functions are simple profiling techniques, and can be applied to content

and rating-based profile representations so long as their information is time-stamped.

A weighting function is defined which contains an inverse time weight, so older

information is less relevant than more recent information. This weighting function is

then applied to one of the rating values, term weights or class interest values.

Due to their simple nature, time decay functions can be successfully applied to very

complex profiles, where multiple patterns exist and evidence is incomplete.

w(ti) =

w(ti) weight of term ti after time decay
ti ith term
N number of documents
tf(ti,dj) number of times term ti appears in document dj
dj jth document
age(dj) age of document dj

Σ ______
age(dj)

tf(ti,dj)

j = 1

N
w(ti) =

w(ti) weight of term ti after time decay
ti ith term
N number of documents
tf(ti,dj) number of times term ti appears in document dj
dj jth document
age(dj) age of document dj

Σ ______
age(dj)

tf(ti,dj)

j = 1

N

Figure 3.2 : Time decay function

33

3.3.2 Pearson-r correlation

The Pearson-r correlation algorithm is the most common algorithm used on rating-

based representations to find similar people to a given user. Pearson-r correlation

finds correlations between different user ratings on particular items. The users with

the highest Pearson-r values have ratings most similar to the target user.

rxy pearson-r correlation between user x and y
N number of ratings
Uxi ith rating for user x
Ux mean rating for user x

rxy =

Σ (Uxi – Ux) * (Uyi – Uy)
_ _

i = 1

Σ (Uxi – Ux) 2 *
_ _

i = 1

√

(Uyi – Uy)2Σ
i = 1

_

N N

N

rxy pearson-r correlation between user x and y
N number of ratings
Uxi ith rating for user x
Ux mean rating for user x

rxy =

Σ (Uxi – Ux) * (Uyi – Uy)
_ _

i = 1

Σ (Uxi – Ux) 2 *
_ _

i = 1

√

(Uyi – Uy)2Σ
i = 1

_

N N

N

Figure 3.3 : Pearson-r correlation

rxy pearson-r correlation between user x and y
N number of ratings
Uxi ith rating for user x
β constrained value

rxy =

Σ (Uxi – β) * (Uyi – β)
i = 1

Σ (Uxi – β) 2 *
i = 1

√

(Uyi – β)2Σ
i = 1

N N

N

rxy pearson-r correlation between user x and y
N number of ratings
Uxi ith rating for user x
β constrained value

rxy =

Σ (Uxi – β) * (Uyi – β)
i = 1

Σ (Uxi – β) 2 *
i = 1

√

(Uyi – β)2Σ
i = 1

N N

N

Figure 3.4 : Constrained Pearson-r correlation

The Pearson-r correlation algorithm adjusts to bias within ratings, such as from users

who always rate highly, by computing the deviation of ratings from the mean rating of

each user. If ratings have no bias a constrained Pearson-r algorithm can be used, with

the β coefficient set to the threshold level of a “good” rating. Pearson-r correlations

suffer from the cold-start problem, where initial results are poor until enough ratings

have been accumulated with which to form significant correlations.

34

3.3.3 Other profiling techniques

Other profiling techniques include time-series profiling algorithms such as piece-wise

representation and curve fitting functions. Piece-wise representation [keogh99] splits

a time-series profile into slices and matches newly seen data to these previous slices.

Predictions for future activity are modelled on the most similar slice. Curve fitting,

such as mathematical polynomial methods, models the previously seen activity and

uses the model to predict future activity.

Knowledge-based profiling techniques also exist where knowledge is acquired about

user preferences and experience, often via interviews or questionnaires, and modelled

in a knowledge base. Contextual questions can then be asked about users, and

reasoned predictions inferred from known domain knowledge. Stereotyping [rich79]

is an example of a knowledge-based profiling technique.

3.4 Machine-learning techniques

Machine-learning (ML) techniques fall into two categories according to whether they

require a labelled set of examples or not. Supervised learning takes a set of labelled

example cases, called a training set, as the basis for categorization of new cases.

Unsupervised learning does not use a training set since classes are generated from

patterns within unlabelled examples.

Supervised learning is more accurate since it avoids the errors introduced by

automatic class generation. Labelling a training set is, however, a time-consuming

task often performed by hand. Due to the nature of relevance feedback, recommender

systems use supervised learning techniques.

Most machine-learning algorithms deal with the binary class case and generalize to

the multi-class case. Only a few algorithms are designed with the multi-class case in

mind.

3.4.1 Data mining

With a large dataset of user behaviour, data mining techniques can be used to discover

patterns of behaviour. One such technique is the A-Priori [agrawal94] algorithm,

which learns association rules from a large dataset of transaction data such as

supermarket shopping data. Each pass of the data counts the support for individual

35

items and determines which item sets are well supported. These sets are then used as a

seed to find new, well supported itemsets called candidate itemsets. This continues

until no new itemsets are found.

for (k=2;Lk-1≠0;k++) {
Ck = apriori-gen(Lk-1)
forall transactions t ∈ D {

Ct = subset(Ck,t)
forall candidates c ∈ Ct {

increment count for c
}

}
Lk = { c ∈ Ck | c count ≥ min }

}
answer = union of Lk

L well supported itemset = (item,count)*

Lk kth item in well supported itemset
C candidate itemset = (item,count)*

Ck kth item in candidate itemset
D database of user transactions
subset(c,t) hash-tree lookup to find candidates in set c for a transaction t
apriori-gen(l)algorithm to generate candidate sets from itemset l

Figure 3.5 : A-Priori algorithm

3.4.2 Information theoretic methods

Term frequency-inverse document frequency (TF-IDF) is the most popular

information theoretic method [van rijsbergen79] for recommender systems.

w(ti,dj) = tf(ti,dj) * log
N

df(ti)

w(ti,dj) tf-idf weight of term ti in document dj
ti ith term
dj jth document
tf(ti,dj) number of times term ti appears in document dj
N number of documents
df(ti) number of documents containing term ti

w(ti,dj) = tf(ti,dj) * log
N

df(ti)

w(ti,dj) tf-idf weight of term ti in document dj
ti ith term
dj jth document
tf(ti,dj) number of times term ti appears in document dj
N number of documents
df(ti) number of documents containing term ti

Figure 3.6 : Features used in TF-IDF algorithm

This term weighting biases the chosen classifier towards terms which have a high

frequency count within their documents, but only appear in a small number of

documents. These terms are likely to be good discriminators.

36

Once the term weights are calculated a vector similarity measure is applied to new

documents to determine classification. A typical vector similarity measure is the

cosine similarity measure, or dot product.

sim(da,db) similarity measure between document a and b
da,db,d document vectors
t term
w(t,d) normalized cosine weight
tfidf(t,d) tf-idf weight of term t in document d
Td number of terms in document d

sim (da,db) = Σ w(t,da) * w(t,db)

t ∈da

w(t,d) =

tfidf(t,d)

tfidf(ti,d)2Σ
i = 1

√

Td

sim(da,db) similarity measure between document a and b
da,db,d document vectors
t term
w(t,d) normalized cosine weight
tfidf(t,d) tf-idf weight of term t in document d
Td number of terms in document d

sim (da,db) = Σ w(t,da) * w(t,db)

t ∈da

w(t,d) =

tfidf(t,d)

tfidf(ti,d)2Σ
i = 1

√

Td

Figure 3.7 : Features used in Cosine similarity algorithm

The Rocchio algorithm [van rijsbergen79] is another information theoretic algorithm

used by recommender systems. Rocchio takes positive and negative examples and

computes the relevance of each term in the form of a class vector.

classi = (w1i, … wTi)

wki = Npositive

_______β
Σ wkj
j = 1

– Nnegative

_______γ
Σ wkj
j = 1

classi term vector for class i
wki weight for term k document i
T number of terms in document set
β, γ constants, typically β=4, γ=16
Npositive number of positive documents
Nnegative number of negative documents

Npositive Nnegative

classi = (w1i, … wTi)

wki = Npositive

_______β
Σ wkj
j = 1

– Nnegative

_______γ
Σ wkj
j = 1

classi term vector for class i
wki weight for term k document i
T number of terms in document set
β, γ constants, typically β=4, γ=16
Npositive number of positive documents
Nnegative number of negative documents

Npositive Nnegative

Figure 3.8 : Features used in Rocchio algorithm

These class vectors are then used with a cosine similarity measure to classify new

documents. Computing the term weights is time consuming, but once done

classification is fast. If the training set changes then the weights must be re-computed.

Latent semantic indexing (LSI) [deerwester90] is a term weighting technique that

must be combined with a similarity matching technique such as cosine-similarity.

37

Document vectors are compressed into a low dimensional space based on patterns of

word co-occurrence found after term-document matrix manipulation using

eigenvectors. Terms below a threshold are removed from the final document vectors,

thus reducing the dimensionality of the final document-vector space. It is meant to

bring out the “latent” semantic structure of the vocabulary used in a document corpus.

3.4.3 Instance-based methods

Techniques that hold the training set in memory are instance-based methods. The

most common instance-based method in the recommender systems literature is the k-

nearest neighbour (kNN) algorithm [mitchell97]. The kNN algorithm stores all

example vectors within a term-vector space and computes the distance between these

example vectors and an unclassified vector. The distance measure is normally the

cosine similarity measure, and an inverse distance weighting is often applied to reduce

the effect of distant neighbours. Inverse weighting is particularly useful where there is

a very close neighbour and many unrelated neighbours; since k neighbours are taken

the distant ones will tend to dominate unless an inverse distance weighting is applied.

The classification confidence in a class is the sum of the distances from the closest k

examples of that class.

w(da,db) = √

Σ
j = 1

(tja – tjb)2

w(da,db) kNN distance between document a and b
da,db document vectors
T number of terms in document set
tja weight of term j document a
f(d) k-NN function

T

d1 … dk are the k nearest documents to dnew

f(dnew) = Σ
i = 1

w(dnew,di)

k 1

w(da,db) = √

Σ
j = 1

(tja – tjb)2

w(da,db) kNN distance between document a and b
da,db document vectors
T number of terms in document set
tja weight of term j document a
f(d) k-NN function

T

d1 … dk are the k nearest documents to dnew

f(dnew) = Σ
i = 1

w(dnew,di)

k 1
Σ

i = 1

w(dnew,di)

k 1

Figure 3.9 : Features used in kNN algorithm

Since new instances can be added to the vector space without the need to re-compute

weights, the set-up time is minimal. Classification can be time-consuming, however,

since all example distances must be computed for every unclassified vector. The

memory requirement is proportional to the size of the training set.

38

Where instances are held in a more symbolic representation, case-based reasoning can

be used. Classification involves a search of known instances to find those cases that

have the greatest number of matching parts. Knowledge-based reasoning can be used

to combine cases to construct a response to a specific query and problem-solving

knowledge can be attached to specific cases. An example of case-based reasoning is

the CADET [sycara92] system.

3.4.4 Probabilistic methods

Methods that compute the probability of a vector belonging to a particular class, based

on the set of terms, are probabilistic methods. A large network of probabilities is

normally computed from the training set, showing the likelihood of a class given a set

of terms. Bayes theorem is the basis for many probabilistic techniques, with the naïve

Bayes classifier [mitchell97] being popular for recommender systems.

P(h|D) =
P(D|h) P(h)

P(D)

P(h|D) probability of h given D
h hypothesis
D data
P(h) probability of h

P(h|D) =
P(D|h) P(h)

P(D)

________P(D|h) P(h)

P(D)

P(h|D) probability of h given D
h hypothesis
D data
P(h) probability of h

Figure 3.10 : Bayes theorem

The naïve Bayes classifier uses Bayes theorem and an assumption of conditional

independence of terms given the classification label. This assumption is incorrect, but

the algorithm has been shown [domingos97] to give good results anyway. Zero term

probabilities, resulting from zero term frequencies, also present a problem since

probabilities are multiplied together. As such, zero probabilities are often replaced by

an estimate based on sample size [mitchell97].

39

Pc(dj) = argmax P(dj)
dj∈Dc

∏
i=1

P(ti|dj)

Pc(dj) probability of document dj belonging to class c
dj jth document
Dc document set for class c
P(dj) probability of document dj occurring
T number of terms in document set
P(ti|dj) probability of term ti occurring in document dj

T
Pc(dj) = argmax P(dj)

dj∈Dc
∏
i=1

P(ti|dj)

Pc(dj) probability of document dj belonging to class c
dj jth document
Dc document set for class c
P(dj) probability of document dj occurring
T number of terms in document set
P(ti|dj) probability of term ti occurring in document dj

T

Figure 3.11 : Features used in Naive Bayes classifier

Where the number of training examples is limited, but there are many unlabelled

examples, Expectation-Maximization (EM) [mitchell97] can be used. The EM

algorithm searches for the maximum likelihood for an hypothesis by seeking the

hypothesis that maximizes the expected value given a data set, consisting of labelled

and unlabelled data. The expected value is computed from the probable full dataset, so

hypotheses are found that maximize this value.

Q(h’|h) = E[ln P(Y|h’)|h, X]

Step 1 : Estimation
Calculate Q using the current hypothesis h and labelled data X
to estimate the probability distribution over Y
Q(h’|h) ÅE[ln P(Y|h’)|h, X]

Step 2 : Maximization
Replace hypothesis h by the hypothesis h’ that maximizes the Q function
h Åargmax Q(h’|h)

h’

h current hypothesis
h’ new hypothesis
E expected value
P(a,b) probability of a given b
Y full dataset
X labelled dataset

Figure 3.12 : EM algorithm

Probabilistic methods require a significant set-up time to build the probabilistic

network, and it must be re-formulated if the training set changes. Once built however,

the classification time is minimal.

40

3.4.5 Boosting and bagging

Boosting works by repeatedly running a weak learning algorithm on various

distributions of the training set, and then combining the classifiers produced by the

weak learner into a single composite classifier. The “weak” learning algorithm is

often actually a strong binary algorithm such as a naïve Bayes, kNN and decision

trees.

Classification error is evaluated per iteration, and used as the basis for the

specialization of that iteration’s classifier weights. The final classifier takes the

weighted votes of each iteration’s classifier, and returns the class with the highest

total vote. AdaBoostM1 is an example of a boosting algorithm designed to work with

multiple classes.

Initialise all values of D to 1/N
Do for t=1..T

call weak_learn(Dt)
calculate error et
calculate βt
calculate Dt+1

Dt class weight distribution on iteration t
Dt(i) weight distribution for class i on iteration t
N number of classes
T number of iterations
weak_learn(Dt) weak learner algorithm with distribution Dt
et weak_learn error on iteration t
βt error adjustment value on iteration t
Zt normalization constant for Dt
classifier final boosted classifier
C all classes

et = Σ Dt(i)

i = all incorrect
classes

et = Σ Dt(i)

i = all incorrect
classes

β t = et/(1-et)

Dt+1(i) =
Dt(i)

Zt

Dt(i)

Zt

____ βt if classification correct
1 if classification incorrectxclassifier = argmax Σ log

t = all iterations
with result class c

c ∈ C βt

1__classifier = argmax Σ log

t = all iterations
with result class c

c ∈ C βt

1__
βt

1__

Figure 3.13 : AdaBoostM1 algorithm

Bootstrap aggregating, or “bagging” [breiman94], trains copies of a classifier

algorithm on random bootstrap samples of the training set. When classifying a new

document, each classifier votes and the aggregated votes determine the final

classification. Bagging differs from boosting in the way that weight distributions are

modified.

41

3.4.6 Other machine-learning techniques

Other machine-learning techniques, not employed by current recommender systems,

include decision trees, neural networks, inductive logic learning and reinforcement

learning. These techniques can be found in interface agents and other related

technologies.

Decision trees build a tree-like decision structure based on the term weights in a

training set. New vectors navigate the tree from the top, and when the bottom is

reached the classification for that node used. Induction logic learns rules from a

training set, which classify new instances based on term weights.

Neural networks learn patterns within the term vectors via a network of nodes and

connections. Reinforcement learning adjusts weights based on the successful actions

and is used to learn patterns of behaviour.

The next chapter describes the Quickstep recommender system, which a multi-class

profile representation based on an ontology along with a boosted nearest neighbour

machine-learning technique and time-decay profiling algorithm. Experimental work

with Quickstep provides evidence to prove the first sub-hypothesis, which makes up

part of the central hypothesis of this thesis.

42

Chapter 4 The Quickstep recommender system

Chapter summary

The Quickstep problem domain is presented.

An overview of the Quickstep system is detailed, and the empirical evaluation

summarized.

Detailed descriptions of the approaches used by Quickstep are laid out.

Experimental set-up is described along with subject selection, experimental conditions

and metrics recorded.

The experimental data is detailed and significant trends identified.

The trends seen are discussed and hypotheses offered for the effects seen. Comparison

is made with other published data from similar systems.

Conclusions are drawn and evidence to support the first sub-hypothesis found.

Quickstep is an experimental recommender system. It addresses a real world problem

and assesses the effectiveness of using an ontology within the profiling process. The

overall effectiveness of this approach is measured and compared to other

recommender systems within the literature. Appendix B contains details of the

Quickstep implementation and a set of data flow diagrams detailing the system

design.

The Quickstep system is described and evaluated in the K-CAP publication

[middleton01b].

4.1 The Quickstep problem domain

As the trend to publish research papers on-line increases, researchers are increasingly

using the web as their primary source of papers. Typically, researchers need to know

about new papers in their field of interest, and older papers relating to their current

work. In addition, a researcher’s time is limited, so browsing competes with other

tasks in the work place. It is this problem the Quickstep recommender system

addresses.

43

Since researchers have their usual work to perform, unobtrusive monitoring methods

are preferred because a researcher will be reluctant to use the system if it significantly

interrupts normal workflow. Also, high recommendation accuracy is not critical as

long as the system is deemed useful to them.

Evaluation of real world knowledge acquisition systems [shadbolt99] is both tricky

and complex. A lot of evaluations are performed with user log data, simulating real

user activity, or with standard benchmark collections that provide a basis for

comparison with other systems. Although these evaluations are useful, especially for

technique comparison, it is important to back them up with real world studies so we

can see how the benchmark tests generalize to a real world setting.

This is why a real problem has been chosen upon which to evaluate the Quickstep

recommender system.

4.2 Overview of the Quickstep system

Quickstep unobtrusively monitors user browsing behaviour via a web proxy server,

logging each URL browsed during normal work activity. A machine-learning

algorithm classifies browsed URLs overnight, and saves each classified paper in a

central paper store. Explicit feedback and browsed topics form the basis of the interest

profile for each user. Figure 4.1 shows an overview diagram of the Quickstep system.

Each day a set of recommendations is computed, based on correlations between user

interest profiles and classified paper topics. Any feedback offered on these

recommendations is recorded when the user looks at them.

Users can provide new examples of topics and correct paper classifications where

appropriate. In this way the training set improves over time as more feedback is

elicited from the users.

44

World Wide
Web

Classified papers

Classifier

ProfileUsers

Recommender

Figure 4.1 : The Quickstep system

4.3 Empirical evaluation

The current literature lacks many clear results showing the extent to which

knowledge-based approaches assist real-world systems that have noisy data and

differing user opinions. The evaluation compares the use of an ontology against a

simple flat list, providing some empirical evidence as to the effectiveness of this

knowledge-based approach.

Two experiments are described in detail later in this chapter. The first has 14 subjects,

all using the Quickstep system for a period of 1.5 months. The second has 24 subjects,

again over a period of 1.5 months.

Both experiments divide the subjects into two groups.

The first group uses a flat, extensible list of paper topics. Any new examples, added

via explicit feedback, use this flat list to select from. The users are free to add to the

list as needed.

The second group uses a fixed-size topic ontology based on the dmoz open directory

project hierarchy [dmoz]. This ontology models the is-a relationships between

computer science topics. The research topics used by the system are taken from this

ontology. Interest profiles for the second group take into account the super classes of

browsed topics, thus taking a knowledge-based approach to profile construction.

45

Performance metrics are measured over the duration of the trial, and the effectiveness

of both groups compared.

4.4 The Quickstep system approach

Quickstep is a hybrid recommendation system, combining both content-based and

collaborative filtering techniques. Since both web pages and user interests are

dynamic in nature, catalogues, rule-bases and static user profiles would quickly

become out of date. The recommender system approach is well suited to the problem,

since it works with observed dynamic behaviour and will adjust to the changing

interests of its users on a daily basis.

Asking users to provide explicit feedback on browsed papers would be very intrusive

and interfere with the normal workflow of the researchers. Unobtrusive monitoring of

web browsing was thus chosen to acquire positive examples of user interest. Optional

explicit feedback is elicited when recommendations are made, both on topic interest

and paper classification accuracy. However, since users choose when to review their

recommendations, asking for explicit feedback at this point will not interrupt their

normal workflow as they have chosen to spend time with the system anyway. Since

many users will be using the system at once it is sensible to share user feedback and

maintain a common pool of example papers provided by the users.

An initial training set of example papers is provided for each topic in the ontology to

bootstrap the classifier. This training set is then allowed to grow over time as users

provide examples of their own or correct the bootstrap examples. This labelled

training set is well suited to supervised learning techniques, which require a prior set

of classes on which to base a classification. A term vector representation is used to

represent research papers, a common approach in machine-learning [mladenić99]. A

term vector is a list of word weights, derived in this case from the frequency that

words appear within the research paper main text.

A binary classification approach could have been used, with classes for “interesting”

and “not interesting”. This would have led to profiles consisting of two term vectors,

one representing the kind of thing the user is interested in, or positive examples, and

the other what the user is not interested in, or negative examples. Recommendations

would be those vectors that are most similar to the positive class vector and least

46

similar to the negative class vector. The binary case is the simplest class

representation, and consequently produces the best classification results when

compared with multi-class methods.

However, one problem with such a representation is that the explicit knowledge of

topics in which the user is interested is lost, making it hard to benefit from any prior

knowledge we may have about the academic domain. For Quickstep, a multi-class

representation was chosen, with each class representing a research paper topic and

class relationships held within an ontology. This allows profiles that consist of a

human understandable list of topics, since each class represents a real world research

topic. Quickstep’s multi-class classifier assigns each new paper a class based on

which class vector it is most similar to. Recommendations are selected from those

papers classified as belonging to a topic of interest to a user.

The profile itself is computed from the correlation between browsed papers and paper

topics. This correlation creates a topic interest history for each user, and a time-decay

function is applied to compute the current topics of interest. A more complex profiling

function, such as polynomial curve fitting or a machine-learning technique, would

have trouble discriminating between the multiple interests people have since real

world browsing behaviour data is both incomplete and noisy.

