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Advanced Computational Methods & Modelling 
by Prof Simon J. Cox (sjc@soton.ac.uk) 

1 What is Computational Modelling? 

Computational modelling and the use of associated numerical methods is about 

choosing the right algorithm or technique for the job in hand. In these notes we will 

discuss some important methods and the general tips about possible problems which 

might be encountered, efficiencies of different methods, and stability of techniques are 

applicable to other numerical techniques. 

1.1 Practical Software Design 
Practical software design for computational modelling requires a balance between the 

time spent choosing the correct algorithm for a computation, performing the 

computation and analysing the results. Python or Matlab can be used for each of these 

tasks and often people use C or Fortran for larger or more complex cases. 

 

Algorithm Computation Results 

Matlab/ Python provides a 

high-level and simple way 

to design and check 

algorithms 

Matlab/ Python can be used 

to check small test cases. 

Consider translating/ 

compiling to C, C++ or 

Fortran for larger cases. 

The results from 

computational simulations 

can be analysed and post-

processed with Matlab/ 

Python. 

At the end of these notes there is a short appendix on Matlab for reference. For the 

Python examples in these notes, we use the Enthought Python build and IPython 

Console; the winpython build also provides similar functionality. On many Linux 

machines Python is now commonly installed already, though please refer to the local 

package manager for your operating system of choice to add in extra functionality. We 

also use Visual Studio with the free Python Tools for Visual Studio plug-in. 

1.2 Python notes 
In Python we assume that the following modules have been imported: 

» import scipy 

» import numpy 

» from scipy import linalg 

See the links at the end for more information on Python. 

 



16th Oct 2014 v0.75 
Advanced Computational Methods Notes for FEEG6002 (Advanced Computational Methods I) 
 

Copyright Author: Simon J Cox 2013-2015 
2 

2 Linear Equations  - Iterative methods 

2.1 Introduction 
Direct solvers such as Gaussian Elimination and LU decomposition allow for efficient 

solving. In this section we introduce iterative solutions methods. The choice of a direct 

method or an indirect method is a combination of the efficiency of the method (and in 

general iterative methods are more efficient), the particular structure of the matrix 

system, a trade-off between compute time and memory, and the computer architecture 

being used. 

Iterative methods work by refining a guess to the solution and converging as quickly as 

possible from that guess to the actual solution. You may have met iterative methods 

previously in, for example, the general purpose solution of non-linear equations– such 

as bisection or Newton-Raphson techniques (along with their more advanced cousins). 

Iterative methods for linear systems have become a widespread and powerful tool for 

solving the most complex scientific and engineering problems and can be extremely 

effective, especially when starting from a good guess at the final solution – and often 

effort is expended in making that initial guess as good as possible and which will start 

you off close to the final solution and yield a more rapid convergence to the answer. 

Their only drawback is that they may not necessarily converge to a solution for a 

particular matrix system. 

In this section we will assume familiarity with linear equations of the form: 
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and their solution by Gaussian Elimination, LU Decomposition, along with issues which 

can arise such as a singular matrix, ill-conditioning, and poor scaling. We will also 

assume knowledge of norms matrices and vectors. 

2.2 Jacobi Iteration 
Consider the set of equations (derived from [1] Ex 3.26) 
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These could be written: 
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And we could derive an iteration scheme which cycles through each of the values of x1, 

x2, and x3 in turn to refine an initial guess. If k is the kth iteration, then 
)1(

1

kx  is the next 

guess for x1: 
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Starting with an initial guess of (1, 2, 2) we obtain: 
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In general we can write the Jacobi scheme as: 
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The following table shows subsequent iterations 

k )(

1

kx  
)(

2

kx  
)(

3

kx  

0 1.0 2.0 2.0 

1 1.75 3.375 3.0 

2 1.84375 3.875 3.025 

3 1.9625 3.925 2.9625 

… … … … 

19 2.00000 4.00000 3.00000 

 

Python example code from [2]: 

from pprint import pprint 

from numpy import array, zeros, diag, diagflat, dot 

 

def jacobi(A,b,N=25,x=None): 

    """Solves the equation Ax=b via the Jacobi iterative method.""" 