4.4.1 Research paper representation

Research papers are represented as term vectors, with term frequency / total number

of terms used for a terms weight. To reduce the dimensionality of the vectors, term

frequencies less than 2 are removed, standard Porter stemming [porter80] applied to

remove word suffixes and the SMART [smart74] stop list used to remove common

words such as “the”. These measures are commonly used in information systems;

[van rijsbergen79] and [harman86] provide a good discussion of these issues.

To give a rough idea of the size of the term vectors, 10-15,000 terms were used in the

trials with training set sizes of about 200 vectors. Because of the training set size,

further dimensionality reduction was not deemed necessary given the computing

power and memory available. Had more dimensionality reduction been needed, term

frequency-inverse document frequency (TF-IDF) weighting would have been useful,

47

with term weights below a threshold being removed, and latent semantic indexing

(LSI) could also have been used.

4.4.2 Research paper classification

Since users can add to the training set over time and different users will pick different

labels for specific examples, multiple labels must be supported. The classification

requirements are thus for a multi-class learning algorithm learning from a multi-

labelled training set. To learn from a training set, inductive learning is required. There

are quite a few inductive learning techniques to choose from, including information

theoretic ones (e.g. Rocchio classifier), neural networks (e.g. backpropagation),

instance-based methods (e.g. nearest neighbour), rule learners (e.g. RIPPER), decision

trees (e.g. C4.5) and probabilistic classifiers (e.g. naïve Bayes).

Multiple classifier techniques such as boosting exist as well, which can enhance the

performance of individual classifiers.

After reviewing and testing many of the above options, a nearest neighbour technique

was chosen. The nearest neighbour approach is well suited to the problem, since the

training set must grow over time and consists of multi-class examples. Nearest

neighbour algorithms also degrade well, with the next closest match being reported if

the correct one fails to be found. The IBk algorithm [aha91] was chosen as it

outperformed naïve Bayes and a J48 decision tree in informal tests. The boosting

technique AdaBoostM1 [freund96] is also used, as it works well for multi-class

problems if the boosted classifier is strong enough. In informal tests the boosting

algorithm always improved the base classifier’s performance.

Being a nearest neighbour algorithm, IBk stores instances of all example paper

vectors in a vector space. To classify a new paper the vector distance from each

example instance to the new paper vector is calculated, and the closest neighbours

returned as the most likely classes. Inverse distance weighting is used to decrease the

likelihood of choosing distant neighbours.

Example papers for non-leaf topics within the class hierarchy, which represent the

more abstract topics, were selected from survey papers and review type papers of that

topic. Papers not specific enough to be classified as a leaf node will thus generally end

48

up being classified as belonging to a more abstract topic. Survey papers were chosen

as examples since they normally encompass a variety of sub-topics, and thus capture

the range of concepts covered by the abstract topic.

AdaBoostM1 extends AdaBoost to handle multi-class cases since AdaBoost itself is a

binary classifier. AdaBoostM1 repeatedly runs a weak learning algorithm, in this case

the IBk classifier, for a number of iterations over various parts of the training set. The

classifiers produced, each specialized for a particular class, are combined to form a

single composite classifier at the end when all iterations have been executed.

4.4.3 Profiling algorithm

The profiling algorithm performs correlation between the paper topic classifications

and user browsing logs. Whenever a research paper is browsed that has a classified

topic, it accumulates an interest score for that topic. Explicit feedback on

recommendations also accumulates interest values for topics. The current interest of a

topic is computed using the inverse time weighting algorithm below, applied to the

user feedback instances.

∑
no of instances

n = 1

Interest value(n) / days old(n)Topic interest =

Event
interest values

Paper browsed = 1
Recommendation followed = 2
Topic rated interesting = 10
Topic rated not interesting = -10

Interest value for
super-class per instance = 50% of sub-class

∑
no of instances

n = 1

Interest value(n) / days old(n)Topic interest =

Event
interest values

Paper browsed = 1
Recommendation followed = 2
Topic rated interesting = 10
Topic rated not interesting = -10

Interest value for
super-class per instance = 50% of sub-class

Figure 4.2 : Quickstep profiling algorithm

The profile for each user consists of a list of topics and the current interest values

computed for them. The interest value weighting was chosen to provide sufficient

weight for an explicit feedback instance to dominate the profile for about a week, but

after a week to allow browsed URLs again to become dominant. In this way the

profile will adapt to changing user interests as time progresses.

49

Profile = (<user>,<topic>,<topic interest value>)*

e.g. ((someone,hypertext,-2.4)
(someone,agents,6.5)
(someone,machine learning,1.33))

Figure 4.3 : Quickstep profile representation

If the user is using the ontology based set of topics, all super classes gain a share

when a topic receives some interest. The immediate super class receives 50% of the

main topic’s value. The next super class receives 25% and so on until the most

general topic in the is-a hierarchy is reached. In this way, general topics are included

in the profile rather than just the most specific ones, producing a more rounded

profile. A 50% value was chosen to reflect the increased uncertainty that occurs the

further from the directly observed topic you go. This is how domain knowledge is

used to improve the profiling process, allowing inference of unseen topics that are

related to the specific topics browsed.

4.4.4 Recommendation algorithm

Recommendations are formulated from a correlation between the user’s current topics

of interest and the papers classified as belonging to those topics. A paper is only

recommended if it does not appear in the user’s browsed URL log, ensuring that all

recommendations have not been seen before. For each user, the top three interesting

topics are selected with 10 recommendations made in total (making a 4/3/3 split of

recommendations). The top three interesting topics can come from the ontologies non-

leaf nodes as well as leaf nodes. Papers are ranked in order of the recommendation

confidence before being presented to the user.

Recommendation confidence =classification confidence *
topic interest value

Figure 4.4 : Quickstep recommendation algorithm

The classification confidence is computed from the AdaBoostM1 algorithm’s class

probability value for that paper (somewhere between 0 and 1). Since non-leaf abstract

topics are classified against a training set of survey and review papers they will be

more general in nature than a leaf node topic paper. The flat-list group does not have a

hierarchy with non-leaf nodes, so the option of recommending an abstract non-leaf

50

node never arises. The existence of non-leaf nodes is the crucial difference between

the flat list group and ontology group.

4.4.5 Research paper topic ontology

The research paper topic ontology is based on the dmoz [dmoz] taxonomy of

computer science topics, and was chosen since it is freely available, has had a

significant amount of development and is regularly maintenance. It is an is-a

hierarchy of paper topics, up to 4 levels deep (e.g. an “interface agents” paper is-a

“agents” paper). Pre-trial interviews generated some additional topics that were added

to the dmoz taxonomy, and a review by two domain experts validated the ontology for

correctness before use in the trials. Figure 4.5 shows a section of the research paper

topic ontology.

Artificial Intelligence

Hypermedia

E-Commerce
Interface Agents
Mobile Agents
Multi-Agent-Systems
Recommender Systems Negotiation [multi-agent-systems]

Learning [multi-agent-systems]

Agents
Belief Networks
Fuzzy
Game Theory
Genetic Algorithms
Genetic Programming
Knowledge Representation
Information Filtering
Information Retrieval
Machine Learning
Natural Language
Neural Networks
Philosophy [AI]
Robotics [AI]
Speech [AI]
Vision [AI]

Text Classification

Ontologies

Adaptive Hypermedia
Hypertext Design
Industrial Hypermedia
Literature [hypermedia]
Open Hypermedia
Spatial Hypertext
Taxonomic Hypertext
Visualization [hypertext]
Web [hypermedia]

Content-Based Navigation
Architecture [open hypermedia]

Auctions [e-commerce]

Figure 4.5 : Section of the Quickstep research paper ontology

A perfect ontology would tailor the granularity of topic size exactly to each users; if

taken to an extreme this would require some sort of personal ontology per user and a

mapping to shared example papers. To create such an ontology a full survey would be

needed to elicit the types of research each user was interested in, and obtain some

example papers for it. There is thus a balance to be made between the initial

investment in knowledge engineering effort, which is multiplied by the number of

51

users, and what the system can learn by itself given enough time. There are also

practical considerations, such as only maintaining a single ontology and the

unwillingness of users to undergo a knowledge engineering exercise.

Ontologies themselves are discussed and defined in chapter 5, where the capabilities

of an ontology is explored more fully.

4.4.6 Feedback and the quickstep interface

Recommendations are presented to the user via a browser web page. Figure 4.6 shows

the web-based interface. The web page applet loads the current recommendation set

and records any feedback the user provides. Research papers can be jumped to by

clicking on them, and a new browser window will open and display the paper URL. If

the user likes/dislikes the paper topic, the interest feedback combo-box allows

“interested” or “not interested” to replace the default “no comment”.

Figure 4.6 : Quickstep’s web-based interface

The topic of the paper can be changed by clicking on the topic and selecting a new

one from the popup list. Figure 4.7 shows this popup menu in use. The ontology

group has a hierarchical popup menu, the flat list group has a single level popup

menu.

52

Figure 4.7 : Changing paper topics in Quickstep

New examples can be added via the interface, with users providing a paper URL and a

topic label. These are added to the group’s training set, allowing users to teach the

system new topics or improve the classification of existing ones.

All feedback is stored in log files, ready for the profile builder which runs each day.

The feedback logs are also used as the primary metric for evaluation. Interest

feedback, topic corrections and jumps to recommended papers are all recorded and

time stamped.

4.4.7 Design choices made in the Quickstep system

Since an increasing number of research papers are published in postscript and PDF

format, it was decided to only deal with these formats (along with gzipped, zipped and

Z compressed versions). The reason was to filter noisy HTML pages, of which only a

fraction are research papers, and thus make the classification task easier. The

drawback is research areas that publish primarily in HTML will be ignored.

The Weka machine-learning libraries [witten00] are used to implement the

AdaBoostM1 classification algorithm and the IBk classifier.

Through informal empirical evaluation, 100 boosting iterations with 5% of the

training set used per iteration proved best and was chosen for the trial. A k value of 5

was selected for the boosted IBk classifier.

53

The users were asked, in a pre-trial interview, to provide a few bookmarks to

publication pages of important authors in their research areas of interest. Some of

these bookmarks were pointed at digital libraries, a very useful source of freely

available training examples. The bookmarks provided the Quickstep web crawler

algorithm with somewhere to look initially. An initial set of papers was thus loaded

into the system, making a pool of classified papers that could be recommended.

In addition to bookmarks, a manual bootstrap training set was created for each of the

topics mentioned in the pre-trial interview. The use of a bootstrap training set reduces

the burden on users to train the system before it becomes useful. Both the ontology

group and the flat list group started the trials with an identical bootstrap training set,

which was then allowed to diverge as the trial progressed.

To keep the trial simple (both to develop and analyse), feedback on the quality of

individual papers was not elicited, only feedback on the interest of the paper topic to

the user.

4.5 Experimental evaluation of Quickstep

Two experiments have been performed using the Quickstep system. Both compare the

use of a flat, unstructured list of research paper topics to the use of a hierarchical is-a

taxonomy. The profiling effectiveness is measured in addition to the overall

usefulness of the system. In this way the benefit of using an ontological approach to

profiling is evaluated. A binary comparison type experimental design was chosen for

simplicity, and to reduce the number of potential causes for the effects seen.

4.5.1 Details of the two trials

Two trials were conducted to empirically assess both the overall effectiveness of the

Quickstep recommender system and to quantify the effect of using an ontology in the

profiling process.

The first trial used 14 subjects, consisting of researchers from Southampton

University’s Intelligence, Agents, Multimedia (IAM) research laboratory. A mixture

of 2nd year postgraduates up to professors was taken, all using the Quickstep system

for the duration of 1.5 months.

54

The second trial used 24 subjects, 14 from the first trial and 10 more 1st year

postgraduates, and lasted for 1.5 months. Some minor interface improvements were

made to make the feedback options less confusing.

A pre-trial interview obtained details from subjects such as area of interest and

expected frequency of browser use. These details were used when deciding to which

experimental groups subjects were to be allocated.

The purpose of both trials was to compare a group of users using an ontological

approach to user profiling with a group of users using a flat, unstructured list. Subject

selection for the groups tried to balance the groups as much as possible, evening out

topics of interest, browser use and research experience in that order of importance.

Both groups had the same number of subjects in them, 7 each for the first trial, 12

each for the second trial.

In the first trial, a bootstrap of 103 example papers covering 17 topics was used.

In the second trial, a bootstrap of 135 example papers covering 23 topics was used.

The bootstrap training set for the second trial was expanded to include examples from

the final training set of the first trial. The classified papers from the first trial were

also kept, allowing a bigger initial collection of papers from which to recommend in

the second trial. About five new classes were added to the ontology to cover those

suggested by the flat list group in the first trial.

Both groups had their own separate training set of examples, which diverged from the

bootstrap training set as the trial progressed. The classifier was run twice for each

research paper, classifying once with the flat list group’s training set and once with

the ontology group’s training set. The classifier algorithm was identical for both

groups; only the training set changed.

The system interface used by both groups was identical, except for the popup menu

for choosing paper topics. The ontology group had a hierarchical menu which used

the ontology; the flat list group had a single level menu.

The system recorded each time the user declared an interest in a topic by selecting it

“interesting” or “not interesting”, jumped to a recommended paper or corrected the

55

topic of a recommended paper. These feedback events were date stamped and

recorded in a log file for later analysis, along with a log of all recommendations made.

Feedback recording was performed automatically by the system, whenever the

subjects looked at their recommendations. The subjects were not aware of this

recording process other than being told about it at the start of the trial.

A post-trial questionnaire was filled out after each trial, asking qualitative questions

about the Quickstep system.

4.5.2 Experimental data

Since feedback is only collected when subjects check their recommendations, this

data occurs at irregular times over the duration of the trial. Cumulative frequency of

feedback events for each group is computed over the period of the trial, allowing

trends to be seen as they develop during the trial. The total number of jumps and

topics will differ between the two groups, hence the figures presented are normalized

by dividing by the number of topics or recommendations up to that date. This avoids

bias towards the group that provided feedback most frequently.

Figure 4.8 shows the topic interest feedback results. Topic interest feedback is where

the user comments on a recommended topic, declaring it “interesting” or “not

interesting”. If no feedback is offered, the result is “no comment”.

Topic interest feedback is an indication of the accuracy of the current profile. When a

recommended topic is correct for a period of time, the user will tend to become

content with it and stop rating it as “interesting”. On the other hand, an uninteresting

topic is likely to always attract a “not interesting” rating. The absence of a “not

interesting” rating is thus an indication of the acceptance of that topic, since “lazy”

users will not go to the effort of looking at the recommendation page at all. Good

topics are thus defined as either “no comment” or “interesting” topics. The cumulative

frequency figures are presented as a ratio of the number of good topics to the total

number of topics recommended. The not interesting ratio, bad topics, can be

computed from these figures by subtracting the good topic value from 1.

The ontology groups have a 7% and 15% higher topic acceptance. In addition to this

trend, the first trial ratios are about 10% lower than the second trial ratios.

56

Figure 4.9 shows the jump feedback results. Jump feedback is where the user jumps to

a recommended paper by opening it via the web browser. Jumps are correlated with

topic interest feedback, so a good jump is a jump to a paper on a good topic. Jump

feedback is an indication of the quality of the recommendations being made as well as

the accuracy of the profile. The cumulative frequency figures are presented as a ratio

of the number of good jumps to total number of recommendations made.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50
Number of days into trial

Go
od

 to
pic

s
/ t

ot
al

to
pic

s

Trial 2, Ontology

Trial 2, Flat list

Trial 1, Ontology

Trial 1, Flat list

Figure 4.8 : Ratio of good topics / total topics

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30 35 40 45 50
Number of days into trial

Go
od

 ju
m

ps
 /

re
co

m
m

en
da

tio
ns

Trial 2, Ontology

Trial 2, Flat list

Trial 1, Ontology

Trial 1, Flat list

Figure 4.9 : Ratio of good jumps / total recommendations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35 40 45 50
Number of days into trial

Co
rre

ct
ion

s
/ r

ec
om

m
en

da
tio

ns

Trial 2, Ontology

Trial 2, Flat list

Trial 1, Ontology

Trial 1, Flat list

Figure 4.10 : Ratio of topic corrections / total recommendations

57

There is a small 1% improvement in good jumps by the ontology group. Both trials

show between 8-10% of recommendations leading to good jumps.

Figure 4.10 shows the topic correction results. Topic corrections are where the user

corrects the topic of a recommended paper by providing a new one. A topic correction

will add to or modify a group’s training set so that the classification for that group

will improve. The number of corrections made is an indication of classifier accuracy.

The cumulative frequency figures are presented as a ratio of the number of corrections

to total number of recommended papers seen.

Although the flat list group has more corrections, the difference is only by about 1%.

A clearer trend is for the flat list group corrections to peak around 10-20 days into the

trial, and for both groups to improve as time goes on.

At the end of the first trial, the ontology group training set had 157 examples, and the

flat list group had 162 examples. The paper repository had about 3000 classified

research papers.

At the end of the second trial, the ontology group training set had 209 examples, and

the flat list group had 212 examples. The paper repository had about 3500 classified

research papers.

A cross-validation test was run on each group’s final training set, to assess the

precision and recall of the classifier using those training sets. The results are shown in

table 4.1. The precision value is a measure of how many correctly classified

documents there were as a proportion of the number classified. The recall value is a

measure of how many documents were classified as a proportion of the total number

of documents. Since the classifier does not use the ontological structure, the small

variability seen in the precision and recall figures are due to the individual

discriminating power of the example document terms found in each training set.

58

Group (trial) Precision Recall Classes

Trial 1, Ontology 0.484 0.903 27

Trial 1, Flat list 0.52 1.0 25

Trial 2, Ontology 0.457 0.888 32

Trial 2, Flat list 0.456 0.972 32

Table 4.1 : Quickstep classifier recall and precision

4.5.3 Post-trial questionnaires

Each subject was given a post-trial questionnaire to fill out. The questionnaire asked

users to select topics that were of interest during the trial from a list of all topics

known to the system. Some 5-point scale questions were asked, to elicit qualitative

information about the usefulness of the system. A free form comment section was also

included so improvements could be suggested to the system.

The second trial’s questionnaire replies are presented in table 4.2; some subjects felt

unable to answer the questions so left some of them blank. The 5-point scale ranged

from the lowest 1 to highest 5 value of answer, with textual comments associated with

each value to guide the users.

Question 1 2 3 4 5 Mean

How much paper searching/reading did you do during

the period of the trial?
 11 8 2 2 2.78

How much did you use quickstep during the period of

the trial?
 10 7 6 2.83

Overall, were you interested in the topics

recommended by quickstep?
 4 11 7 3.14

Overall, how useful were the papers recommended by

the quickstep system?
 7 11 4 2.86

How accurate was quickstep at classifying papers? 1 13 8 3.32

Table 4.2 : Post-trial answers for Quickstep’s second trial

The results indicate that the system recommended papers on topics that were fairly

interesting but with only average usefulness. This is to be expected since the

recommendation algorithm does not consider paper quality.

59

4.5.4 Discussion of trends seen in the experimental data

From the experimental data of both trials, several suggestive trends are apparent. The

initial ratios of good topics were lower than the final ratios, reflecting the time it takes

for enough log information to be accumulated to let the profiles settle down. The

ontology users were 7-15% happier overall with the topics suggested to them.

A hypothesis for the ontology groups’ apparently superior performance is that the is-a

hierarchy produces a rounder, more complete profile by including general super class

topics when a user browses a specific topic. This in turn helps the profiler to discover

a broad range of interests, rather than just latching on to one correct topic.

The first trial showed fewer good topics than the second trial with a 10% difference

seen by both groups. This is probably because of interface improvements made for the

second trial, where the topic feedback interface was made less confusing. Subjects

were sometimes rating interesting topics as not interesting if the paper quality was

poor. As there are more poor quality papers than good quality ones, this introduced a

bias to not interesting topic feedback resulting in a lower overall ratio.

About 10% of recommendations led to good jumps. Since ten recommendations were

given to the users at a time, on average one good jump was made from each set of

recommendations received. As with the topic feedback, the ontology group again was

marginally superior but only by a 1% margin. This smaller difference is probably due

to people having time to follow only one or two recommendations. Thus, although the

ontology group has more good topics, only the top topic of the three recommended

will really be looked at; the result is a smaller difference between the good jumps

made and the good topics seen.

The flat list group has a poor correction / recommendation ratio 10-20 days into the

trial. This is probably due to new topics being added to the system. Most new topics

were added after the users became familiar with the system, and know which topics

they feel are missing. The familiarization process appeared to take about ten days. The

classification accuracy of these new topics is poor until enough examples have been

entered, typically after another ten days.

60

The ontology group has about 1% fewer corrections for both trials. This small

difference may indicate the utility of imposing a uniform conceptual model of paper

topics on the subjects by using the common topic hierarchy. Classifying papers is a

subjective process, and will surely be helped if people have similar ideas as to where

topics fit in a groups overall classification scheme.

These preliminary results need to be extended to enable the application of more

rigorous statistical analysis. Nevertheless, the trend in the data appears to be

encouraging as to the utility of ontologies in recommender systems.

4.6 Comparison with other work in the literature

When compared with other published systems, the classification accuracy figures are

similar, if on the low side, primarily because of the use of multi-class classification.

Nearest neighbour systems such as NewsDude [billsus98] and Personal Webwatcher

[mladenić96] report 60-90% classification accuracy based on binary classification.

The higher figures tend to be seen with benchmark document collections, not real-

world data. NewsWeeder [lang95] reports 40-60% classification accuracy using real

user browsing data from two users over a period of time, so this would be the best

comparison. If the number of classes classified is taken into consideration, Quickstep

compares well. Multi-class classification is not normally applied to recommender

systems, making direct comparison of other multi-class systems difficult.

This really highlights a problem in the recommender system literature today. There

are virtually no experiments being performed with real users on realistic problems. As

can be seen from the literature review in appendix A, most systems evaluate their

performance by measuring classification accuracy using benchmark data or using one

of the standard benchmark usage logs such as the movie lens dataset. While these

metrics are good for comparison, they do not reveal how such systems work in

practice, under the rigorous conditions of a real user trial. Running user trials is a long

and expensive business, but such experiments are essential if the correlation between

good benchmark performance and good real world performance is to be proved.

A comparison of the usefulness of our Quickstep to that of other systems was

attempted, but the lack of published experimental data of this kind meant that only

classification accuracy could be usefully compared. While the results found for

61

usefulness were not statistically significant, this was because of the attenuation that

occurs when noisy, real world data is used for evaluation. While the exact size of the

trends seen is not clear, the fact that they occurred in both trials is a significant

indication of the benefits of an ontological approach to user profiling.

Chapter 2 and appendix A lists many recommender systems in the literature today.

The systems most related to Quickstep are Entrée [burke00], which uses a knowledge

base and case-based reasoning to recommend restaurant data, and RAAP [delgado98]

that uses categories to represent user profiles with unshared individual training sets

for each user. None of the reviewed systems use ontological categories to represent

user profiles.

4.7 Conclusions from the Quickstep trials

Most recommender systems use a simple binary class approach, using a user profile of

what is interesting or not interesting to the user. The Quickstep recommender system

uses a multi-class approach, allowing a profile to be represented in terms of domain

concepts, i.e. research paper topics, to be built. Multi-class classification is less

accurate than binary classification, but allows class specific feedback and the use of

domain knowledge, via an is-a hierarchy, to enhance the profiling process.

Two experiments were performed in a real work setting, using 14 and 24 subjects over

a period of 1.5 months. The results suggest how using an ontology in the profiling

process results in superior performance over using a flat list of topics. The ontology

users tended to have “rounded” profiles, including more general topics of interest that

were not directly suggested. This increased the accuracy of the profiles, and hence

usefulness of the recommendations.

An informal result was seen in the nearest neighbour classifier’s robustness. Even

when classification was incorrect, 60% of the time in fact, the class chosen was

normally in the correct area. For example, for an “interface agent” paper the

classification would more likely be “agent” than “human computer interaction”. The

users liked this as it showed the system was at least making a reasonable attempt at

classification, even if it was getting things wrong.

62

Although hard to compare, owing to the lack of a standard for reporting results, the

overall recommender performance does appear to compare reasonably with other

recommender systems in the literature.

This chapter thus provides the evidence to support the first sub-hypothesis, that the

loss of information which occurs while representing a profile using an ontology is

compensated for by the information gained by any inferences which are now possible.

The next chapter examines the evidence to supports the second sub-hypothesis.

63

Chapter 5 Cold-start recommendation and ontology interest
acquisition

Chapter summary

The cold-start and interest acquisition problems are defined.

Quickstep is introduced in the context of this integration.

OntoCoPI is introduced, a communities of practice identifier.

The integration of Quickstep and OntoCoPI is detailed.

An evaluation of the effectiveness of bootstrapping Quickstep is performed.

Conclusions are drawn and evidence to support the second sub-hypothesis found.

Recommender systems learn about user preferences over time, automatically finding

things of similar interest. This reduces the burden of creating explicit queries.

Recommender systems do, however, suffer from cold-start problems where no

information is available early on upon which to base recommendations.

Semantic knowledge structures, such as ontologies, can provide valuable domain

knowledge and user information. However, acquiring such knowledge and keeping it

up to date is not a trivial task and user interests are particularly difficult to acquire and

maintain.

This chapter investigates the synergy between a web-based research paper

recommender system and an ontology containing information automatically extracted

from departmental databases available on the web. The ontology is used to address the

recommender system’s cold-start problem. The recommender system addresses the

ontology’s interest-acquisition problem. An empirical evaluation of this approach is

conducted and the performance of the integrated systems measured.

Evidence of enhanced cold-start performance in this chapter provided the evidence

required to prove the second sub-hypothesis of this thesis.

5.1 Synergy between ontologies and recommender systems

Recommender systems [resnick97] learn about user preferences over time and

automatically find things of similar interest, thus reducing the burden of creating

64

explicit queries. They track users dynamically as their interests change. However,

such systems require an initial learning phase where behaviour information is built up

to form a user profile. During this initial learning phase performance is often poor due

to the lack of user information; this is known as the cold-start problem [maltz95].

There has been increasing interest in developing and using tools for creating

annotated content and making it available over the semantic web. Ontologies are one

such tool, used to maintain and provide access to specific knowledge repositories.

Such sources could complement the behavioural information held within

recommender systems, by providing some initial knowledge about users and their

domains of interest. It should thus be possible to bootstrap the initial learning phase of

a recommender system with such knowledge, easing the cold-start problem.

In return for any bootstrap information the recommender system could provide details

of dynamic user interests to the ontology. This would reduce the effort involved in

acquiring and maintaining knowledge of people’s research interests. This chapter

investigates the integration of Quickstep, a web-based recommender system, an

ontology for the academic domain and OntoCoPI, a community of practice identifier

that can pick out similar users.

5.1.1 The cold-start problem

One difficult problem commonly faced by recommender systems is the cold-start

problem [maltz95], where recommendations are required for new items or users for

whom little or no information has yet been acquired. Poor performance resulting from

a cold-start can deter user uptake of a recommender system. This effect is thus self-

destructive, since the recommender never achieves good performance because users

never use it for long enough. Two types of cold-start problem are examined in this

chapter.

The new-system cold-start problem is where there are no initial ratings by users, and

hence no profiles of users. In this situation recommender systems have no basis on

which to recommend, and hence perform very poorly.

65

The new-user cold-start problem is where the system has been running for a while

and a set of user profiles and ratings exist, but no information is available about a new

user. Recommender systems perform poorly in this situation too.

Collaborative recommender systems fail to help in cold-start situations, as they cannot

discover similar user behaviour because there is not enough previously logged

behaviour data upon which to base any correlations. Content-based and hybrid

recommender systems perform a little better since they need just a few examples of

user interest in order to find similar items.

No recommender system can cope alone with a totally cold-start, however, since even

content-based recommenders require a small number of examples on which to base

recommendations. The work in this chapter links together a recommender system and

an ontology to address this problem. The ontology can provide a variety of

information on users and their publications. Publications provide important

information about what interests a user has had in the past, and so provide a basis

upon which to create initial profiles that can address the new-system cold-start

problem. Personnel records allow similar users to be identified. This will address the

new-user cold-start problem by providing a set of similar users on which to base a

new-user profile.

5.1.2 Ontologies

An ontology is a conceptualisation of a domain into a human-understandable, but

machine-readable format consisting of entities, attributes, relationships and axioms

[guarino95]. Ontologies can provide a rich conceptualisation of the working domain

of an organisation, representing the main concepts and relationships of the work

activities. These relationships could represent isolated information such as an

employee’s home phone number, or they could represent an activity such as authoring

a document, or attending a conference.

Throughout this thesis the term ontology is used to refer to the classification structure

and instances within the knowledge base.

The ontology [akt-ontology] used in this work is designed to represent the academic

domain, and was developed by the Southampton’s Advanced Knowledge

66

Technologies (AKT) team. It models people, projects, papers, events and research

interests. The ontology itself is implemented in Protégé 2000 [eriksson99], a graphical

tool for developing knowledge-based systems. It is populated with information

extracted automatically from a departmental personnel database and publication

database. The ontology consists of around 80 classes, 40 slots, over 13000 instances

and is focused on people, projects and publications.

5.1.3 The interest-acquisition problem

People’s areas of expertise and interests are an important type of knowledge for many

applications, for example expert finders [dunlop00]. Semantic web technology can be

a good source of such information, but usually requires substantial maintenance to

keep the web pages up-to-date. Since web page maintenance is time consuming, the

majority of web pages receive little maintenance, holding information that does not

age quickly. Since interests and areas of expertise will often change, they are not often

held within web pages. It is thus particularly difficult for an ontology to acquire such

information; this is the interest-acquisition problem.

Many existing systems force users to perform self-assessment to gather such

information, but this has numerous disadvantages [becerra-fernandez00]. Lotus have

developed a system that monitors user interaction with a document to capture interests

and expertise [lotus01]. Their system does not, however, consider the online

documents that users browse.

This chapter investigates linking an ontology with a recommender system to help

overcome the interest acquisition problem. The recommender system will regularly

provide the ontology with interest profiles for users, obtained by monitoring user web

browsing and analysing feedback on recommended research papers.

5.2 OntoCoPI

The Ontology-based Communities of Practice Identifier (OntoCoPI) [alani02] is an

experimental system developed by the AKT project, which uses the Southampton

populated AKT ontology to help identify communities of practice (CoP). The

community of practice of a person is taken here to be the closest group of people,

based on specific features they have in common with that given person. A community

67

of practice is thus an informal group of people who share some common interest in a

particular practice [brown00] [wenger00]. Workplace communities of practice

improve organisational performance by maintaining implicit knowledge, helping the

spread of new ideas and solutions, acting as a focus for innovation and driving

organisational strategy.

Identifying communities of practice is an essential first step to understanding the

knowledge resources of an organization [wenger99]. Organisations can bring the right

people together to help the identified communities of practice to flourish and expand,

for example by providing them with appropriate infrastructure and giving them

support and recognition. However, community of practice identification is currently a

resource-heavy process largely based on interviews, mainly because of the informal

nature of such community structures that are normally hidden within and across

organisations.

OntoCoPI is a tool that uses ontology-based network analysis to support the task of

community of practice identification. A breadth-first spreading activation algorithm is

applied by OntoCoPI to crawl the ontology network of instances and relationships to

extract patterns of certain relations between entities relating to a community of

practice. The crawl can be limited to a given set of ontology relationships. These

relationships can be traced to find specific information, such as who attended the

same events, who co-authored papers and who are members of the same project or

organisation. Communities of practice are based on informal sets of relationships

while ontologies are normally made up of formal relationships. The hypothesis

underlying OntoCoPI is that some informal relationships can be inferred from the

presence of formal ones. For instance, if A and B have no formal relationships, but

they have both authored papers with C, then that could indicate a shared interest.

One of the advantages of using an ontology to identify communities of practice, rather

than other traditional information networks [albert02], is that relationships can be

selected according to their semantics and can have different weights to reflect relative

importance. For example the relations of document authorship and project

membership can be selected if it is required to identify communities of practice based

on publications and project work. OntoCoPI allows manual selection of relationships

or automatic selection based on the frequency of relationship use within the

knowledge base. Selecting the right relationships and weights is an experimental

68

process that is dependent on the ontology structure, the type and amount of

information in the ontology, and the type of community of practice required.

When working with a new community of practice, some experiments will be needed

to see which relationships are relevant to the desired community of practice, and how

to set relative weights. In the experiments described in this chapter, certain

relationships were selected manually and weighted based on our preferences. The

most highly weighted relationships were supervision, project membership and

authorship relations. The AKT ontology research topic labels were manually altered

to match those labels used by the Quickstep system to avoid ontological label

mapping issues. Further trials would be needed to determine the most effective

relationship weightings.

5.3 Integrating Quickstep, OntoCoPI and the AKT ontology

This chapter integrates the ontology, OntoCoPI and Quickstep recommender system

to provide a solution to both the cold-start problem and interest-acquisition problem.

Figure 5.1 shows the experimental systems after integration.

AKT
Ontology

User interest
profiles

User
publications

User and domain
knowledge

Communities
of practice

Quickstep OntoCoPI

AKT
Ontology

User interest
profiles

User
publications

User and domain
knowledge

Communities
of practice

Quickstep OntoCoPI

Figure 5.1 : Ontology and recommender system integration

Upon start-up, the ontology provides the recommender system with an initial set of

publications for each of its registered users. Each user’s known publications are then

correlated with the recommender systems classified paper database, and a set of

historical interests compiled for that user. These historical interests form the basis of

an initial profile, overcoming the new-system cold-start problem. Figure 5.2 details

the initial profile algorithm. As per the Quickstep profiling algorithm, fractional

interest in topic super-classes are inferred when a specific topic is added.

69

∑
publications belonging

to class t

n=1

1 / publication age(n)topic interest(t) =

t = <research paper topic>

new-system initial profile = (t, topic interest(t))*

∑
publications belonging

to class t

n=1

1 / publication age(n)topic interest(t) =

t = <research paper topic>

new-system initial profile = (t, topic interest(t))*

Figure 5.2 : New-system initial profile algorithm

When a new user is added to the recommender system after an initial period of use,

the ontology provides the historical publication list of the new user and the OntoCoPI

system provides a ranked list of similar users. The initial profile of the new user is

formed from a correlation between historical publications and any similar user

profiles. This algorithm is detailed in figure 5.3, and addresses the new-user cold-start

problem.

t = research paper topic
u = user
γ = weighting constant >= 0
Nsimilar = number of similar users
Npubs t = number of publications belonging to class t
CoP confidence = Communities of practice confidence

topic interest(t) =

∑
Npubs t

n = 1

1 / publication age(n)+

∑
Nsimilar

u = 1

profile interest(u,t)_____
Nsimilar

γ

profile interest(u,t) = interest of user u in topic t * CoP confidence
new-user initial profile = (t, topic interest(t))*

Figure 5.3 : New-user initial profile algorithm

While only publications were directly mapped, the bootstrapping functions could be

expanded to include other ontological concepts such as research areas. This would

give access to specific user communities of practice, rather than ones dynamically

generated by network analysis, and would probably have a higher confidence value.

The task of populating and maintaining the ontology of user research interests is left

to the recommender system. The recommender system compiles user profiles on a

daily basis, and these profiles are added into the ontology when ready. Figure 5.4

details the structure of these profiles. In this way up-to-date interests are maintained,

70

providing a solution to the interest acquisition problem. The interest data is used

alongside the more static information within the ontology to improve the accuracy of

the OntoCoPI system.

 user profile = (topic, interest)*
topic = <research topic>
interest = <interest value>

Figure 5.4 : Daily profiles sent to the AKT ontology

The issue of mapping the Quickstep’s research topic classes to those in the AKT

ontology was avoided by changing the AKT ontology class names to match the

Quickstep ontology class names. A more scalable solution would need to employ a set

of mappings between ontological concepts. If more than one external ontology was to

be integrated then it would make sense to build a specific module within the

Quickstep recommender system to manage these mappings, and use a soft-coded

description of each mappings, in a language like XML, for easy maintenance.

5.4 Example of integrated system operation

When the Quickstep recommender system is first initialised, it retrieves a list of

people and their publication URLs from the ontology. Quickstep analyses these

publications and classifies them according to the research topic hierarchy in the

ontology. Paper topics are associated with their date of publication, and the ‘new-

system initial profile’ algorithm used to compute a set of initial profiles for each user.

Tables 5.1 and 5.2 show an example of this for the user Nigel Shadbolt. His

publications are analysed and a set of topics and dates formulated. The ‘new-system

initial profile’ algorithm then computes the interest values for each topic. For

example, ‘Knowledge Acquisition’ has one publication two years old (round up) so its

value is 1.0 / 2 = 0.5.

71

Publication Date Topic

Capturing Knowledge of User Preferences:

ontologies on recommender systems
2001 Recommender systems

Knowledge Technologies 2001 Knowledge Technology

The Use of Ontologies for Knowledge Acquisition 2001 Ontology

Certifying KBSs: Using CommonKADS to

Provide Supporting Evidence for Fitness for Purpose of KBSs
2000 Knowledge Management

Extracting Focused Knowledge from the Semantic Web 2000 Knowledge Acquisition

Knowledge Engineering and Management 2000 Knowledge Management

…

Table 5.1 : Publication list for Shadbolt

72

Topic Interest

Knowledge Technology\Knowledge Management 1.5

Knowledge Technology\Ontology 1.0

AI\Agents\Recommender Systems 1.0

Knowledge Technology\Knowledge Acquisition 0.5

…

Table 5.2 : Example of new-system profile for Shadbolt

At a later stage, after Quickstep has been running for a while, a new user registers

with email address sem99r@ecs.soton.ac.uk. OntoCoPI identifies this email account

as that of Stuart Middleton, a PhD candidate within the department, and returns the

ranked and normalised communities of practice list displayed in table 5.3. This

communities of practice list is identified using relations on conference attendance,

supervision, authorship, research interest and project membership, using the weights

0.4, 0.7, 0.3, 0.8, and 0.5 respectively. De Roure was found to be the closest person as

he is Middleton’s supervisor, and has one joint publication co-authored with

Middleton and Shadbolt. The people with 0.82 values are other supervisees of De

Roure. Alani attended the same conference as Middleton went to in 2001.

Person Relevance value Person Relevance value

DeRoure 1.0 Alani 0.47

Revill 0.82 Shadbolt 0.46

Beales 0.82

Table 5.3 : OntoCoPI results for Middleton

The communities of practice list is then sent to Quickstep, which searches for

matching user profiles. These profiles will be more accurate and up to date than those

initially created profiles based on publications. Quickstep manages to find the profiles

shown in table 5.4 in its logs.

73

Person Topic Interest

AI\Distributed Systems 1.2
DeRoure

AI\Agents\Recommender Systems … 0.73

AI\Agents\Mobile Agents 1.0
Revill

AI\Agents\Recommender Systems … 0.4

Knowledge Technology\Knowledge Devices 0.9
Beals

AI\Agents\Mobile Agents … 0.87

Knowledge Technology\Ontology 1.8
Alani

Knowledge Technology\Knowledge Management\ CoP … 0.7

Knowledge Technology\Knowledge Management 1.5
Shadbolt

AI\Agents\Recommender Systems … 1.0

Table 5.4 : Profiles of similar people to Middleton

These profiles are merged to create a profile for the new user, Middleton, using the

‘new-user initial profile’ algorithm with a γ value of 2.5. For example, Middleton has

a publication on ‘Recommender Systems’ that is one year old and De Roure, Revill

and Shadbolt have an interest in ‘Recommender Systems’ – this topic’s value is

therefore 1/1 + 2.5/5 * (1.0*0.73+0.82*0.4+0.46*1.0) = 1.76. Table 5.5 shows the

resulting profile.

Topic Interest

AI\Agents\Recommender Systems 1.76

AI\Agents\Mobile Agents 0.77

AI\Distributed Systems 0.6

Knowledge Technology\Ontology 0.42

Knowledge Technology\Knowledge Devices 0.37

Knowledge Technology\Knowledge Management 0.35

Knowledge Technology\Knowledge Management\ CoP 0.16

…

Table 5.5 : New-user profile for Middleton

Every day Quickstep’s profiles are updated and automatically fed back to the

ontology, where they are used to populate the research interest relationships of the

relevant people.

74

5.5 Empirical evaluation of the integrated system

In order to evaluate the effect both the new-system and new-user initial profiling

algorithms have on the integrated system, an experiment was conducted based around

the browsing behaviour logs obtained from the Quickstep [middleton01b] user trials.

The algorithms previously described are used, as per the example in the previous

section, and the average performance for all users calculated.

5.5.1 Experimental approach

Users were selected from the Quickstep trials had entries within the departmental

publication database. Nine users were selected in total, with each user typically

having one or two publications.

The URL browsing logs of these users, extracted from three months of browsing

behaviour recorded during the Quickstep trials, were then broken up into weekly log

entries. Seven weeks of browsing behaviour were taken from the start of the

Quickstep trials, and an empty log created to simulate the very start of the trial.

Eight iterations of the integrated system were thus run, the first simulating the start of

the trial and others simulating the following weeks 1 to 7. Interest profiles were

recorded after each iteration. Two complete runs were made, one with the ‘new-

system initial profiling’ algorithm and one without. The control run without the ‘new-

system initial profiling’ algorithm started with blank profiles for each of its users.

An additional iteration was run to evaluate the effectiveness of the ‘new-user initial

profile’ algorithm. The communities of practice for each user were taken, based on

data from week 7, and used with the ‘new-user initial profile’ algorithm to compute

initial profiles for each user as if they were being entered onto the system during the

trial. These profiles were recorded. Because an early prototype version of OntoCoPI

was used, communities of practice confidence values were not available; the

confidence values were thus all of value 1 throughout this experiment.

In order to evaluate the algorithms effect on the cold-start problem, all recorded

profiles were compared to the benchmark week 7 profile. This allowed measurement

of how quickly profiles converge to the stable state existing after a reasonable amount

75

of behaviour data has been accumulated. The quicker the profiles move to this state

the quicker they will have overcome the cold-start.

Week 7 was chosen as the cut-off point of our analysis since after about 7 weeks of

use the behaviour data gathered by Quickstep will dominate the user profiles. The

effects of bootstrapping beyond this point would not be significant. If the system were

run beyond week 7 it would simply continually adjust the profiles to the behaviour

logged each week.

5.6 Experimental results

Two measurements were made when comparing profiles to the benchmark week 7

profile. The first, profile precision, measures how many topics were mentioned in

both the current profile and benchmark profile. Profile precision is an indication of

how quickly the profile is converging to the final state, and thus how quickly the

effects of the cold-start are overcome. The second, profile error rate, measures how

many topics appeared in the current profile that did not appear within the benchmark

profile. Profile error rate is an indication of the errors introduced by the two

bootstrapping algorithms. Figure 5.5 describes these metrics.

It should be noted that the absolute precision and error rate of the profiles are not

measured – only the relative precision and error rate compared to the week 7 steady

state profiles. Measuring absolute profile accuracy is a very subjective matter, and is

not attempted here; only how quickly profiles reach their steady states is measured. A

more complete evaluation of Quickstep’s overall profiling and recommendation

performance can be found in [middleton01b].

76

Ncorrect Number of user topics that appear in current
profile and benchmark profile

Nmissing Number of user topics that appear in benchmark
profile but not in current profile

Nincorrect Number of user topics that appear in current
profile but not in benchmark profile

Nusers Total number of users

profile error rate = ______________________
Ncorrect + Nincorrect + Nmissing

Nincorrect

profile precision =
Ncorrect + Nmissing

Ncorrect_____________
Nusers

1
_____ ∑

user = 1

Nusers

Nusers

1
_____ ∑

user = 1

Nusers

Ncorrect Number of user topics that appear in current
profile and benchmark profile

Nmissing Number of user topics that appear in benchmark
profile but not in current profile

Nincorrect Number of user topics that appear in current
profile but not in benchmark profile

Nusers Total number of users

profile error rate = ______________________
Ncorrect + Nincorrect + Nmissing

Nincorrect

profile precision =
Ncorrect + Nmissing

Ncorrect

Ncorrect + Nmissing

Ncorrect_____________
Nusers

1
_____ ∑

user = 1

Nusers

Nusers

1
_____ ∑

user = 1

Nusers

Figure 5.5 : Evaluation metrics

The results of our experimental runs are detailed in figures 5.6 and 5.7. The new-user

results consist of a single iteration, so appear on the graphs as a single point.

At the start, week 0, no browsing behaviour log data is available to the system so the

profiles without bootstrapping are empty. The new-system algorithm, however, can

bootstrap the initial user profiles and achieves a reasonable precision of 0.35 and a

low error rate of 0.06. It was found that the new-system profiles accurately captured

interests users had a year or so ago, but tended to miss current interests. This is

because publications are generally not available for up-to-date interests.

As expected, once the weekly behaviour logs become available to the system the

profiles adjust accordingly, moving away from the initial bootstrapping. On week 7

the profiles converge to the benchmark profile.

The new-user algorithm result show a more dramatic increase in precision to 0.84, but

comes at the price of a significant error rate of 0.55. The profiles produced by the

new-user algorithm tended to be very inclusive, taking the set of similar user interests

and producing a union of these interests. While this captures many of the new user’s

real interests, it also included a large number of interests not relevant to the new user

but which were interesting to the people similar to the new user.

77

Profile precision relative to benchmark profile

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7
Week

P
re

ci
si

on

new-system bootstrap

no bootstrap

new-user bootstrap

Figure 5.6 : Profile precision

Profile error rate relative to benchmark profile

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7
Week

E
rro

r r
at

e

new-system bootstrap

no bootstrap

new-user bootstrap

Figure 5.7 : Profile error rate

Since error rate is measured relative to the final benchmark profile of week 7, all the

topics seen in the behaviour logs will be present within the benchmark profile.

Incorrect topics must thus come from another source – in this case the bootstrapping

on week 0. This causes error rates to be constant over the 7 weeks, since the incorrect

topics introduced on week 0 remain for all subsequent weeks.

5.7 Conclusions

Cold-starts in recommender systems and interest acquisition in ontologies are

significant problems. If initial recommendations are inaccurate, user confidence in the

recommender system may drop with the result that not enough usage data is gathered

to overcome the cold-start. With regard to ontologies, up-to-date interests are not

generally available from periodically updated information sources such as web pages,

personnel records or publication databases.

The integration of the Quickstep recommender system, AKT ontology and OntoCoPI

system has demonstrated one approach to reduce both the cold-start and interest-

acquisition problems. The practical work suggests that using an ontology to bootstrap

78

user profiles can significantly reduce the impact of the recommender system cold-start

problem. It is particularly useful for the new-system cold-start problem, where the

alternative is to start with no information at all. Regularly feeding the recommender

system’s interest profiles back to the ontology also clearly assists in the acquisition of

up-to-date interests. A number of issues have, however, arisen from the integration.

The new-system algorithm produced profiles with a low error rate and a reasonable

precision of 0.35. This reflects that previous publications are a good indication of

user’s current interests, and so can produce a good starting point for a bootstrap

profile. Where the new-system algorithm fails is for more recent interests, which

make up the remaining 65% of the topics in the final benchmark profile. To discover

these more recent interests, it is possible that the new-system algorithm could be

extended to take some of the other information available within the ontology into

account, such as the projects a user is working on. To what degree these relationships

will help is difficult to predict however, since the ontology itself has great difficulty in

acquiring knowledge of recent interests.

For the purposes of this experiment, those users who had some entries within the

university’s on-line publication database were selected. There were some users who

had not entered their publications into this database or who have yet to publish their

work. For these users there is little information within the ontology, making any new-

system initial profiles of little use. In a larger scale system, more sources of

information would be needed from the ontology to build the new-system profiles.

This would allow some redundancy, and hence improve robustness in the realistic

situation where information is only sparsely available.

The community of practice for a user was found not to be always relevant based on

our selection of relationships and weights. For example, David De Roure supervises

Stuart Middleton, but he also supervises a lot of other students interested in mobile

agents. These topics are not relevant to Stuart, which raises the question of how

relevant the supervision relationship is to our requirements, and how best to weight

such a relationship. The prototype version of OntoCoPI used in this experiment

contained relationship weights biased towards this supervision relationship. Further

experiments are needed to identify the most relevant settings for community of

practice identification. The accuracy of our communities of practice are also linked to

79

the accuracy of the research interest information as identified by the recommender

system.

The new-user algorithm achieved good precision of 0.84 at the expense of a

significant 0.55 error rate. This was because both the communities of practice

generated for users were not always precise, and because the new-user algorithm

included all interests from the similar users. An improvement would be to only use

those interests held by the majority of the people within a community of practice. This

would exclude some of the less common interests that would otherwise be included

into the new-user profile.

The new-user initial profile algorithm uses the constant γ, which determines the

proportional significance of previous publications and similar users. Factors such as

the availability of relationship data within the ontology and quality of the publication

database will affect the choice of value for γ. A value of 2.5 was used, but empirical

evaluation would be needed to determine the best value.

There is an issue as to how best to calculate the “semantic distance” between topics

within the is-a hierarchy. The simplifying assumption that all is-a links have equal

relevance is used here, but the exact relevance will depend on each topic in question.

If individual weightings were allowed for each topic, a method for determination of

these weights would have to be considered. Alternatively the is-a hierarchy could be

carefully constructed to ensure equal semantic distance.

A positive feedback loop exists between the recommender system and ontology,

making data incest a potential problem. For new users there are no initial interest

entries within the ontology, so new user profiles are not incestuous. If the

recommender system were to use the communities of practice for more than just

initial profiles, however, a self-confirming loop would exist; the recommender system

would derived its interests from the communities of practice, which would derive its

interests from the recommender system, and so on in an incestuous loop. However, if

the ontology were to obtain research interest information from another source then the

interests could be used to refine the list of users in a community of practice further,

and thus increase the accuracy of the bootstrapping algorithms.

80

Finally, a question still remains as to just how good an initial profile must be to fully

overcome the effects of the cold-start problem. If initial recommendations are poor

users will not use the recommender system and hence it will never get a chance to

improve. It has been shown that improvements can be made to initial profiles, but

further empirical evaluation would be needed to evaluate exactly how much

improvement is needed before the system is “good enough” for users to give it a

chance.

The bootstrapping used in this chapter was made possible because user profiles were

represented using an ontology. Knowledge held within the ontology was thus able to

provide the information required for initial bootstrapping. The benefits seen in using

such knowledge thus provide the evidence required to support the second sub-

hypothesis. Chapter 6 provides evidence to support the third sub-hypothesis, showing

a further way in which an ontological representation of user profiles can offer benefits

to a recommender system.

81

Chapter 6 The Foxtrot recommender system

Chapter summary

The Foxtrot problem domain is presented.

An overview of the Foxtrot system is detailed, and the empirical evaluation

summarized.

Detailed descriptions of the approaches used by Foxtrot are laid out.

Experimental set-up is described along with subject selection, experimental conditions

and the metrics recorded.

The experimental data is detailed and significant trends identified.

The trends seen are discussed and hypotheses offered for the effects seen. Comparison

is made with other published data from similar systems.

Conclusions are drawn and evidence to support the third sub-hypothesis found.

This chapter investigates the Foxtrot recommender system, an evolution of the

Quickstep system described in chapter 4. It addresses the problem domain of

recommending academic research papers, as does Quickstep, but tackles a larger

range of research topics and provides a service over a much longer time. Several

enhancements are made to the interface, classification and recommendation processes

and the recommendation facility is built upon a database search facility. Profile

visualization is explored as an additional benefit of representing profiles in

ontological terms, hence providing the evidence to support the third sub-hypothesis.

An evaluation is carried out and both recommendation and profiling effectiveness

assessed and compared to other recommender systems within the literature.

Appendix C contains details of the Foxtrot implementation and a set of data flow

diagrams detailing the system design.

6.1 The Foxtrot problem domain

Foxtrot addresses the problem of recommending on-line research papers to over 300

computer science staff and students at the University of Southampton for a full

academic year. The first user requirement is thus for a system that can search a

research paper database and return on-line papers, and the second requirement for a

82

recommendation facility that can help suggest useful papers missed by explicit

searching. Unobtrusive monitoring methods are preferred because researchers have

their normal work to perform and would not welcome interruptions from a new

system. Very high accuracy on recommendations is not required since users will have

the option to simply ignore poor recommendations.

6.2 Overview of the Foxtrot system

The Foxtrot recommender system is a hybrid recommender system and searchable

paper database. Collaborative and content-based recommendation is supported, in

addition to direct database searching. Figure 6.1 shows an overview of the Foxtrot

architecture. Foxtrot is an evolution of the Quickstep [middleton01b] recommender

system, described in chapter 4.

Classifier

World Wide
Web

Research Paper
Database

Recommender

ProfilerUsers Web
Proxy

Figure 6.1 : Foxtrot overview

A web proxy is used to monitor unobtrusively each user’s web browsing, adding new

research papers to the central database as users discover them. The research paper

database thus acts as a pool of shared knowledge, available to all users via search and

recommendation. The database of research papers is classified using a research paper

topic ontology and a set of training examples for each topic.

Recorded web browsing and relevance feedback elicited from users is used to

compute daily profiles of users’ research interests. Interest profiles are represented in

ontological terms, allowing other interests to be inferred that go beyond that just seen

83

from directly observed behaviour. These interest profiles are visualized to allow

elicitation of direct profile feedback, thus providing an additional source of

information from which profiles can be computed.

Recommendations are compiled daily and suggested when a user goes to the Foxtrot

web page or receives a weekly email. Collaborative filtering is used to compute the

recommendations, using only the current topics of interests in each user’s content-

based profile.

6.3 Empirical evaluation

An empirical evaluation of the Foxtrot system was conducted with the computer

science staff and students of the University of Southampton, over the period of an

academic year. The aim of the evaluation was to assess the benefits of using direct

profile visualization and feedback and to assess the overall effectiveness of the

recommender system.

Subjects registered to use the system were randomly divided into two groups. The

first group was allowed to see their profile and provide direct profile feedback, the

second group was not allowed. Both groups had full access to the system and could

provide traditional relevance feedback on the recommended papers and search results

found when using the system.

Performance metrics were measured over the duration of the trial, and the

effectiveness of both groups compared.

6.4 Interesting lessons from the Quickstep system

Before the Foxtrot recommender system design was finalized, a number of issues that

were raised with the Quickstep system were addressed. These mainly came from the

implementation of the interface, and the way researchers appeared to prefer to work.

Firstly there was a clear need for a searchable database in addition to the

recommendation web page interface. Researchers often wanted to find a specific

paper, or search for a paper on a specific topic, and did this via a normal search engine

such as Google; they did not want to wait for the recommender to eventually suggest

the paper. Interestingly, the Quickstep database of research papers would have been

84

an ideal place to look. Therefore it seemed useful to allow users to enter immediate

search queries for the papers they know they need. The recommendation facility could

then be used in conjunction to normal searching, recommending extra papers that a

user might not have realized was out there or not bothered to find.

In addition to a search facility, it became clear that there was a lot to be gained from a

collaborative approach in addition to a content-based approach to recommendation.

Since the research topics were quite broad in nature, there were often cases when the

system had to choose from several papers on the same topic; a collaborative filter here

would allow the system to recommend papers on a topic which other users liked

before papers that were untried.

Users tended to have difficulty with the concept of interest feedback. Some users

thought this was for papers they liked and others for good quality papers. The solution

to this semantic dilemma was to introduce an explicit quality rating in addition to the

interest rating of the Quickstep system. This removed completely the ambiguity.

6.5 The Foxtrot System Approach

Two approaches are taken to help researchers effectively find the papers they need.

In the case where a researcher is looking for a specific paper, a search facility can

access the Foxtrot research paper database. This allows researchers to enter search

keywords and search the title, content and classification of papers in the database. A

search facility is well suited to this problem since computer science researchers are

normally experienced in using the web and formulating useful search queries.

In the case where the researcher is interested in keeping up-to-date in a research area,

a recommendation facility has been built to suggest previously unseen papers that

might be of interest. A recommender system approach is useful here because user

interests will change over time and hence need to be continuously monitored. The

recommender regularly generates user profiles from observed behaviour and uses this

as the basis for recommending research papers.

Combining both the search engine and recommender system approaches allows the

advantages of both to be combined and hence provides a more effective tool for

researchers.

85

Regularly asking for a set of interests would be intrusive, imposing an extra work

burden on the researchers, and thus result in a reduced uptake of the system. For this

reason unobtrusive monitoring of web browsing via a proxy server was chosen to

acquire positive examples of user interest. Optional feedback is elicited from both

normal search results and recommendation lists, recording any information

volunteered on the interest and quality of particular papers. This approach offers

feedback options as an addition to the normal working of the system, and hence

should not prove too intrusive. Profile visualization is available as an option to those

who choose to use it, and is based on a drawing metaphor so that users can both see

their current profile and literally draw any modification to it. Again, profile feedback

is volunteered by users so should not interfere with their normal use of the system.

Research papers are represented as term-frequency vectors, a common representation

in the machine-learning community. This allows use of a boosted k-nearest neighbour

document classifier, described later in this chapter, to classify new vectors in terms of

the classes within the topic ontology. Term frequency vectors are computed by

counting the number of times words, or terms, appear within the textual content of a

paper.

Recommender systems typically use a binary approach to classification, holding

example of positive and negative interest for each user and classifying new papers

based on how well they match these two training sets. One problem with this

approach is that the training sets are personal to each user, so there is no easy basis on

which they can be shared. Without the option of sharing, the number of training

examples per user will be limited. This means that to gather a sufficiently large

training set to allow accurate classification of interests, the users will either have to

volunteer numerous examples of interest or be monitored for a significant duration to

gather enough behaviour data. This places a significant burden on users to train the

system, which will deter user uptake of the tool.

Foxtrot uses an ontological approach to interest profiling, representing user interests

in terms of a research topic ontology. Since all users share the topic ontology, training

examples of topic classes within the ontology can also be shared. A multi-class

classifier is used to classify research papers in terms of the classes within this research

paper topic ontology. Having represented interests in ontological terms we can then

86

use the relationships between classes to infer more interests than are available from

direct observation only. Interest profiles can also be visualized using ontological

terms, which are understandable to the users, and hence it is possible to elicit

feedback on the profiles directly.

The interests held within each user’s profile are computed from the research topics of

browsed papers and from any feedback provided. A topic interest history is created

for each user, and a time-decay function used to compute the current topics of interest.

Inference is also applied, using the is-a relationships between classes defined by the

research topic ontology to infer interest in more general classes when interest is seen

in a specific class.

6.5.1 Research paper representation

Research papers are represented as term vectors, with term frequency / total number

of terms used for a terms weight. Since many words are either too common or too rare

to have useful discriminating power to the classifier, a few dimensionality reduction

techniques are used to reduce the number of dimensions of the term-frequency

vectors. Porter stemming [porter80] is used to remove term suffixes and the SMART

[smart74] stop list is used to remove very common words. Term frequencies below 2

are removed and for each topic class only the top 50 terms, ranked by document

frequency, are added to the vector. Dimensionality reduction is common in

information systems; [sebastiani02] provides a good discussion of the issues.

Foxtrot supports papers in HTML, PS, PDF formats and various compressed versions

of these formats, all of which are converted to plain text and then used to create term

vectors. This covers the majority of research paper formats available on the web, with

other formats or corrupt formats ignored. Several heuristics are used to determine if

the research papers are converted to text correctly and look like a typical research

paper with terms such as ‘abstract’ and ‘references’. In the Foxtrot trial, term-vectors

for papers had, after dimensionality reduction, around 1000 dimensions.

6.5.2 Research paper topic ontology

Foxtrot uses a research paper topic ontology to represent research interests of its

users. A class is defined for each research topic and is-a relationships defined where

appropriate. The ontology is based on the classification ontology used by the CORA

87

[mccallum00] digital library with a few customised modifications. Figure 6.2 shows

some of the classes within the ontology. CORA was chosen, as opposed to the [dmoz]

classification used by Quickstep, since it provided a readily accessible source of pre-

classified research papers over a wide range of computer science topics, helpful when

you need over 700 example papers.

Human-Computer Interaction

Data Structures Algorthms & Theory
Information Retrieval
Databases
Networking
Encryption & Compression
Operating Systems
Hardware & Architecture
Programming

E-Commerce
Interface Agents
Mobile Agents
Multi-Agent-Systems
Recommender Systems

Agents
Data Mining
Expert Systems
Games and Search
Knowledge Representation
Machine Learning
Natural Language Processing
Planning
Robotics
Speech
Theorem Proving
Vision & Pattern Recognition

Case-Based [machine learning]
Genetic Algorithms
Neural Networks
Probabilistic Methods
Reinforcement Learning
Rule Learning
Theory [machine learning]

Artificial Intelligence

Cooperative [hci]
Hypermedia
Multimedia
Graphics & Virtual Reality
Interface Design
Wearable Computers
User Modelling

Figure 6.2 : Section from the research paper topic ontology

Approximately 5-10 labelled examples of research papers were manually added to the

classifier training set, many taken from the results of the Quickstep trial and papers

downloaded from the CORA system. There totalled 97 classes and 714 training

examples. The ontology remains fixed through the Foxtrot trial, but could be updated

as time goes on to reflect changes in the research domain. For every new ontology

class a new set of 5-10 example papers would be required. Since the vector space used

by the classifier is re-built every day, adding new examples mid-trial would not cause

a problem to the system.

The effect changing ontology has on a system, i.e. from dmoz in Quickstep to CORA

in Foxtrot, is a like the effect changing a document corpus has on a machine learning

algorithm. The classification performance figures will be very much dependent on the

88

discriminating power of the training examples associated with each ontological class;

this will in turn effect the profiling accuracy. Since the domains addressed by the

CORA and dmoz ontology are similar, with CORA just being a little wider and

broader in scope, we think the results from Quickstep and Foxtrot should be

comparable. Certainly if the fit between ontological classes and the actual topics being

read by users is good then the profiling accuracy will be good too, and thus the

recommendation accuracy will be superior to a system where the ontological classes

do not fit so well to the browsed topics.

6.5.3 Research paper classification

Research papers in the central database are classified by an IBk [aha91] classifier,

which is boosted by the AdaBoostM1 [freund96] algorithm. The IBk classifier is a k-

Nearest Neighbour type classifier that uses example documents, called a training set,

added to a term-vector space. Figure 6.3 shows the basic k-Nearest Neighbour

algorithm. The closeness of an unclassified vector to its neighbours within the term-

vector space determines its classification.

w(da,db) = √

Σ
j = 1

(tja – tjb)2

w(da,db) kNN distance between document a and b
da,db document vectors
T number of terms in document set
tja weight of term j document a
f(d) k-NN function

T

d1 … dk are the k nearest documents to dnew

f(dnew) = Σ
i = 1

w(dnew,di)

k 1

w(da,db) = √

Σ
j = 1

(tja – tjb)2

w(da,db) kNN distance between document a and b
da,db document vectors
T number of terms in document set
tja weight of term j document a
f(d) k-NN function

T

d1 … dk are the k nearest documents to dnew

f(dnew) = Σ
i = 1

w(dnew,di)

k 1
Σ

i = 1

w(dnew,di)

k 1

Figure 6.3 : k-Nearest Neighbour algorithm

Classifiers like k-Nearest Neighbour allow more training examples to be added to

their term-vector space without the need to re-build the entire classifier. They also

degrade well, so even when incorrect the class returned is normally in the right

“neighbourhood” and so at least partially relevant. This makes k-Nearest Neighbour a

robust choice of algorithm for research paper classification.

89

Boosting works by repeatedly running a weak learning algorithm on various

distributions of the training set, and then combining the classifiers produced by the

weak learner into a single composite classifier. The “weak” learning algorithm here is

the IBk classifier. Figure 6.4 shows the AdaBoostM1 algorithm.

Initialise all values of D to 1/N
Do for t=1..T

call weak-learn(Dt)
calculate error et
calculate βt = et/(1-et)
calculate Dt+1

Dt class weight distribution on iteration t
N number of classes
T number of iterations
weak-learn(Dt) weak learner with distribution Dt
et weak_learn error on iteration t
βt error adjustment value on iteration t
classifier final boosted classifier
C all classes

classifier = argmax Σ log

t = all iterations
with result class c

c ∈ C βt

1__

Initialise all values of D to 1/N
Do for t=1..T

call weak-learn(Dt)
calculate error et
calculate βt = et/(1-et)
calculate Dt+1

Dt class weight distribution on iteration t
N number of classes
T number of iterations
weak-learn(Dt) weak learner with distribution Dt
et weak_learn error on iteration t
βt error adjustment value on iteration t
classifier final boosted classifier
C all classes

classifier = argmax Σ log

t = all iterations
with result class c

c ∈ C βt

1__classifier = argmax Σ log

t = all iterations
with result class c

c ∈ C βt

1__
βt

1__

Figure 6.4 : AdaBoostM1 boosting algorithm

AdaBoostM1 has been shown to improve [freund96] the performance of weak learner

algorithms, particularly for the stronger learning algorithms like k-Nearest Neighbour.

It is thus a sensible choice to boost our IBk classifier.

Other types of classifier were considered, including the naïve Bayes classifier and the

C4.5 decision tree, and informal tests run to evaluate their performance. The boosted

IBk classifier was found to give superior performance for this domain.

6.5.4 Interface

Users interact with Foxtrot via a web page. The basic interface is shown in figure 6.5.

A web search engine metaphor has been used for the interface design, allowing users

to enter search queries via edit boxes and click on a search button to initiate a search.

Search results are returned in the area below the edit boxes, showing the details of

each research paper found. Two sets of radio buttons appear below each search result

to allow users to provide relevance and quality feedback if they so desire. When users

first go to the Foxtrot web page, their daily recommendations are automatically

90

presented in the search result area. In this way, users can then choose to read the

recommendations or just enter a search query and use the system normally.

Figure 6.5 : Recommendation and search interface

Users who are in the profile group can visualize their interest profiles by clicking on a

profile tab. Figures 6.6 and 6.7 show the profile interface. Profiles are displayed as a

time/interest graph, showing what the system thinks their top interests are over the

period of the trial. Direct profile feedback can be drawn onto this graph by using the

controls to the side. A drawing package metaphor is used here, and users can draw

coloured horizontal bars to represent a level of interest in a topic over a period of

time. In this way a user can literally draw their own profiles.

91

Figure 6.6 : Profile visualization interface, drawing interests

Figure 6.7 : Profile visualization interface, picking topics

In addition to the Foxtrot web page, a weekly email notification feature was added

three months from the end of the trial. This provided a weekly email stating the top

three recommendations from the current nine recommendations. Users could then

jump to these papers or load the Foxtrot web page and review all nine

recommendations. Figure 6.8 shows the email notification message.

92

Figure 6.8 : Email notification interface

6.5.5 Profiling

Interest profiles are computed daily by correlating previously browsed research papers

with their classification. User profiles thus hold a set of topics and interest values in

their topics for each day of the trial. User feedback also adjusts the interest of topics

within the profile and a time decay function weights recently seen papers as being

more important than older ones. Ontological relationships between topics of interest

are used to infer other topics of interest, which might not have been browsed

explicitly; an instance of an interest value for a specific class adds 50% of its value to

the super-class. Figure 6.9 shows the profiling algorithm.

∑
no of instances

n = 1

Interest value(n) / days old(n)Topic interest =

Event
interest values

Paper browsed = 1
Recommendation followed = 2
Topic rated interesting = 10
Topic rated not interesting = -10

Interest value for
super-class per instance = 50% of sub-class

∑
no of instances

n = 1

Interest value(n) / days old(n)Topic interest =

Event
interest values

Paper browsed = 1
Recommendation followed = 2
Topic rated interesting = 10
Topic rated not interesting = -10

Interest value for
super-class per instance = 50% of sub-class

Figure 6.9 : Profiling algorithm

6.5.6 Recommendation

Daily recommendations are formulated by a hybrid recommendation approach. A list

of similar people to a specific user is compiled, using a Pearson-r correlation on the

93

content-based user profiles. Recommendations for a user are then taken from those

papers on the current topics of interest, which have also been read by similar people to

that user. Figure 6.10 shows the recommendation algorithm. During the Foxtrot trial

three papers were recommended each day on the three most interesting topics, making

a total of nine recommended papers. Previously read papers were not recommended

twice and if more than three papers were available for a topic they were ranked by

quality rating.

(Ib(t) – Ib)2
_

Σ
t = 1

topics
(Ia(t) – Ia)2

_
Σ
t = 1

topics

*

(Ib(t) – Ib)
_

Σ
t = 1

topics
(Ia(t) – Ia)

_
*

Pearson r coefficientab =

√
Ia(t) = User a’s interest in topic t
Ia = User a’s mean interest value over all topics

Pearson r coefficientab = similarity of user a’s profile to user b’s profile
Recommended papers = papers on user’s current interests ∩ papers read by similar users

3 papers recommended on the 3 most interesting topics, totalling 9 papers per day
If more than 3 papers meet above criteria, papers ranked by quality rating

_

(Ib(t) – Ib)2
_

(Ib(t) – Ib)2
_

Σ
t = 1

topics
(Ia(t) – Ia)2

_
(Ia(t) – Ia)2

_
Σ
t = 1

topics

*

(Ib(t) – Ib)
_

(Ib(t) – Ib)
_

Σ
t = 1

topics
(Ia(t) – Ia)

_
(Ia(t) – Ia)

_
*

Pearson r coefficientab =

√
Ia(t) = User a’s interest in topic t
Ia = User a’s mean interest value over all topics

Pearson r coefficientab = similarity of user a’s profile to user b’s profile
Recommended papers = papers on user’s current interests ∩ papers read by similar users

3 papers recommended on the 3 most interesting topics, totalling 9 papers per day
If more than 3 papers meet above criteria, papers ranked by quality rating

_

Figure 6.10 : Recommendation algorithm

6.6 Experimental Evaluation

An experiment was carried out over the period of a single academic year to assess the

performance of the Foxtrot recommender system. Test subjects were taken from both

the staff and students of the computer science department at the University of

Southampton. Foxtrot was used by the test subjects to assist in their everyday

research. The overall recommendation and user profiling performance was measured,

in addition to measuring the relative performance of those who used the profile

visualization option.

6.6.1 Details of the trial

The user trial took place over the academic year 2001/2002, starting in November and

ending in July. Of the 260 subjects registered to use the system, 103 logged onto the

system, and of these 37 subjects used the system three or more times. All 260 subjects

used the web proxy and hence their browsing was recorded and daily profiles built.

94

58 subjects joined the trial as it progressed, hearing about the system from advertising

posters and word of mouth. At the start of the trial a bootstrap of about 6,000

documents where loaded into the central database by a web crawler. By the end of the

trial the database had grown to 15,792 documents as a result of subject web browsing.

When registering to use the system subjects were randomly divided into two groups.

The first ‘profile feedback’ group had full access to the system and its profile

visualization and profile feedback options; the second ‘relevance feedback’ group

were denied access to the profile interface. The objective of this subject grouping was

to measure what difference, if any, visualizing profiles and providing profile feedback

makes to the performance of the recommender system. It was found that many in the

‘profile feedback’ group did not provide any profile feedback at all, so in the later

analysis these subjects are moved into the ‘relevance feedback’ group.

A binary comparison style experiment was chosen over other types of experimental

design in order to test the relative effectiveness of the using profile feedback. It was

felt that such a simple experimental design would yield the greatest chance of success,

important for such a lengthy experiment with no chance of a re-run. Both groups used

identical systems, except for one group’s profiling features being disabled, in order to

minimise effect causations other than the use of profile feedback. The university’s

major operating systems and web browsers were supported, along with a consistent

web interface to allow subjects to use the system in their normal environment.

Towards the end of the trial, an additional email feature was added to the

recommender system. This email feature send out weekly emails to all users who had

used the system at least once, detailing the top three papers in their current

recommendation list. Users could then follow URL links to the papers held in the

email or go to the Foxtrot web page to see the full recommendation list of nine papers.

Email notification was started in May and ran for the remaining three months of the

trial.

Throughout the trial various metrics were logged. Jumps to paper URLs and relevance

feedback were recorded in addition to profile feedback. Browsed URLs were also

recorded via the web proxy. Relevance feedback on individual papers was recorded

on a 5-point scale, as was quality feedback. Profile feedback generated a set of

95

interest bars, declaring a degree of interest in a topic over a period of time; it was

possible for interests to be declared as ongoing. All recommended URLs and

recommendations sent via email were recorded.

A post-trial questionnaire was send via email to all users who used the system at least

once. A 5-point scale was used to record answers to the questions in the questionnaire.

6.6.2 Experimental Data

The raw data obtained from the trial occurs at irregular time intervals, based on when

subjects looked at recommendations or browsed the web. For ease of analysis data is

collated into weekly figures by summing interactions throughout each week. Group

data is computed by summing the weekly contribution of each subject within a group.

Figure 6.11 shows the metrics measured during the trial and derived values computed

from them.

Explicit feedback
Interest = User declaring an interest on a paper URL
Jump = User following links to a paper URL
Profile feedback = User drawing a profile

Web proxy monitoring
Browsed URL = URL browsed by user

System logging
Recommended = URL recommended to user via web page
Email = URL recommended to user via email

Metric types
Interest = (URL,<interest type>,time)
Jump = (URL,time)
Profile feedback = (topic,<interest value>,start date,end date)
Browsed URL = (URL,time)
Browsed paper = browsed URL appearing in paper database
Recommended paper = (URL,time)
Emailed paper = (URL,time)
<interest type> = (high,average,low,unknown)
<interest value> = value between –10 and 10

Derived metric types
<future papers> = browsed/jumped papers in the 4 weeks after profile
<papers> = browsed/jumped papers over duration of profile (normally 1 day)
<top topics> = top 3 topics of profile

Predicted profile accuracy = No of <future papers> matching <top topics>
No of <future papers>

Profile accuracy = No of <papers> matching <top topics>
No of <papers>

Web page rec accuracy = No of recommended papers browsed or jumped to
No of recommended papers

Email rec accuracy = No of emailed papers browsed or jumped to
No of emailed papers

Jumps to recommendations ratio = No of jumps to recommended papers
No of jumps

Jumps to profile topics ratio = No of jumps to papers matching <top topics>
No of jumps

High interest ratio = No of high interest feedback cases
No of interest feedback cases

Low interest ratio = No of low interest feedback cases
No of interest feedback cases

Figure 6.11 : Metrics measured during the Foxtrot trial

Subject selection for the ‘profile feedback’ group was taken from those subjects who

had provided profile feedback, with all other subjects placed into the ‘relevance

feedback’ group. The subject selection could be made more favourable by only

including subjects who used the system a few times, but it was felt that including

96

subjects who gave up on the system would be more representative of how the trial

went.

The total number of subjects who registered with the system was 260, of which nine

were in the ‘profile feedback’ group and 251 were in the ‘relevance feedback’ group.

Of these 260 subjects 37 used the system three or more times, making a system uptake

rate of 14%. This is representative of the fact that the system was offered as an

optional tool that could be used in addition to normal work practices; as such only a

fraction of potential subjects chose to invest the time and effort required to get the

most out of the system.

Basic trial measurements come from the recorded subject interaction with the

recommender web page and logged data from the web proxy.

Explicit feedback includes jumping to search results and jumping to recommendations

via the web page interface, interest feedback on search results and feedback on

profiles via the profile visualization interface.

Implicit feedback is obtained from unobtrusive monitoring via the web proxy. The

proxy logs are parsed to extract the subject’s browsed URLs, which are recorded with

a timestamp. These URLs are later correlated with the research paper database to

obtain a set of browsed research papers.

In addition to feedback, the system records when web page and email

recommendations are issued. This allows various derived metrics to be computed to

compare the relative effectiveness of different types of system operation.

The recommendation accuracy metric takes explicit feedback and computes accuracy

figures for both web page and email recommendations. A simple ratio is used to

obtain the number of recommendations followed as a fraction of the total number of

recommendations; this provides a measure of the effectiveness of the

recommendations. Figure 6.12 shows the recommendation accuracy for web page and

email recommendations.

The small number of subjects within the ‘profile feedback’ group accounts for the

larger confidence intervals. While not statistically significant, there is an apparent

97

trend for more accurate recommendation when using profile feedback, especially in

the earlier weeks. Email recommendations appeared to be preferred by the ‘relevance

feedback’ group, slightly out performing the ‘profile feedback’ group.

Web page and email recommendation accuracy

0

0.01

0.02

0.03

0.04

0.05

0.06

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Weeks

Profile feedback [w eb page] Relevance feedback [w eb page]

Profile feedback [email] Relevance feedback [email]

Final week 95% confidence intervals

Profile feedback [web page recs] 0.043 Relevance feedback [web page recs] 0.0028

Profile feedback [email recs] 0.018 Relevance feedback [email recs] 0.011

Figure 6.12 : Web page and email recommendation accuracy

In addition to recommendation accuracy, the ratio of jumps to recommendations

against all jumps total and the ratio of jumps to papers with a top three topic against

all jumps were computed. Jumps to recommendations measure the degree to which

subjects use the recommendation facility as opposed to just using the search facility of

the database. Jumps to papers with a top three profile topic measures how well the

profiles fitted the subject’s actual interests. Figure 6.13 shows the figures for jumps to

recommended papers.

The ‘profile feedback’ group made a greater proportion of jumps to recommendations

than the ‘relevance feedback’ group; this trend is statistically significant. A similar

trend is seen in jumps to papers on top profile topics, but is less clear.

98

Jumps to recommendations and profile topics

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Weeks

Profile feedback [topic] Relevance feedback [topic]

Profile feedback [rec] Relevance feedback [rec]

Final week 95% confidence intervals

Profile feedback [topic] 0.27 Relevance feedback [topic] 0.041

Profile feedback [rec] 0.14 Relevance feedback [rec] 0.039

Figure 6.13 : Jumps to rec’s and profile topics as a ratio of all jumps

Interest feedback is primarily used by the system to compute profiles, but it does also

provide an indication as to the utility of recommended papers. If subjects rate pages as

highly interesting then this is a sign the recommendations are good. Figure 6.14

shows both high and low interest ratings as a proportion of all interest ratings.

Subjects were reluctant to provide feedback, with just 72 interest ratings being

recorded during the trial. Only two ‘profile feedback’ subjects provided interest

feedback, hence the larger confidence interval. Even so, the ‘profile feedback’

subjects clearly expressed a higher level of interest in their papers than the ‘relevance

feedback’ group, who rated most papers as of low interest. In both groups there was a

trend for subjects to provide all their interest feedback in the first few weeks after

registering with the system.

99

Interest rating as a proportion of all interest ratings

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Weeks

Profile feedback [high] Relevance feedback [high]

Profile feedback [low] Relevance feedback [low]

Final week 95% confidence intervals

Profile feedback [high] 0.3 Relevance feedback [high] 0.011

Profile feedback [low] 0.3 Relevance feedback [low] 0.017

Figure 6.14 : Interest ratings as a ratio of all interest ratings

Since user browsing is recorded, both the profile accuracy and profile predictive

accuracy can be measured. Profile accuracy measures the number of papers browsed

or jumped to that match the top three profile topics for the duration of that profile;

since profiles are normally updated daily, the average life of a profile is one day. This

is a good measure of the accuracy of the current interests within a profile at any given

time. Profile predictive accuracy measures the number of papers browsed or jumped

to that match the top three profile topics in a four-week period after the profile was

created. This measures the ability of a profile to predict subject interests. Metrics are

measured for every profile computed over the period of the trial, providing a view on

how the quality of the profiles varies over the length of the trial. Figure 6.15 shows

the figures for the profile metrics.

While not statistically significant, there is a trend for the ‘profile feedback’ group to

have profiles that are better at predicting future browsing interests. This trend is not

reflected in the daily profile accuracy figures however, where the two groups are

similar. This would appear to show that the two groups are profiling slightly different

interest sets, with the ‘profile feedback’ interests of a longer term nature.

100

Profile accuracy and profile predictive accuracy

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Weeks

Profile feedback [profile] Relevance feedback [profile]

Profile feedback [predictive] Relevance feedback [predictive]

Final week 95% confidence intervals

Profile feedback [profile] 0.23 Relevance feedback [profile] 0.036

Profile feedback [predictive] 0.23 Relevance feedback [predictive] 0.036

Figure 6.15 : Profile accuracy and profile predictive accuracy

In addition to measuring subject group interactions with the system, the AdaBoostM1

boosted IBk classifier performance was computed. A standard cross-validation test

was applied to the classifier training set, to obtain the figures for precision and recall.

Table 6.1 shows the results. The precision value is a measure of how many correctly

classified documents there were as a proportion of the number classified. The recall

value is a measure of how many documents were classified as a proportion of the total

number of documents.

 Precision Recall Number of classes Number of examples Number of terms

Classifier 0.42 1.0 97 714 1152

Table 6.1 : Foxtrot classifier precision and recall

6.6.3 Post-trial Questionnaire

A post trial questionnaire was sent out via email to every subject who used the system

at least once. Table 6.2 shows the results of this survey, completed by 13 subjects. It

clearly shows that the search facility was most useful to the subjects, with the

recommendation facility being only partially used. This is borne out by the relatively

small amount of feedback provided by users during the trial.

101

Question 1 2 3 4 5 Mean

How useful did you find the Foxtrot database? 4 2 5 2 2.38

How much did you use the recommendation facility? 7 5 1 1.62

How accurate were the recommended topics? 3 3 2 3 1 2.67

How useful were the recommended papers? 4 2 4 2 2.5

Table 6.2 : Foxtrot post trial questionnaire results

6.6.4 Discussion of the trends seen in experimental data

Generally speaking the ‘profile feedback’ group outperformed the ‘relevance

feedback’ group for most of the metrics. The experimental data reveals several

specific trends however.

Web page recommendations, and jumps to those recommendations, were better for the

‘profile feedback’ group, especially early on in the first few weeks after registering.

This is probably because the ‘profile feedback’ users tended to draw their interest

profiles when they first registered with the system, and only update them

occasionally. This has the effect that the profiles are most accurate early on and

become dated as time goes on. This aging effect on the profile accuracy is shown by

the ‘profile feedback’ group performance gradually falling towards that of the

‘relevance feedback’ group as time goes on.

One interesting observation is that the initial performance enhancement gained using

profile feedback appears to help overcome the cold-start problem [middleton02], a

problem inherent to all recommender systems.

Email recommendation appeared to be preferred by the ‘relevance feedback’ group,

and especially by those users who did not regularly check their web page

recommendations. A reason for this could be that since the ‘profile feedback’ group

used the web page recommendations more, they needed to use the email

recommendations less. There is certainly a limit to how many recommendations any

user needs over a given time period; in our case nobody regularly checked for

recommendations more than once a week.

The overall recommendation accuracy was between 1-2%, 2-3% for the profile

feedback group. This may appear low, especially when compared to other

recommendation systems such as Quickstep, but it reflects the optional nature of the

102

recommendation service offered. Users had the choice to simply ignore

recommendations if they did not help to achieve their current work goal. This optional

nature of the system assisted system uptake and acceptance on a wide scale. In

comments made via the post-trial questionnaire some users preferred email

recommendations because they could address emails when they were not very busy,

as opposed to when they were searching for specific papers for a particular task.

The profile accuracy of both groups was similar, but there was a significant difference

between the accuracy of profile predictions. This probably reflects the different types

of interests held in the profiles of the two groups. The ‘profile feedback’ group’s

profiles appeared to be longer term, based on knowledge of the user’s general

research interests provided via the profile interface. The ‘relevance feedback’ profiles

were based solely on the browsing behaviour of the user’s current task, hence

contained shorter-term interests. Perhaps a combination of profile feedback-based

longer-term profiles and behaviour-based short-term profiles would be most

successful.

The overall profile accuracy was around 30%, reflecting perhaps the difficulty of

predicting user interests in a real multi-task environment. Perhaps integrating some

knowledge of which task the user is performing would allow access to some of the

other 70% of their research interests. These interests were in the profile but did not

make it to the top three topics of current interest.

The post-trial questionnaires showed that the overall usage of the recommendation

facility was limited, with users preferring to use just the search facility. This was also

born out by the interest rating results, where most ‘relevance feedback’ users appeared

unhappy with their recommendations. Profile feedback users appeared to be more

content with their recommendations, and tended to check recommendations regularly

for about a week or two after drawing a profile. This appeared to be because users had

acquired a conceptual model of how the system worked, and wanted to keep checking

to see if it had done what they expected. If a profile was required to be drawn before

registering on the system, this behaviour pattern could be exploited to increase system

uptake and gain some early feedback. This may in turn increase initial profile

accuracy and would certainly leave users with a better understanding of how they

103

system worked, beneficial for both gaining user trust and encouraging effective use of

the system.

6.7 Comparison with other work within the literature

Group Lens [konstan97] is an example of a collaborative filter, recommending

newsgroup articles based on a Pearson-r correlation of other users’ ratings. Fab

[balabanović97] is a content-based recommender, recommending web pages based on

a nearest-neighbour algorithm working with each individual user’s set of positive

examples. Foxtrot is a hybrid recommender system, combining both these types of

approach.

Personal web-based agents such as NewsDude [billsus98] and NewsWeeder [lang95]

build profiles from observed user behaviour. These systems filter new stories and

recommend unseen ones based on content. Personal sets of positive and negative

example are maintained for each user’s profile. In contrast, by using an ontology to

represent user profiles Foxtrot pools these limited training examples for all its classes.

Digital libraries classify and store research papers, such as CiteSeer [bollacker98].

While Foxtrot is a digital library, its content is dynamically and autonomously

updated from the browsing behaviour of its users.

Very few systems in the recommender system literature perform user trials using real

users, making direct comparison difficult. Most use either labelled benchmark

document collections to test classifier accuracy or logged user data taken from sources

such as newsgroups. NewsWeeder reports a 40-60% classification accuracy with real

users, while Personal Webwatcher [mladenić96] reports a 60-90% classification

accuracy using benchmark data. Foxtrot’s classifier is on the low side with 41%

accuracy, but this appears much better when the number of classes used in

classification is taken into account and the potential this allows for improving

profiling via inference and profile feedback.

The Quickstep [middleton01b] system had a recommendation accuracy of about 10%

with real users, and provides a useful system for comparison. Foxtrot manages 2-3%

recommendation accuracy, which reflects the different types of subjects involved in

the two trials. The Quickstep subjects were willing researchers taken from a computer

104

science laboratory, while the Foxtrot subjects were staff and students of a large

department who would only be willing to use the system if it was perceived to offer

direct benefits to their work. A recommendation accuracy of 3% means that roughly

one in three sets of recommendations contained a paper that was downloaded. While

initially appearing low, this result is good when the problem domain is taken into

account; most systems in the literature do not attempt such hard and realistic

problems.

Mladenic [mladenić99] provides a good survey of text-learning and agent systems,

including content-based and collaborative approaches. Chapter 2 and appendix A lists

many recommender systems in the literature today. The systems most related to

Foxtrot are Entrée [burke00], which uses a knowledge base and case-based reasoning

to recommend restaurant data, and RAAP [delgado98] that uses categories to

represent user profiles with unshared individual training sets for each user. None of

the reviewed systems use ontological categories to represent user profiles.

6.8 Conclusions from the Foxtrot trial

The experiment detailed in this chapter provides empirical evidence as to the

effectiveness of using an ontological approach to user profiling in recommender

systems. As with the predecessor system Quickstep, Foxtrot uses an ontology to

represent user profiles, allowing training examples to be shared and knowledge of

interests inferred without the need for direct observation.

Profile visualization and profile feedback were explored as mechanisms to further

improve the profiling process, and were found to enhance both profiling accuracy and

the resulting recommendation usefulness. The ontological approach to profiling

provides a suitable basis to create a profile visualization that is understandable to

users.

The overall performance of the Foxtrot system was found to be favourably

comparable with other recommender systems when the difficult real-world problem

domain was taken into account. While the recommendations were far from perfect,

the system did provide a useful service to those users who chose to invest time and

effort in using the system.

105

Individual aspects of the system could be enhanced further to gain a relatively small

performance increase, such as increasing the training set size, fine tuning the

ontological relationships and trying alternative classification algorithms. However, the

main problem is that the systems profiler is not capturing about 70% of the user’s

interests. Obtaining an understanding of the current task a user is performing would

be advantageous here.

Knowledge of a user’s current task would allow the profiler to distinguish between

short and long term tasks, separate concurrently running tasks and adjust

recommendations accordingly. While 70% of users’ browsing interests were not in the

current profile’s top three topics, they were in the profile somewhere at a lower level

of relevance. Having separate profiles for each user task would allow a finer grained

profiling approach, significantly improving performance.

It is interesting to note that the visualization of profiles could be extended to visualize

the systems current task for a user. In this way direct task feedback by users could be

elicited in much the same way as profile feedback can be. Even so, task modelling is

far from easy to achieve in practice, but it does appears to be an important aspect of

user profiling and one that future versions of this system may well investigate.

The Foxtrot recommender system described in this chapter uses an ontological

approach to profiling, allowing profiles to be visualized and profile feedback

acquired. It was shown that visualizing profiles allows performance gains in profiling

and recommendation accuracy. Since profile visualization is a direct benefit of taking

an ontological approach to user profiling, this chapter thus provides the evidence to

prove the third sub-hypothesis of this thesis.

106

Chapter 7 Conclusions and future work

Chapter summary

Evidence from work in this thesis is collated in light of each sub-hypothesis.

The central hypothesis is proved.

The future direction of this work is discussed.

Information overload on the World Wide Web is an ever-growing problem. There are

too many pages to browse effectively, and searching requires an explicit search query,

which is all too often difficult to construct. What is needed is knowledge of where to

look for information and what information is worth looking at.

Recommender systems learn the type of thing that you and others are interested in.

They then use the knowledge from other people to recommend new items of

information that you have not seen before, which similar people to you have found

helpful before. Being collaborative in nature the knowledge of where to look and what

is good is pooled for the common good.

In conjunction with a traditional search service, recommendation is a powerful tool

that can increase the effectiveness of everyday work, removing some of the burden

involved with finding new information and regularly checking existing information.

7.1 Conclusions

The central hypothesis of this thesis is that representing user profiles using an

ontology offers advantages over traditional profile representations. In order to prove

this hypothesis, this thesis describes three sets of experiments aimed at proving three

sub-hypotheses.

The first sub-hypothesis is that inferences gained about profiles outweigh the loss of

information that occurs when a profile is constrained to use only ontological terms.

Chapter 4 described the Quickstep recommender system and two trials that

investigated what difference using an ontological approach to user profiling made

when compared to a more basic flat-list of topics. Profiles represented using the

ontology were able to infer new interests, thus adding interests to the profile that

107

could not be observed directly. The ontology also provided a mechanism for users to

share training examples and gave a common structure to each user’s interpretation of

the classification of research papers.

Experimentation found that not only did the ontology group exhibit superior

performance, but the overall performance of the recommender system was

comparable with recommender systems reported within the literature. Therefore, the

loss of information that occurs by using ontological representation was outweighed by

the profile accuracy gained from inference. In short, an ontological profile

representation is at least as good as the other, more traditional representations in the

recommender system literature.

The second sub-hypothesis is that using an ontology allows other knowledge-bases,

which use the same ontological concepts, to be used to draw on additional information

not normally available to the recommender system.

Chapter 5 describes an integration of the Quickstep recommender system with a

knowledge-base made up from personnel and publication information. The

knowledge-base is used to reduce the recommender system cold-start effect by

bootstrapping new profiles to the system. Because the ontological concepts in the

profiles appear within the knowledge-base, direct inference about potential topics of

interest to a new user can be made.

Experimentation found that the Quickstep recommender system cold-start problem

could be significantly reduced by bootstrapping from the knowledge-base. As such

this proves the second sub-hypothesis, and in doing so shows that representing a

profile using an ontological representation has not just comparable performance, but

clear advantages over more traditional representations.

The third sub-hypothesis is that explicit feedback on user profiles offers advantages

over traditional relevance feedback.

Chapter 6 describes the Foxtrot recommender system and an experiment that

investigates whether visualizing a profile and acquiring profile feedback increases the

performance of a recommender system. The user profiles could only be visualized

because they were represented in ontological terms, terms that the users were able to

108

understand. The ontology again allowed for inference to discover interests that were

not observed directly, but this time there was an additional mechanism to tie profiles

to the interests stated in the profile feedback provided by users.

Experimentation found that those users that provided profile feedback received more

useful recommendations and had better profiles than those users that relied only on

relevance feedback. This proves the third sub-hypothesis, and shows an additional

advantage that ontological profile representation can offer over more traditional

profile representation methods.

Taking the evidence shown from the three sub-hypotheses into account, it is clear that

the central hypothesis of this thesis is thus proved. Representing user profiles using an

ontology does offer advantages over traditional profile representations.

7.2 Future direction of work

7.2.1 Incremental improvements

The way to make immediate improvements in the performance of either the Quickstep

or Foxtrot recommender system is fairly clear.

Increasing the size of the training sets used will improve classification accuracy, as

would adjusting some of the classifier algorithm parameters such as the number of

boosting iterations or the value of k for the k-nearest neighbour algorithm. The

classification algorithm itself could be changed too, but any of these alterations would

probably only result in a small total increase of no more than 10% in the accuracy

figures. The effect this would have on the profiling and recommendations would be

less noticeable still.

The profiling algorithm could be improved, taking into account the shape of the time-

interest behaviour graphs that are acquired for each profile topic. This would increase

the profiling accuracy slightly, but the simple time-decay function is good at

capturing current interests anyway. The other transient or task related interests, missed

by both the Quickstep and Foxtrot recommender systems, would still be missing from

the profile.

109

The Pearson r recommendation algorithm is well used within the literature, and

performs very well. As such it is hard to see much improvement being made to the

basic collaborative recommendation algorithm. However, alternative algorithms could

be tried.

All these incremental improvements could easily be made, but the overall

performance gain would still be relatively small, leaving the recommender system still

far from 100% profiling accuracy.

7.2.2 Fully exploiting the ontology

The existing Quickstep and Foxtrot recommender systems use only a simple is-a

ontology. There is a potential for significant improvement in profiling accuracy by

maintaining more relationships that model various aspects of the academic domain.

Knowledge about concepts such as related research fields, common technologies

within a field, key authors and their publications and many more could all be used to

infer significantly more about a user’s browsing behaviour than just the topic.

Both the “project” relationship, indicating who is a member of which project, and the

“research area” relationships are perhaps the most promising in this respect. In an

academic or commercial organization there are likely to be many projects at any given

time, and the people on those projects are likely to share at least some project related

interests. Projects often have well defined research areas, so this links in “research

area” which already has strong links to academic paper classification. A rich, well-

maintained ontology could also link in well with task knowledge discussed in the next

section, maintaining knowledge about people, projects and the related technologies

they use.

Of course, maintaining such a large ontology is always a difficult and expensive task.

One potential for improving system scalability is to use modern clustering techniques

to discover classes for the ontology automatically, maybe as a support tool or

consistency checker. Certainly it would be possible to apply clustering to an existing

ontology of research topics to find areas of research where new topics are emerging,

flagging an area of the ontology as ripe for analysis and potentially ready for splitting

into a sub-topic or new area completely. Tools such as this would make ontology

110

maintenance more automatic, reducing the end cost in terms of human effort; this

would in turn improve the scalability of using ontologies in recommender systems.

7.2.3 Applying task knowledge to the user profiling

The next step to make a significant improvement in profile accuracy, and hence

recommendation usefulness, is likely to be exploring the concept of task modelling. If

the profiling algorithm can be made more task orientated, then the 70% or so of

interests missed by the Foxtrot system could be recognised and assigned to tasks other

than general interest. This would mean that the overall recommendations could be

more focused and of more active help to users’ everyday work, rather than something

they just check to keep up-to-date like a general reading list. Evidence for the need to

introduce task modelling can be found in chapter 7, from the results of evaluating the

Foxtrot recommender system.

This is far from a trivial task as acquiring knowledge of what tasks the user is doing

and when is particularly difficult to do in a non-obtrusive way. However, if

recommender systems, and in particularly user profiling methods, are to make major

progress in the future it is an area of research that must be addressed.

7.2.4 Utilizing the agent metaphor

A recommender system is really a type of interface agent [maes94]. All that would be

required to make the Quickstep or Foxtrot recommender systems into an interface

agent is to encapsulate the system in terms of an agent wrapper, with one copy of the

agent made for each user. The user’s recommender agent could then offer a set of

recommendations to its user, share knowledge of its user’s preferences with other

trusted agents and participate in a multi-agent systems, perhaps to trade information

about the user in order to build a better profile and acquire a better set of

recommendations.

Such a multi-agent system could provide the framework to bring in ontological

knowledge from other sources and task knowledge about the user. Potentially this

could be a very powerful technology indeed.

Another aspect of the interface agent metaphor is the potential for indirect HCI

[kay90]. Traditional direct manipulation style interfaces use a simple metaphor, such

111

as the desktop, to provide visual iconic representations of different aspects of the

computer, such as a filing cabinet. Actions can be sent to the computer by directly

manipulating icons via a mouse, and the results of actions seen immediately via direct

feedback. Indirect HCI is the opposite, where the user tells a trusted agent what is

required, for example “download all document files on the alpha project from this ftp

site”, and the agent carries out the users wishes behind the scenes. There are obvious

trust issues here and the need for users to feel in control, but indirect HCI offers

significant potential alongside direct manipulation as a power interface metaphor. In

many respects, the recommendation process is an indirect HCI process.

7.2.5 Social implications

Recommendation is not a new thing, since all that is required is a social medium for

which people can share ideas and value judgments. Internet discussion groups have

served this purpose for some time, as has email communication and simple verbal

exchanges in the company coffee room. A recommender system is really an

automated system that avoids some of the time consuming activities associated with

traditional media, such a regularly checking a bulletin board. As such, the

implementation of a recommendation service to an organization could have an impact

on the traditional social fabric within that organization. Would people feel less need to

participate in normal social activity, or would the recommendation facility simply

serve as an additional source of value judgements? Can recommendations be trusted

on sensitive issues, and who would compensate those people who acted on bad

information? These sorts of social issues have not been investigated in the literature

today, but could have a significant impact to an organization proposing to use such a

system.

7.3 The nature of ontology and recommender systems

Recommender systems and ontologies hold, as we explored in chapter 5, many

complementary features. Recommender systems are driven by the need to model

dynamic, behaviour information about people and are well placed to respond quickly

to the inevitable changing nature of people’s work. In many ways a recommender

system provides a window into the current state of a social organisation.

112

Ontologies on the other hand are mostly driven by knowledge engineering,

representing statically true facts about a domain. The knowledge they represent is

specifically chosen not to become out of date too quickly, and therefore tends to be

constantly useful over long periods. In this respect an ontology is a well engineered

window on the historical and more permanent state of an organisation.

Integrating these two approaches offers the potential for significant step forwards in

both areas. Recommender systems can overcome the cold start problem through

ontological bootstrapping, and if closely linked to external ontological structures can

respond dynamically to occasional, well-considered high-quality changes to those

ontological structures. Such ontological changes will occur as the years go by and an

organization changes, and provide a mechanism to keep the recommendation

framework up-to-date. On the flip side a recommender system will be responding to

the here and now, and as such is an ideal source of up-to-date information for an

ontology. It could also be used to identify emerging areas of ontological interests,

such as new research fields, through modern clustering techniques, for example, to

identify potential new classes. This could be fed back to the maintainers of the

ontology to trigger investigation and possible future change.

Recommender systems can thus drive ontological population, with dynamically

acquired information, and ontological development, through the identification of

emergent domain structure. Ontologies in return can bootstrap recommender systems

and provide a slowly evolving, well-considered structure for its recommendation

framework that closely matches the organisation it supports.

7.4 Recommendation is here to stay

Throughout history people have learnt from the experience of others, and with the

information systems of today the situation is no different. Be it the sharing of web

URLs, recommendation of exciting authors or simple gossip about the number one

music CD, recommendation is a social process we all participate in. It really does not

matter how much information is out there, be it on web pages, databases or rich well

maintained ontologies, the most useful information of all is the knowledge from other

experts as to what is worth knowing and what is not. This is why recommendation

113

plays a role in the information systems of today, and will continue to do so in the

information systems of tomorrow.

114

Appendix A Summary of reviewed systems

What follows is a summary of the recommender systems reviewed in this thesis. The

recommender systems are listed by application domain, so that similar types can be

compared together. The machine-learning terminology used here is described in the

glossary.

When reviewing commercial systems the exact algorithms used are often not

published, so can only be surmised. A more detailed review of commercial E-

commerce recommender systems can be found in [schafer99].

Quantitative results are detailed where seen so that comparisons (however difficult)

can be drawn between systems.

E-commerce domain

Amazon.com is a commercial book shop/recommendation service. Customers can rate

books they have read using a five star rating, and attach a textual review of the book.

This feedback information is shared and used to collaboratively recommend books to

other users. Recommendations are based on either the most frequently purchased

books or books purchased by similar people to the current user (based on a match

between the current user’s previously purchased books and other user’s previously

purchased books).

In addition to the recommendation service, a conventional search engine can be used

to find specific books.

Dietorecs [arslan02] is a recommender system for travel products and services. Users

fill out a set of requirements, which form the basis of a logic filter of potential

options. Case-based reasoning is used to identify the closest case within a case-base.

A similarity function is then used to determine a likely set of items that can be

recommended.

eBay is a commercial system which allows buyers and sellers to contribute to profiles

of other customers with whom they have done business. A satisfaction rating is

elicited from users, which is shared and used when recommending potential sellers.

115

EFOL [svensson01] is a shopping program in which recipes are selected and the

ingredients ordered on-line. Collections of recipes are created by users (using an

editor) and made available to others. Discussion about individual choices of recipe is

facilitated using a chat area. Collaborative recommendation is supported where

clusters of similar users are formulated (using a system editor) and made available for

others to take suggestions from.

Results: 12 people (all researchers) used the system on two separate occasions. Half

the users reported other people’s recipes influenced them, and the pictures of food

made them feel hungry.

Entrée [burke00] is a recommender system for a restaurant database. It uses a hand-

crafted knowledge-base of local restaurant information to perform similarity matching

based on user queries. The use of a knowledge-base reduces the cold-start problem.

Results: three year trial, 20,000 system interactions, random 55-60% recommendation

precision, collaborative filtering algorithm 65-70% precision.

Levis is a commercial clothing recommender system. Feedback on three categories

(music, looks and fun) is elicited from the user using a 7-point scale. Six items of

clothing are then recommended from the Levis range and feedback elicited on the

recommendations. Recommendations are thus based on what similar people preferred.

FAIRWIS [buono01] recommends trade fare information via an on-line catalogue

system. Interaction with the system such as web page access or printing is logged and

user profiles created. A Pearson r correlation finds similar profiles. Groups of similar

users are then stereotyped and the on-line information customized based on the

assumptions made for that stereotype.

Ghani [ghani02] describes a recommender system for an on-line clothing retailer. A

knowledge base of clothing information is maintained, recording the web pages of

various clothing retailers with price, clothing etc. information. Using a training set of

about 700 pages with log-odds ratio term weights, Expectation-Maximization is used

to dynamically create a profile for the user bases on their web browsing. Real-time

recommendations are thus generated to help the user, based on this dynamic profile.

116

LIBRA [mooney00] is a book recommender system. The Amazon.com database of

books is taken as a labelled dataset and represented using a bag-of-words

representation after removing stop-list words. Users provided book ratings on a 10

point scale and a naïve Bayes classifier used to classify books as interesting or not.

Results: 0.49 to 0.88 precision depending upon book genre in Amazon.com book

dataset.

MIAU [bauer02] recommends items from an electronic catalogue on cars. System

interactions and explicit feedback build up a value tree for catalogue items, forming

the basis of a user model. Stereotypical user profiles are also added to the system to

bootstrap it initially. A statistical average profile is computed from those users whose

profiles do not conflict with the current users profile. This average profile is used as

the basis for recommendations.

RIND [cöster02] is a recommender system to help with buying a PC. Hardware

configurations that other people have bought are recorded into a database. Users

provide attributes that they require from their computer, forming a feature vector. A k-

nearest neighbour classifier and naïve Bayes classifier are then used to compute the

most similar configuration option to the feature vector.

Ski-europe.com [delgado02] recommends ski holidays. User interaction with the ski

web site is recorded to form a user profile. Both a short-term session profile and

longer-term historical profile is formed. A cosine similarity algorithm is used to

provide ratings on potential holiday options, and thus recommendation of specific

packages.

Email filtering domain

Tapestry [goldberg92] is an email recommendation system. Users annotate documents

as they read them, and collaboratively share this information with others. Users’ email

habits are monitored and implicit feedback obtained (such as user x replied to email

y). Users can program filter rules into the system, which are regularly executed. Rules

are things like “I want all documents read by user x”. As the implicit feedback is

shared, the had-crafted rules are simple collaborative filters. A SQL like language

allows users to enter rules.

117

Expertise finder domain

Expertise Recommender [mcdonald00] assists technical support help desk staff in

finding the right expert for a task. Recommendations are based on prior requests, so

people who helped successfully with a problem before can be selected by the user to

do so again. The user can choose which pre-programmed heuristics are used to

recommend suitable people (e.g. select by minimum current workload).

Hand crafted heuristics mine an eight-year change-control database to extract initial

profile records of who can handle what sort of problem. Profile records are stored

with a vector-space model, with features identified using a set of thesauri (a stop list is

used but no stemming applied).

The recommender only filters the set of possible people to handle a task. An

interactive interface allows the help desk staff to pick the particular person they need.

Referral Web [kautz97] models a social network by monitoring social communication

sources (email, net news, home pages etc.) and extracting a network model. Heuristics

extract names of other people from an individual’s communications, which are then

refined by computing the Jaccard coefficient between the individual and other names.

Once built, the social network can be browsed, and questions asked of it.

Recommendations of related people to talk to about an area can thus be extracted (e.g.

list documents close to Tom Mitchell).

Movie domain

CBCF [melville02] Content-boosted collaborative filtering (CBCF) is a technique

used by Melville to produce a movie recommender system. A naïve bayes classifier is

run on the EachMovie dataset to provide content-based movie predictions. A Pearson-

r correlation is then used to recommend movies liked by other similar users.

Result: 4% improvement on absolute error when using hybrid approach as opposed to

just collaborative filtering.

MovieFinder.com is a commercial system that recommends movies. Previous interests

are recorded using a 5-point feedback scale, and new recommendations based on the

118

average customer rating. Individual movies also contain a textual prediction when

they are browsed.

MovieLens [rashid02] is a movie recommender system. The movies are held in a

database along with data on film genre etc. Users review movies and share this

feedback with others for collaborative filtering purposes. A simple popularity/entropy

recommendation strategy was used live in experiments. This project is ongoing and

the MovieLens dataset is shared for other systems to use as a benchmark dataset.

Nakif [funakoshi01] is a movie recommender, using the MovieLens dataset of movie

information. An incremental adaptation of the Pearson-r correlation algorithm is

applied to user ratings within the dataset.

Results: 0.7 precision, 1.0 recall on the MovieLens dataset.

Recommendation Explorer [efron01] is a film recommender system, using the

reel.com movie dataset. It uses latent semantic indexing (LSI) to discover interesting

movies from an initial seed of 10 or so movie ratings.

Results: 0.1 precision, 0.75 recall on the reel.com dataset.

Reel.com is a commercial system that recommends movies based on customer

reviews. The customers enter their movie requirements (genre, viewing format, price

etc.) and a set of recommendations is computed based on the habits of other

customers.

Tatemura’s [tatemura00] system uses virtual reviewers for recommendation of

movies. Users can explicitly rate movies they have seen. Users can collate movies

together to form a new viewpoint (a virtual reviewer), and ask for recommendations

from this viewpoint. A vector-space model is used to compute the similarity between

a particular viewpoint and known movies, and a scatter/gather method used to

navigate this space.

Music domain

CDNOW is a commercial music CD shop/recommender system. Customers provide

feedback as to which artists they prefer and own. Likes and dislikes can be indicated

119

and a set of 6 albums recommended upon request. Feedback on these

recommendations is also elicited.

A standard search facility is provided, and 10 other related albums to any single

album recommended. A list of albums the customer owns is maintained, and new

purchases are added to this list.

CoCoA [aguzzoli01] is a music recommender system. As users add and delete tracks

for their own music compilations, the recommender system will suggest potential

tracks. Case-based reasoning is used to classify tracks into genres, and a pearson-r

correlation used to find other people who have similar tastes to this user.

Recommendations are then based on a cosine similarity measure of those track

compilations liked by the set of similar people.

Results: 0.563 precision on Medline dataset.

Ringo [maes94] is a music recommender system. It uses collaborative filtering based

on user’s ratings of music albums. Virtual users are created to bootstrap the system,

providing some initial stereotypical ratings (e.g. a virtual Madonna fan). Pearson r

correlation coefficients are used to determine similarity.

Results: A real/predicted scatter plot is presented

News filtering domain

GroupLens [konstan97] collaboratively recommends Usenet newsgroup articles. A

ratings database containing user ratings for each message, and a correlations database

containing pairs of similar users, is maintained. A Pearson correlation algorithm was

used to find similar users (applied within single newsgroups since ratings were too

sparse to work for all newsgroups).

Results: Various Usenet use figures are presented.

PHOAKS [terveen97] recommends web references found in Usenet news articles. A

hand-crafted set of filter rules is used to classify web resources into categories. Web

references are then given a rating based on the number of authors that recommend the

reference (the idea being frequently referenced web pages are good ones). Each

newsgroup thus has a set of ranked recommendations to web pages.

120

Results: The filter rules have a precision of 88% with a recall of 87%. When

compared to the newsgroups FAQ, the 1st place URL had a 30% probability of

appearing in the FAQ.

P-Tango [claypool99] is an on-line newspaper article recommender. Users provide

explicit keywords of the type of articles they are interested in and the system

recommends other articles that may be of interest. A separate Pearson r correlation

and content-based overlap coefficient method is used, using a dynamically weighted

combination function to choose between methods of recommendation.

Web domain

Community Search Assistant [glance01] is a meta-search engine, which maintains a

database of previous search queries from which to recommend. No user feedback is

required, as similar search queries are identified using heuristics that find similarity

within the search graphs. User search queries are shared. Similarity is based on query

keyword correlation.

Fab [balabanović97] recommends web pages based on relevance feedback from users.

User’s rate recommended web pages on a 7-point scale. A set of collection agents

dynamically formulates useful groups of pages, with successful agents duplicated and

unsuccessful agents removed (success is a measure of feedback scores). Several agent

heuristics are used to create page groups, including using commercial search engine

results, random picks and human selected “cool” sites.

Selection agents pick pages from the collection agent topics for recommendation (thus

sharing topics between users). A profile is built from the terms of the pages (selection

agents have user profiles, collection agents have topic profiles).

Results: ndpm measure (distance of user rankings from profile rankings) 0.2 - 0.4

using Fab system, 0.75 – 0.5 using random selection

ifWeb [asnicar97] assists web navigation and recommends pages similar to example

pages provided by the user. A vector-based user profile is maintained using features

of web pages (host, size etc.) and a semantic network for term page co-occurrence

relationships. The users provide explicit feedback on page relevance (positive and

negative). A temporal decay function weights features within the user model, which is

121

represented using UMT. A tree interface can be displayed showing where the current

web page is located in relation to its links, and how interesting the links are from it

(based on correlation between the crawled pages and the user profile). A search for

similar documents is also available, using the same mechanism.

Results: Results on tests using 4 subjects on a limited set of documents (4-6). 9

sessions were conducted, with learning from feedback occurring between each

session. Precision 65%, ndpm 0.2

MEMOIR [de roure01] records user web navigation trials and provides a framework

for recommendation of web pages. Users must manually enter URL trials into the

system, which are then shared with all users. MEMOIR monitors user web browsing

and tries to correlate the current web position with a trial. Web pages (based on trial

end points) are recommended when a correlation is made. In addition to web pages,

similar users can be recommended based on keyword profiles derived from their

trials.

METIOREW [bueno01] is a web page recommender. A user model is created for each

user detailing pages visited and feedback provided. Profile keywords are extracted

from relevant web pages and stored in A TF representation. New pages are classified

for relevance using a naïve Bayes classifier. A Pearson-r correlation is used to find

similar users and thus discover people with similar objectives, allowing keywords to

be shared.

ProfBuilder [wasfi99] monitors web site use and recommends pages from that site to

new visitors. A vector-space user profile is constructed from the pages a visitor has

seen so far. The content of the pages make up the vectors using TF-IDF weightings.

Stemming and stop words are used to reduce vector dimensionality, and a vector

cosine measure used to measure vector similarity. For each page in the web site, the

probability of previous users moving down a link is computed from historical

navigation patterns. Both similar pages and pages historically likely to be navigated

from the current page are selected for recommendation.

QuIC [el-beltagy01] recommends web pages based on the currently browsed page. A

set of link-bases are created and shared by users. A custom clustering algorithm

clusters sets of web pages represented in a bag-of-words format using TF-IDF term

122

weighting. These clusters are associated with the pages in the link-bases. The users

currently browsed web page is then matched to a cluster and the most relevant link-

base of web pages recommended.

RAAP [delgado98] recommends web pages. It uses a multi-class profile

representation, but classes are not shared among users. Users explicitly rate pages as

interesting, and provide a class in which to place these pages. Negative examples are

inferred by monitoring deletion operations or provided explicitly. A TF-IDF

document weighting is used along with a modified Rocchio classifier. Stemming, stop

list and an information gain measures is used to reduce term dimensionality. Pearson-r

correlation is used to find similar users upon which to base recommendations.

Siteseer [rucker97] recommends web pages collaboratively. Bookmarks are used to

find similar users (by computing the overlap of a user’s bookmarks with the other

users’ bookmarks). Recommended URLs thus derive from the bookmark lists of

similar users.

Results: 1000 users, 18% confidence recommending 88% of the time.

SOAP [voss97] is a multi-agent system that recommends web sites. User, search and

recommender agents communicate to achieve recommendation for multiple users.

Users can submit queries to an agent, which calls a search engine. The search results

are associated with the query (taken as the “topic” of the resulting URLs). Users can

explicitly rate pages using a 5-point scale and can provide free-text annotations. User

bookmarks are used to infer interest in URLs too. Recommender agents use the topic

(query) and rating to filter known URLs and hence provide recommendations. Since

annotations and ratings are shared, any user can inspect them. Page content is

represented using keyword vectors.

SurfLen [fu00] monitors user browsing and recommends web pages. User browser

history logs are mined for association rules using the A-Priori algorithm. These rules

associate URLs with other URLs. When a user opens a known URL, the associated

URLs are immediately recommended.

Results: Some quantitative figures for 100 simulated users (based on Yahoo log data)

123

Other domains

Campiello [grasso99] is a recommender system for leisure activities in a local

community. Campiello elicits feedback on leisure events and places using postcard

type forms. Freeform textual comments and scaled ratings are recorded.

Recommendations can be requested on particular events and places, and both

contend-based and collaborative recommendation is used. The Pearson algorithm is

used to find similar users.

An internal database is maintained for a particular city, with a newscard reader

installed at the leisure facilities (such as within museums) to accept feedback and

provide recommendations.

ELFI [schwab00] recommends research funding program information to users. Users

are monitored as they use the system, and positive examples obtained from

observations of the type of thing they are interested in. This training set is applied to

both a simple Bayes classifier and k-nearest neighbour (kNN) classifier. Funding

information is held as feature vectors, and univariate significance analysis used to

reduce vector dimensionality. The classifiers are used to measure the similarity of

unseen database entries to the interesting training set. The closest matching pages are

recommended to the user.

Results: 220 users, divided into 5 groups. The user activity logs were used as

training/test data using a cross validation method. simple Bayes classifier 91-97%

accuracy, kNN 94-97% accuracy

OWL [linton99] recommends new Word commands that other users have used before.

User’s are monitored as they use Word and behaviour log files extracted. A statistical

method is used to recommend un-used Word commands that others have used.

Appendix B The Quickstep system design

This section details some of the design documents generated as part of creating the

Quickstep system.

Nine independent processes make up the Quickstep system, all interacting to provide

the recommendation service to its users. Figure B.1 shows the process map, detailing

124

how these 9 processes (the ellipses) interact. Basically, each process reads information

from a data store, processes it and stores the results to another data store. File locking

prevents multiple processes corrupting a data store. Processes are timed to run at

periods during the day and night, and sequenced so that the results of one process (e.g.

classification process) will be ready for the next process (e.g. profile builder).

Proxy server

Registration
page applet

Recommender
server

Compute topic
profile

Load new
docs

Compute
recommendations

Classify
new docs

URL log

User profiles

Document
set

Register

User
feedback

User
recommendations

User
bookmarks

Documents pending
classification

User
bookmarks URL log

User

Load new
training docs

Training set

Training set
updates

URL

New user

New user
All users

URL

URL history

User profile

Current interests

Classification feedback

Current interests,
Classification feedback

Users bookmarks

All bookmarks All URL’s

Users current interests

Users current interests

Recommendations

Labelled Documents

Document set

Recommendations

User password

Labelled examples

Docs

Docs

URL, label

URL,
doc info,
label

URL, label

URL,
label

Email

Recommender
page applet

Document
set

Labelled documents

Ontology

Ontology

Figure B.1 : Quickstep process map

Each process is functionally decomposed in the detailed design.

125

Validate
new user

Register

URL

HTML registration
page applet

Proxy registration
listen thread

HTML OK
page

HTML error
pages

Spawn new
proxy thread

Proxy threadRead requestSend request
on

Read response Write response Save URL to
log file

Load register

Update register

Save register
to file

Register log file

Users URL log file

Web server

User

User

User, URL,
Size, Time

Web page

User, URL,
Size, TimeWeb page

URL
requestURL

request

Web page

New
connection

User, port

User, port

User, email,
password

Valid | Invalid

User, email,
Password, port

User, email,
Password, port

All users

All users All users

All users All users

Page

Page

Shutdown

Figure B.2 : Proxy server design

The proxy server process handles requests by users for web pages. The web pages are

retrieved from the web without any modification, and the URL request logged (with a

time stamp). An on-line registration service is also supported, so users can register

with the Quickstep system and allocate a port number. The system emails users their

individual proxy port number, allowing them to enter the correct proxy server

configuration details into their browsers. Once allocated, a thread is spawned to

handle the new port connections. Figure B.2 shows the proxy server design.

126

HTML
recommendation

page

Connection socket

Load latest
recommendations

Accept user
feedback

HTML login
page applet

HTML view
profile page

Check password

Copy user
bookmarks

HTML add
example page

Update training set

Recommender
listen thread

Spawn recommender
thread

Write user
bookmarks to file

Read request
type Write response

Save user
feedback to file

Load user profile

Connection
socket

Connection
attempt

Connection
socket

Valid | invalid

Valid | invalid

User, password

PasswordBookmarks Example, label User feedback

User feedbackExample, label
Bookmarks

Example, label

Bookmarks

User,
password

Request/
updated profile

User feedback

User
feedback Recommendations,

Ontology

Recommendations

Re
co

mm
en

da
tio

ns

Re
qu

es
t

re
co

mm
en

da
tio

ns

User profile

User profile

User profile,
Training example labels

Load training set

Training example labels

Users bookmark log file Training set updates
log file

User feedback log file Register log file

User profile log file

User
recommendations

log file

Shutdown

Ontology

Ontology

Figure B.3 : Recommendation server/applet design

The recommender server process (and its associated recommender applet process)

allows the user to access their pre-computed recommendations. The users will load

the applet via a web page, and it will attempt to connect to the recommendation

server. A client-server set-up is required to overcome Java security restrictions, since

file access is needed on the host machine to read the recommendation log file. Once

the user has logged on (and the recommendation server authorised the logon), the

recommendations for that user will be sent to the recommendation applet for display.

These recommendations can be examined via the interface and feedback provided.

When the user logs out (or closes the applet by closing the browser) the feedback is

sent to the recommendation server and saved in the feedback log file. Figure B.3

shows the recommendation server/applet design.

127

Load text for new
training example

Example URL, label

Fetch document
From web

Convert doc
to text

Write training
example to log

Training set updates
log file

Training set log file

Example URL

Document

Text

Example, label,
Bag of words

Example URL,
label, text

Compute new
user profile

Old profile

Write new
Profile to log

User profile log file

New profile

New profile Document set
log file

User feedback
log file

Users URL
log file

Compute
recommendations

User recommendations
log file

Previous
recommendations

New
recommendations

Document
labels

Current topics
of interest

URL’s

Current interests,
Not interesting feedback

Document
labels

Ontology
Ontology

Figure B.4 : Training set compiler/profiler/recommender design

The training set compiler process loads the training set update log (created as part of

the feedback saved by the recommendation server) and loads each document. The

loaded documents are then saved into the training set log. The profile compiler loads

the classified document store and feedback logs, and computes a profile for each user.

The URL logs are correlated with the classified documents to build a time log of

topics browsed. Interest values can then be calculated from this topic history and the

feedback logs. The recommendation compiler loads the user’s profiles and correlates

them with the classified documents to build a ranked list of potential

recommendations. The top 10 recommendations are stored in the user’s

recommendation log. Figure B.4 details the design of these processes.

128

Write new doc
To file log

Read all docs
From file log

Training set log file

Document set
log file

User feedback
log file

User feedback

Document
set

Classify doc

User
feedback

Documents pending
classification

Read pending
documents from log

Documents pending
classification log file

Read user feedback
from log

Read training set
from log

Training
set

User feedback

User feedback

New documents

New documentsNew document

(Doc, (user, label)*)*

(Doc, (user, label)*)* Doc, (user, label)*

(Doc, (user, label)*)*

(Doc, (user, label)*)*

(Doc, (user, label)*)*

Doc, (user, label)*

Doc, (user, label)*

Figure B.5 : Classifier design

The classifier process loads the current training set and builds a new classifier each

time it is run. It then iterates over the pending document store and classifies each one.

These classified documents are then moved to the classified document store. This is a

slow process, so is run overnight. Figure B.5 details the classifier process.

User profile
log file

User profile

User
profile

Documents pending
classification log file

Read user profile
from log

User profile

Crawl web

Write to pending
Doc log file

Search web

Convert doc
to text

Read user bookmarks
from file

BookmarksUsers bookmark
log file

User
bookmarks

Bookmarks

Web server

User profileBookmarks

Keywords,
URL’s

Text

Document

New document

New document

Previous URL
log

URL modified date

URL Last modified date

Read user URL’s

User URL
Log files

Previous URL
Log files

URL

Crawl heuristics ignore unknown document extensions
ignore directories (unless from a bookmark)
save documents with > 1k of text
do not crawl outside host
crawl up to links of links of bookmark

Figure B.6 : Web crawler design

The last process is the web crawler. This loads new documents from the web by

crawling bookmarks (loaded into the system at the start) and loading each URL found

129

in the user’s URL log files. Only PS or PDF documents are kept (compressed versions

are decompressed and used too). The documents kept are saved in the pending

document store, ready for the classifier to handle them. Figure B.6 describes the web

crawler process.

URL log (date <tab> user <tab> size <tab> URL <newline>)*
(1 file per user) /URLlogs/<user>_url.log
Register (user <tab> password <tab> email <tab> port <tab> start date <newline>)*

/Register.log
/RegisterBackup.log

User recommendations (user <tab> date <tab> <type> <tab> title <tab> URL <tab> <topic list> <tab> confidence <newline>)*
(1 file per user) <type> = “recommendation” | “topic list”

<topic list> = “(“ (topic <tab>)* topic “)”
/Recommendations/<user>_recommend.log

User feedback (user <tab> date <tab> “classification info” <tab> URL <tab> (topic”,”)* topic <newline>)* |
(1 file per user) (user <tab> date <tab> “interest rating” <tab> URL <tab> interest rating <newline>)* |

(user <tab> date <tab> “URL jump” <tab> URL <newline>)* |
(user <tab> date <tab> “current interests” <tab> (topic <tab>)* topic <newline>)*
/Feedback/<user>_feedback.log

User profiles (user, (current interests)*, (interest history)*, system data)*
/Profiles.log

User bookmarks (bookmark <newline>)*
(1 file per user) /Bookmarks/<user>_bookmarks.log
Training set URL, date, (user, topic)*, bag of words
(1 file per URL) /TrainingSet/<doc id>.arff
Training set update list (URL, date, (user, topic)*)*

/TrainingSet/UpdateList.log
Document set URL, date, last modification date, (topic)*, bag of words
(1 file per URL) /DocumentSet/<doc id>.arff
Documents pending classification (URL, date, bag of words)*
(1 file per URL) /PendingDocuments/<doc id>.arff
Previous URL’s (URL <tab> date_last_checked <newline>)*

/PreviousURLs.log
Users URL log checklist (user <tab> date_checked_up_to <newline>)*

/WebSearchChecklist.log

Figure B.7 : Quickstep log files

The log file formats are also detailed here. This gives some idea of what sort of data is

being stored in each of the log files. Figure B.7 shows this.

Appendix C The Foxtrot system design

This section details some of the design documents generated as part of creating the

Foxtrot system.

Nine independent processes make up the Foxtrot system, all interacting to provide the

recommendation service to its users. Figure C.1 shows the process map, detailing how

these 9 processes (the circles) interact. Basically, each process reads information from

a data store, processes it and stores the results to another data store. File locking

prevents multiple processes corrupting a data store. Processes are timed to run at

periods during the day and night, and sequenced so that the results of one process (e.g.

classification process) will be ready for the next process (e.g. profiler).

130

URL log
generator

Squid
Web proxy

Interface
server

Profiler

Web search

Recommender

ClassifierUsers
URL log

Profiles

Documents

Register

Feedback Recommendations

Pending
documents

BookmarksUsers

Training set
compiler

Training set

Training set
update list

Interface
applet

Squid logs

Direct profile
feedback

Ontology

Web search
status file

Users

Network

Figure C.1 : Foxtrot process map

Each process is functionally decomposed in the detailed design.

131

Spider logs

Squid Connection code
Passes port

Log data using
Foxtrot format

Save users
entries

Parse port
numbers

Move log file to
Temp file

URL’s

Connection

Log data, port

Temp file

Filter entries

Backup
URL log

Users URL
log

URL’s
Squid log dataSquid log data

Squid log data

Squid log data

HTML, PS, PDF URL’s

URL’s

Timed batch
run

Figure C.2 : Squid web proxy and the URL log generator design

The Squid web proxy process handles requests by users for web pages. Squid is a

well-respected third party web proxy, written in C. It is open source and supports the

latest HTTP protocols. Foxtrot will use a modified version, logging port numbers with

the user’s normal URL logging information. As Squid rotates its log files a second

URL log generator process will regularly copy the log files, parse them and save each

URL log entry to a separate user log file. Figure C.2 shows these two processes.

132

Profiles

Load user
profile

Send user
profile

Send login
response

Load register Load user
recommendations

Load user
feedback

Load direct
feedback

Profiles Register Recommendations Feedback

Direct profile
feedback

Send user
recommendations

Send user
feedback

Send user
direct feedback

Send ontology

Handle applet
request

Send busy
response

Process search
request

Send search
results

Write feedback
To logs

Documents

Ontology

Profiles

User User

User

User

User
User,
request

Recommendations

Feedback

Profile feedback

Ontology

Load ontology

Search query

Results

User, feedback, profile feedback

Profile feedback

Feedback

Training set
update list

Document topic(s)

Figure C.3 : Interface server design

The interface server handles requests from the interface applet for recommendations.

The client/server set-up is needed to overcome security restrictions applied by most

browsers on applets. Once a login request is received the user’s recommendations,

profile and the current topic ontology are sent to the applet. Upon logout, any user

feedback is appended to the feedback log (and any topic labels added to the training

set update list). The server handles search requests by reading a search query and

spawning a thread to handle it. The applet will regularly check on the status of the

search query and will be sent a busy signal until it is complete. When ready, the

search result (a set of URLs) is returned. Figure C.3 shows the interface server

process.

133

Profiles

Feedback

Recommendations

Direct profile
feedback

Read direct
feedback

Results

Read profile

Display
profile

Read
feedback

Display
search results

Read search
result

Send search
request

Send final
feedback

Add direct
profile feedback

Remove direct
profile feedback

Display
login

Read
recommendations

Display
recommendations

Add results to
web page Ontology

Read
ontology

Popup topic
menu

HTML info

Send login
request

Figure C.4 : Interface applet design

The interface applet is run in a web page, and is Foxtrot’s interface to the users. Users

must first logon, where they are presented with a search interface and a set of

recommendations. These recommendations are sent by the interface server, and are

the URLs Foxtrot thinks will be most interesting to the user. These recommendations

can be examined, and feedback provided (paper quality, paper topic interest,

corrections to paper topic). A popup menu allows topic corrections to be effected. The

user can visually see their profile (if they are in the subject group with this feature

enabled) and provide absolute reference points for the interest graph; this is the direct

profile feedback.

The major functionality of Foxtrot to the users is the search system. Users can enter

keywords for title search, topics for category search etc. The final search query is sent

to the interface server and processes. The applet regularly checks with the interface

server to see if the search query has been handled. A busy indication (such as the

hourglass and a “searching…” message) is displayed until it has, when the full search

results are shown (a list of ranked URLs).

134

Upon logout the user’s feedback is sent to the interface server. Figure C.4 shows the

interface applet design.

Documents

Documents

Compute
profile errors

Load
ontology

Load
documents

Correlate URL’s
with topics

Load user
URL log

Load user
feedback

Correlate jumps
with topics

Compute
interest

User URL
log

User
feedback

Ontology User direct
feedback

Load users
direct feedback

Compute current
interest

Backup profile Save profile Profile

Backup
profiles

Timed batch
run

URL log Feedback

Ontology

(time,
URL browsed,topic)* (time, URL jump,topic)*

(time, feedback)*

(time, topic, interest)*(time, topic, interest)*

(time, topic,
error adjustment)*

Profile Profile

(time, topic, absolute interest)*

Figure C.5 : Profiler design

The profiler reads the URL logs generated by the web proxy, and correlates them with

the classified documents to formulate an interest event time-line. Feedback events are

also added as interest events. The interest events are then used to formulate a profile

via a time-decay function. If any direct profile feedback exists, this is also used to

improve the profile. Newly computed profiles overwrite the existing ones with a

backup made for later analysis work. Figure C.5 shows the profiler design.

135

Training
update list

Update list

Download
training document

Load training set
update list

Update training
document label

Save training
document

Training set Timed batch
run

Check for
garbage download

Load
training set

Training set

URL, label

Document
Document

Document

Figure C.6 : Training set compiler design

The training set compiler reads from the training set update list and downloads any

URLs found. They are then given a label and saved in the training set. If the document

exists already in the training set its label is updated. Figure C.6 shows the training set

compiler design.

136

Web search
status file

URL

Load status
file

Timed batch
run

Save status
file

Working copy of
status file

Update status
file

Download
URL

Crawl
bookmarks

Add URL
To crawl

Crawl list

Load
bookmarks

Bookmarks

Download
user URL’s

Load user
URL logs

User URL
log

Check for garbage
download

Save
document

Pending
documents

URL

URL

URL
Document

Document

(user, time, URL)*

Figure C.7 : Web search design

The web search process loads all URLs browsed by the user and adds them to the

pending set. They will be loaded later and classified by the classifier process. A set of

bookmarks are also crawled and downloaded if changed. A status file (which includes

document links and the last modified date) is kept to avoid re-loading documents that

have not changed. A garbage check is made before keeping downloaded documents as

the text conversion utility can sometimes fail and produce garbled words. Figure C.7

shows the web search design.

137

Pending
documents

Load pending
documents Training setLoad

documents

Documents

document

Timed batch
run

Load
training set

Build
classifier

Classify
document

Save
documents

Check document
creation date

(URL, time)*

document

document

classifier

Training
set

Figure C.8 : Classifier design

The classifier process loads all documents in the pending set and attempts to classify

them. The current training set is used to build the classifier. Once built the classifier is

applied to all pending documents and labels generated. The labelled documents are

added to the document set. Figure C.8 shows the classifier design.

138

Documents

Load
documents

Profiles

Load
feedback

Feedback

documents

Timed batch
run

Load
profiles

Calc top 3 topics
from profile

Calc possible
recommendations

User URL
log

Recommendations

Load users
URL log

Filter previously seen
recommendations

Compute recommendation
confidence

Rank
recommendations

Check last recommendation
read date

Remove unseen
recommendations

Load
recommendations

Add new
recommendations

Save
recommendations

profiles

3 Topics

documents

documents

URL log

documents

documents

documents

recommendations

date

documents

feedback

Figure C.9 : Recommender design

Lastly we have the recommender process, which takes the user profiles and

formulates a set of recommendations for each user. The top three topics are extracted

from the user’s profile and correlated with the classified documents. Previously seen

documents are removed so that the same thing is not recommended twice. The

remaining recommendation set is ranked by recommendation confidence (based on

quality feedback and classification confidence). The existing recommendation set is

then pruned for any unread recommendations and the new set appended. Thus, the

next time the user opens the interface applet this recommendation set will be read.

Figure C.9 shows the recommender design.

139

Glossary of machine-learning terms

For a more detailed description of machine-learning, [sebastiani02] provides an

excellent overview of machine-learning techniques, as does [mitchell97].

A-Priori algorithm – An optimisation algorithm for reducing the number of large

itemsets. Used in data mining (for example when finding association rules).

Backpropagation - Neural network algorithm for updating hidden layer weights. A

reliable technique, it is the backbone of many neural networks.

Bag of words – Document representation consisting of a list of words and the number

of times the words appear (term frequency).

C4.5 – ID3 variant, applying rule post-pruning and other additional techniques.

Cosine similarity – dot product measure of the distance between two vectors. This is

used to measure similarity between two documents when the vector space represents

document features.

Decision tree – Algorithm using a tree, with each node of the tree dividing the

hypothesis space using an attribute. As the tree is traversed, from top to bottom, the

hypothesis space is increasingly sub-divided until only one hypothesis is left.

Decision trees can be easily converted into classification rules.

Entropy – A measure of the “purity” of a collection of examples. It measures the

difference between the number of positive and negative examples (zero is a “pure” or

perfectly balanced set).

FAQ – Frequently Asked Questions – A document with often asked questions

answered aimed at helping novice users.

ID3 – Classic decision tree learning algorithm. Uses information gain to select node

terms.

ID4 – Variant on ID3.

Information gain – Measure of the expected reduction in entropy of a term.

140

Jaccard coefficient – No. of pages containing two entities / no. of pages with either

entities

Keyword vector – A vector of keywords. Vector has length equal to the number of

terms in a document set, and values are the frequency of each term (usually applied to

a document to give a document vector).

LSI – Latent semantic indexing [deerwester90]. A term weighting algorithm used for

dimensionality reduction, meant to bring out the “latent” semantic structure of the

vocabulary used in a document corpus.

Naïve Bayes classifier – Probabilistic classifier based around Bayes theorem. Term

probabilities are assigned to classes, and for a new document the probability of

belonging to any particular class is computed.

Nearest neighbour – Learning algorithm that measures the distance between

document vectors within a vector-space representation. The distance indicates

similarity of documents (the nearest neighbours) – cosine similarity is often used.

Neural network – Network of units, with inputs usually representing terms and

outputs classes. Connections between units have weights, which are trained by

loading examples (using a training rule such as backpropagation to update weights).

Pearson r correlation – Type of information measure, used to weight terms with

respect to positive and negative examples.

Reinforcement learning – Learning algorithm where actions produce rewards or

penalties, thus the most rewarding sequence of actions is reinforced (hence learnt).

Rocchio classifier – Learning algorithm, often used with TF-IDF weightings. Class

term vectors are computed by summing positive example weights and subtracting

negative example weights.

SMART – An indexing engine, which converts documents into document vectors. It

uses TF-IDF weighting.

Stemming – Removal of suffixes from words. Used to reduce the number of terms

that are synonyms in a textual document.

141

TF – Term frequency. The number of times a term (often a word or phrase) occurs

within a document.

TF-IDF – Term frequency – Inverse Document Frequency. Algorithm for assigning

weights to terms in a document set, biased to weight the most discriminating terms

highest.

142

References

[agrawal94] Agrawal, R. Srikant, R. “Fast Algorithms for Mining Association

Rules”, Proceedings of the 20th International Conference on Very

Large Data Bases, VLDB, 1994

[aguzzoli01] Aguzzoli, S. Avesani, P. Massa, P. “Compositional Recommender

Systems Using Case-Based Reasoning Approach”, 2001 ACM

SIGIR Workshop on Recommender Systems, 2001, Radisson Hotel

New Orleans, LA - USA

[aha91] Aha, D. Kibler, D. Albert, M. “Instance-based learning

algorithms”, Machine Learning, 6:37-66, 1991

[akt-ontology] http://www.aktors.org/publications/ontology/

[alani02] Alani, H., O’Hara, K., and Shadbolt, N. “ONTOCOPI: Methods

and Tools for Identifying Communities of Practice”, Intelligent

Information Processing Conference, IFIP World Computer

Congress (WCC), Montreal, Canada, 2002

[albert02] Albert, R. and Barabasi, AL. Statistical Mechanics of Complex

Networks. Review of Modern Physics, 74, 47, 2002

[arslan02] Arslan, B. Ricci, F. “Case-Based Session Modeling and

Personalization in a Travel Advisory System”, Workshop on

Recommendation and Personalization in e-Commerce (RPeC02),

Malaga, Spain

[asnicar97] Asnicar, F. A. Tasso, C. “ifWeb: a Prototype of User Model-Based

Intelligent Agent for Document Filtering and Navigation in the

World Wide Web”, In Proceedings of the Sixth International

Conference on User Modeling, Chia Laguna, Sardinia, June 1997

[balabanović97] Balabanović, M. Shoham, Y. “Fab: Content-Based, Collaborative

Recommendation”, Communications of the ACM 40(3), March

1997, 67-72

[bauer02] Bauer, M. Dengler, D. “Group Decision Making Through Mediated

Discussions”, Workshop on Recommendation and Personalization

in e-Commerce (RPeC02), Malaga, Spain

[becerra-

fernandez00]

Becerra-Fernandez, I. Facilitating the Online Seach of Experts at

NASA using Expert Seeker People-Finder. Proceedings of the 3rd

143

International Conference on Practical Aspects of Knowledge

Management (PAKM), Basel, Switzerland, 2000

[billsus98] Billsus, D. Pazzani, M. J. “A Personal News Agent that Talks,

Learns and Explains”, In Autonomous Agents 98, Minneapolis MN

USA

[bollacker98] Bollacker, K. D. Lawrence, S. Giles, C. L. “CiteSeer: An

Autonomous Web Agent for Automatic Retrieval and Identification

of Interesting Publications”, In Autonomous Agents 98,

Minneapolis MN USA

[breiman94] Breiman, L. “Bagging predictors”, Technical Report 421,

Department of Statistics, University of California at Berkeley, 1994

[brown00] Brown and Duguid 2000. “The social life of information”, Harvard

Buisness School Press

[shum00] Shum, S.B. Motta, E. Domingue, J. “ScholOnto: An Ontology-

Based Digital Library Server for Research Documents and

Discourse”, International Journal on Digital Libraries, 2000,

Springer-Verlag

[bueno01] Bueno, D. Conejo, R. David, A. A. ”METIOREW: An Objective

Oriented Content Based and Collaborative Recommending

System”, Twelfth ACM Conference on Hypertext and Hypermedia,

Hypertext 2001, Århus, Denmark

[buono01] Buono, P. Costabile, M. F. Guida, S. Piccinno, A. Tesoro, G.

“Integrating User Data and Collaborative Filtering in a Web

Recommendation System”, Proc. Third Workshop on Adaptive

Hypertext and Hypermedia, UM2001, Sonthofen, Germany

[burke00] Burke, R. “Knowledge-based Recommender Systems”, In: A. Kent

(ed.): Encyclopedia of Library and Information Systems, 2000, Vol.

69, Supplement 32.

[claypool99] Claypool, M. Gokhale, A. Miranda, T. Murnikov, P. Netes, D.

Sartin, M. “Combining Content-Based and Collaborative Filters in

an Online Newspaper”, Workshop on Recommender Systems:

Algorithms and Evaluation, ACM SIGIR '99

[cöster02] Cöster, R. Gustavsson, A. Olsson, T. Rudström , A. “Enhancing

144

Web-Based Configuration with Recommendations and Cluster-

Based Help”, Workshop on Recommendation and Personalization

in e-Commerce (RPeC02), Malaga, Spain

[de roure01] De Roure, D. Hall, W. Reich, S. Hill, G. Pikrakis, A. Stairmand, M.

“MEMOIR – an open framework for enhanced navigation of

distributed information”, Information Processing and Management,

37, 53-74, 2001

[deerwester90] Deerwester, S. Dumais, S. T. Furnas, G. W. Landauer, T. K.

Harshman, R. “Indexing by latent-semantic indexing”, Journal of

the American Society of Information Science 41(6), 1990, Pages

391-407

[delgado02] Delgado, J. Davidson, R. “Knowledge Bases and User Profiling in

Travel and Hospitality Recommender Systems”, 9th International

Conference for Information and Communication Technologies in

Travel & Tourism, ENTER 2002

[delgado98] Delgado, J. Ishii, N. Ura, T. “Intelligent collaborative information

retrieval”, In progress in Artificial Intelligence-IBERAMIA'98,

Lecture Notes in Artificial Intelligence Series No. 1484, 1998

[dmoz] dmoz open directory project, Project home page http://dmoz.org/

[domingos97] Domingos, P. Pazzani, M. “On the Optimality of the Simple

Bayesian Classifier under Zero-One Loss”, Machine Learning (29),

1997, 103-130

[dunlop00] Dunlop, M. D. Development and evaluation of clustering

techniques for finding people. Proceedings of the 3rd International

Conference on Practical Aspects of Knowledge Management

(PAKM), Basel, Switzerland, 2000

[efron01] Efron, M. Geisler, G. "Is it all About Connections? Factors

Affecting the Performance of a Link-Based Recommender

System", Proceedings of the SIGIR 2001 Workshop on

Recommender Systems, 2001, New Orleans, LA

[el-beltagy01] El-Beltagy, S. Hall, W. De Roure, D. Carr, L. “Linking in

Context”, Proc The Twelfth ACM Conference on Hypertext and

Hypermedia, Hypertext '01, ACM ACM Press

145

[eriksson99] Eriksson, H., Fergeson, R., Shahr, Y., and Musen, M. (1999).

Automatic generation of ontology editors. 12th Workshop on

Knowledge Acquisition, Modelling, and Management (KAW'99),

Ban, Alberta, Canada

[freund96] Freund, Y. Schapire, R. E. “Experiments with a New Boosting

Algorithm”, Proceedings of the Thirteenth International Conference

on Machine Learning, 1996

[fu00] Fu, X. Budzik, J. Hammond, K. J. “Mining Navigation History for

Recommendation”, In Proceedings of the 2000 Int. Conf. on

Intelligent User Interfaces (IUI'00). New Orleans, Louisiana

[funakoshi01] Funakoshi, K. Ohguro, T. “Evaluation of Integrated Content-based

Collaborative Filtering”, ACM SIGIR Workshop on Recommender

Systems, 2001

[ghani02] Ghani, R. Fano, A. “Building Recommender Systems Using a

Knowledge Base of Product Semantics”, 2002, Workshop on

Recommendation and Personalization in ECommerce (RPEC 2002)

Malaga, Spain

[glance01] Glance, N. S. “Community Search Assistant”, In Proceedings of

IUI’01, Santa Fe, New Mexico, USA, January 2001

[goldberg92] Goldberg, D. Nichols, D. Oki, B. M. Terry, D. “Using

Collaborative Filtering to Weave an Information Tapestry”,

Communications of the ACM, Vol. 35, No. 12, December 1992

[grasso99] Grasso, A. Koch, M. Rancati, A. “Augmenting Recommender

Systems by Embedding Interfaces into Practices”, In Proceedings

of GROUP'99, Phoenix, Arizona, November 1999

[guarino95] Guarino, N., and Giaretta, P. (1995). “Ontologies and Knowledge

bases: towards a terminological clarification”, Towards Very Large

Knowledge Bases: Knowledge Building and Knowledge Sharing.

N. Mars, IOS Press: 25-32

[harman86] Harman, D. “An Experimental Study of Factors Important in

Document Ranking”, Proceedings of 1986 ACM conference on

Research and development in information retrieval, September

1986, Pisa Italy

146

[kautz97] Kautz, H. Selman, B. Shah, M. “Referral Web: Combining Social

Networks and Collaborative Filtering”, Communications of the

ACM 40(3), March 1997, 63-65

[kay90] Kay, A. “User interface: A personal view”, In: Laurel. B. (ed.). The

art of Human-Computer Interface Design, Addison-Wesley, 1990,

191-207

[keogh99] Keogh, E. J. Pazzani, M. J. “Relevance Feedback Retrieval of Time

Series Data”, In Proceedings of SIGIR '99, Aug 1999, Berkley, CA

USA

[kobsa93] Kobsa, A. “User Modeling: Recent work, prospects and Hazards”,

In Adaptive User Interfaces: Principles and Practice Schneider-

Hufschmidt, M. Kühme, T. Malinowski, U. (ed) North-Holland

1993

[konstan97] Konstan, J. A. Miller, B. N. Maltz, D. Herlocker, J. L. Gordon, L.

R. Riedl, J. “GroupLens: Applying Collaborative Filtering to

Usenet News”, Communications of the ACM 40(3), March 1997,

77-87

[lang95] Lang, K. “NewsWeeder: Learning to Filter NetNews”, In ICML95

Conference Proceedings, 1995, 331-339

[larkey98] Larkey, L. S. “Automatic essay grading using text categorization

techniques”, In Proceedings of SIGIR-98, 21st ACM International

Conference on Research and Development in Information

Retrieval, Melbourne, AU, 1998

[lewis92] Lewis, D. D. “An evaluation of phrasal and clustered

representations of a text categorization task”, In Proceedings of

SIGIR-92, 15th ACM International Conference on Research and

Development in Information Retrieval, Kobenhaven, DK, 1992,

246-254

[linton99] Linton, F. “OWL - A Recommender System for IT Skills”,

Workshop Interacting with Recommender Systems, CHI' 99,

Pittsburgh, Pennsylvania, USA

[lotus01] Lotus, “Locating Organisational Expertise with the Lotus

Discovery Server”, White Paper, 2001

147

[maes94] Maes, P. “Agents that reduce work and information overload”,

Communications of the ACM 37(7) July 1994, 108-114

[maltz95] Maltz, D. Ehrlich, E. “Pointing the way: Active collaborative

filtering”, CHI’95 Human Factors in Computing Systems, 1995

[mccallum00] McCallum, A. K. Nigam, K. Rennie, J. Seymore, K. “Automating

the Construction of Internet Portals with Machine Learning”,

Information Retrieval 3(2), 2000, pages 127-163

[mcdonald00] McDonald, D. W. Ackerman, M. S. “Expertise Recommender: A

Flexible Recommendation System and Architecture”, In

Proceedings of the ACM 2000 Conference on CSCW, Philadelphia,

PA USA, December 2000

[melville02] Melville, P. Mooney, R. J. Nagarajan, R. “Content-Boosted

Collaborative Filtering for Improved Recommendations”, In the

Proceedings of the Eighteenth National Conference on Aritificial

Intelligence (AAAI-2002), July 2002, Edmonton, Canada

[middleton01a] Middleton, S. E. “Interface agents: A review of the field”,

Technical Report Number: ECSTR–IAM01-001, ISBN:

0854327320, University of Southampton, August 2001

[middleton02] Middleton, S. E. Alani, H. Shadbolt, N. R. De Roure, D.C.

“Exploiting Synergy Between Ontologies and Recommender

Systems”, International Workshop on the Semantic Web,

Proceedings of the 11th International World Wide Web Conference

WWW-2002, 2002, Hawaii, USA

[middleton01b] Middleton, S. E. De Roure, D. C. Shadbolt, N. R. "Capturing

Knowledge of User Preferences: ontologies on recommender

systems", In Proceedings of the First International Conference on

Knowledge Capture (K-CAP 2001), Oct 2001, Victoria, B.C.

Canada

[mitchell97] Mitchell, T. M. “Machine Learning”, McGraw-Hill, 1997

[mladenić96] Mladenić, D. “Personal WebWatcher: design and implementation”,

Technical Report IJS-DP-7472, Department for Intelligent Systems,

J. Stefan Institute, 1996

[mladenić99] Mladenić, D. Stefan, J. “Text-Learning and Related Intelligent

148

Agents: A Survey”, IEEE Intelligent Systems, 1999, 44-54

[mooney00] Mooney, R. J. Roy, L. “Content-Based Book Recommending Using

Learning for Text Categorization”, Proceedings of DL-00, 5th

ACM Conference on Digital Libraries, 2000, San Antonio, US,

ACM Press, New York, US

[porter80] Porter, M. “An algorithm for suffix stripping”, Program 14 (3), July

1980, pp. 130-137

[rashid02] Rashid, A. M. Albert, I. Cosley, D. Lam, S. K. McNee, S. Konstan,

J. A., Riedl, J. “Getting to Know You: Learning New User

Preferences in Recommender Systems”, In Proceedings of the 2002

International Conference on Intelligent User Interfaces, San

Francisco, CA, pp. 127-134

[resnick97] Resnick, P. Varian, H. R. “Recommender systems”,

Communications of the ACM 40(3) March 1997, 56-58

[rich79] Rich, E. “User modelling via Stereotypes”, Cognitive Science 3

1979, 329-354

[rucker97] Rucker, J. Polanco, M.J. “Siteseer: Personalized Navigation for the

Web”, Communications of the ACM 40(3), March 1997, 73-75

[schafer99] Schafer, J.B. Konstan, J. Riedl, J. “Recommender Systems in E-

Commerce”, In Proceedings of the ACM E-Commerce 1999

Conference, Denver, Colorado, 1999

[schwab00] Schwab, I. Pohl, W. Koychev, I. “Learning to Recommend from

Positive Evidence”, Proceedings of Intelligent User Interfaces

2000, ACM Press, pp 241-247

[sebastiani02] Sebastiani, F. “Machine learning in automated text categorization”,

ACM Computing Surveys, 2002

[shadbolt99] Shadbolt, N. O’Hara, K. Crow, L. “The experimental evaluation of

knowledge acquisition techniques and methods: history, problems

and new directions”, International Journal of Human-Computer

Studies (1999) 51, pp 729-755

[smart74] SMART Staff, “User's Manual for the SMART Information

Retrieval System”, Technical Report 71-95, Revised April 1974,

Cornell University (1974)

149

[svensson01] Svensson, M. Höök, K. Laaksolahti, J. Waern, A. “Social

Navigation of Food Recipes”, In Proceedings of SIGCHI’01,

Seattle, WA, USA, April 2001

[sycara92] Sycara, K. Guttal, R. Koning, J. Narasimhan, S. Navinchandra, D.

“CADET: A case-based synthesis tool for engineering design”,

International Journal of Expert Systems, 4(2), 1992, 157-188

[tatemura00] Tatemura, J. “Virtual Reviewers for Collaborative Exploration of

Movie Reviews”, In Proceedings of IUI’2000, New Orleans, LA,

USA, 2000

[terveen97] Terveen, L. Hill, W. Amento, B. McDonald, D. Crester, J.

“PHOAKS: A System for Sharing Recommendations”,

Communications of the ACM 40(3), March 1997, 59-62

[van

rijsbergen79]

van Rijsbergen, C. J. “Information Retrieval (Second Edition)”,

Butterworths, 1979

[voss97] Voss, A. Kreifelts, T. “SOAP: Social Agents Providing People with

Useful Information”, Proceedings of the international ACM

SIGGROUP conference on Supporting group work (GROUP'97),

Phoenix AZ, 1997, pp 291-298

[wasfi99] Wasfi, A. M. A. “Collecting User Access Patterns for Building

User Profiles and Collaborative Filtering”, In Proceedings of the

1999 International Conference on Intelligent User Interfaces, pages

57-64, 1999

[wenger99] Wenger, E. “Communities of practice: the key to knowledge

strategy. Knowledge Directions”, The Journal of the Institute for

Knowledge Management, 1, 48-93, 1999

[wenger00] Wenger, E. C., and Snyder, W. M. “Communities of Practice: The

Organizational Frontier”, Harvard Business Review. January-

February: 139-145. 2000

[witten00] Witten, I. H. Frank, E. “Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations”, 2000, Morgan

Kaufmann publishers.

150

Index

A

AdaBoostM1 algorithm.................... 41

Agents .. 14

A-Priori algorithm............................ 35

B

Backus-Naur format 29

Bagging .. 41

Bayes

Classifier 39

Naive classifier............................. 39

Theorem 39

Boosting ... 41

C

Case-based reasoning....................... 39

Cold-start problem 65

Cosine similarity 37

D

Decision trees 42

E

E-commerce 115

EM algorithm 40

F

Foxtrot

Approach...................................... 85

Empirical evaluation 94

Overview...................................... 83

G

Glossary ... 140

H

Hypothesis

Central hypothesis.........................10

First sub-hypothesis10

Second sub-hypothesis..................10

Third sub-hypothesis.....................10

I

Induction logic42

Information overload14

Information theoretic methods..........36

Interest-acquisition problem67

Interface agents14

K

kNN algorithm38

L

Latent semantic indexing37

M

Machine-learning17

Supervised learning.......................35

Unsupervised learning35

N

Neural networks................................42

O

OntoCoPI ..67

Ontology ...66

P

Pearson-r correlation.........................34

151

Constrained Pearson-r correlation 34

Probabilistic methods 39

Profile

Binary-class.................................. 32

Curve fitting 35

Knowledge-based......................... 33

Multi-class.................................... 32

Piece-wise representation............. 35

Stereotyping 35

Protégé 2000 67

Q

Quickstep

Approach...................................... 46

Boostrapping 76

Empirical evaluation 54

Overview...................................... 44

R

Recommender systems

Collaborative 16

Collaborative filtering 16

Content-based............................... 16

Definition 15

Hybrid .. 16

Review ... 14

References 143

Reinforcement learning.................... 42

Relevance feedback.......................... 30

Reviewed systems

E-commerce domain 115

Email-filtering domain................117

Expertise finder domain..............118

Movie domain118

Music domain119

News-filtering domain120

Other domains.............................124

Web domain................................121

Rocchio algorithm.............................37

S

Search engines15

Semantic web....................................15

SMART...47

Stemming ..47

Porter...47

stop list ..47

T

Term frequency - inverse document

frequency36

Term-frequency vector......................31

Thesis

Contribution12

Structure..11

Time-decay function33

U

User profiling....................................16

W

World Wide Web14

152

	Introduction
	Motivation
	Scope and the central hypothesis
	Scope
	Central hypothesis

	Thesis structure
	Contribution
	Declaration

	Recommender systems and Ontologies
	The problem of information overload
	Recommender systems can help
	User profiling in recommender systems
	Features of a recommender system
	Classification by technology
	Classification by work domain
	Seminal recommender systems
	Recommender system examples
	Ontologies
	Ontology example
	Conclusion

	Profiling techniques and machine-learning
	Backus-Naur Format
	Profile representations
	Ratings-based representations
	Relevance feedback

	Content-based representations
	Term-frequency vector representation
	Binary class profile representation
	Multi-class profile representation using an ontology

	Knowledge-based profile representation

	Profiling techniques
	Time-decay functions
	Pearson-r correlation
	Other profiling techniques

	Machine-learning techniques
	Data mining
	Information theoretic methods
	Instance-based methods
	Probabilistic methods
	Boosting and bagging
	Other machine-learning techniques

	The Quickstep recommender system
	The Quickstep problem domain
	Overview of the Quickstep system
	Empirical evaluation
	The Quickstep system approach
	Research paper representation
	Research paper classification
	Profiling algorithm
	Recommendation algorithm
	Research paper topic ontology
	Feedback and the quickstep interface
	Design choices made in the Quickstep system

	Experimental evaluation of Quickstep
	Details of the two trials
	Experimental data
	Post-trial questionnaires
	Discussion of trends seen in the experimental data

	Comparison with other work in the literature
	Conclusions from the Quickstep trials

	Cold-start recommendation and ontology interest acquisition
	Synergy between ontologies and recommender systems
	The cold-start problem
	Ontologies
	The interest-acquisition problem

	OntoCoPI
	Integrating Quickstep, OntoCoPI and the AKT ontology
	Example of integrated system operation
	Empirical evaluation of the integrated system
	Experimental approach

	Experimental results
	Conclusions

	The Foxtrot recommender system
	The Foxtrot problem domain
	Overview of the Foxtrot system
	Empirical evaluation
	Interesting lessons from the Quickstep system
	The Foxtrot System Approach
	Research paper representation
	Research paper topic ontology
	Research paper classification
	Interface
	Profiling
	Recommendation

	Experimental Evaluation
	Details of the trial
	Experimental Data
	Post-trial Questionnaire
	Discussion of the trends seen in experimental data

	Comparison with other work within the literature
	Conclusions from the Foxtrot trial

	Conclusions and future work
	Conclusions
	Future direction of work
	Incremental improvements
	Fully exploiting the ontology
	Applying task knowledge to the user profiling
	Utilizing the agent metaphor
	Social implications

	The nature of ontology and recommender systems
	Recommendation is here to stay
	E-commerce domain
	Email filtering domain
	Expertise finder domain
	Movie domain
	Music domain
	News filtering domain
	Web domain
	Other domains

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