    # Create an initial guess if needed                                                                                                                                                             

    if x is None: 

        x = zeros(len(A[0])) 

 

    # Create a vector of the diagonal elements of A                                                                                                                                                 
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    # and subtract them from A                                                                                                                                                                      

    D = diag(A) 

    R = A - diagflat(D) 

 

    # Iterate for N times                                                                                                                                                                           

    for i in range(N): 

        x = (b - dot(R,x))/D 

        pprint(x) 

    return x 

 

# Set up problem here 

A = array([[4.0, -1.0, 1.0],[4.0, -8.0, 1.0] , [ -2.0, 1.0, 5.0]]) 

b = array([7.0 , -21.0, 15.0]) 

guess = array([1.0,2.0,2.0]) 

 

# Solve 

sol = jacobi(A,b,N=25,x=guess) 

 

print "A:" 

pprint(A) 

 

print "b:" 

pprint(b) 

 

print "x:" 

pprint(sol) 

Executing yields: 

>>> python jacobi.py 

array([ 1.75 ,  3.375,  3.   ]) 

array([ 1.84375,  3.875  ,  3.025  ]) 

array([ 1.9625,  3.925 ,  2.9625]) 

array([ 1.990625 ,  3.9765625,  3.       ]) 

array([ 1.99414062,  3.9953125 ,  3.0009375 ]) 

array([ 1.99859375,  3.9971875 ,  2.99859375]) 

array([ 1.99964844,  3.99912109,  3.        ]) 

array([ 1.99978027,  3.99982422,  3.00003516]) 

array([ 1.99994727,  3.99989453,  2.99994727]) 

array([ 1.99998682,  3.99996704,  3.        ]) 

array([ 1.99999176,  3.99999341,  3.00000132]) 

array([ 1.99999802,  3.99999604,  2.99999802]) 

array([ 1.99999951,  3.99999876,  3.        ]) 

array([ 1.99999969,  3.99999975,  3.00000005]) 

array([ 1.99999993,  3.99999985,  2.99999993]) 

array([ 1.99999998,  3.99999995,  3.        ]) 

array([ 1.99999999,  3.99999999,  3.        ]) 

array([ 2.        ,  3.99999999,  3.        ]) 

array([ 2.,  4.,  3.]) 

array([ 2.,  4.,  3.]) 
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array([ 2.,  4.,  3.]) 

array([ 2.,  4.,  3.]) 

array([ 2.,  4.,  3.]) 

array([ 2.,  4.,  3.]) 

array([ 2.,  4.,  3.]) 

A: 

array([[ 4., -1.,  1.], 

       [ 4., -8.,  1.], 

       [-2.,  1.,  5.]]) 

b: 

array([  7., -21.,  15.]) 

x: 

array([ 2.,  4.,  3.]) 

 

Note: It is a sufficient condition for the matrix to be “strictly diagonally dominant” for 

the Jacobi method to converge from any given starting vector. 

A matrix is said to be strictly diagonally dominant if 
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(2.7) 

In the example above, we have: 

 Row 1: 114   

Row 2: 148   

Row 3: 125   

(2.8) 

and the method will always converge for any given starting vector. 

Self study: use these values in the Python code above and observe what happens: 

A = array([[ -2.0, 1.0, 5.0], [4.0, -8.0, 1.0] , [4.0, -1.0, 1.0] ]) 

b = array([15.0 , -21.0, 7.0]) 

guess = array([1.0,2.0,2.0]) 

Why? 

2.3 Gauss-Seidel (with relaxation) 

In the Jacobi scheme at each stage when we update the 
)1( k

ix at each iteration we 

always use the value for 
)(k

ix from the previous iteration– yet looking at the equations 

(2.5), why not use the value of 
)1(

1

kx , when we compute 
)1(

2

kx as this is available to us. 

Thus the equations would become: 
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Making this change and repeating the above makes the iteration to the solution (2, 4, 3) 

take only 10 steps- as per the table below 

k )(

1

kx  
)(

2

kx  
)(

3

kx  

0 1.0 2.0 2.0 

1 1.75 3.75 2.95 

2 1.95 3.96875 2.98625 

3 1.995625 3.99609375 2.99903125 

… … … … 

10 2.00000 4.00000 3.00000 

We can write the Gauss-Seidel method as: 
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Now we are using the new values of x as soon as they are available at each iteration.  

However, we could do even better and rather than just use the latest value of x we might 

effectively interpolate (or extrapolate) between the old value of x and the latest value of 

x by weighting between the two – this yields the Gauss-Seidel method with relaxation: 
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, (2.11) 

where ω is the relaxation parameter and if 0 < ω < 1 then we have “under-relaxation” if 

ω > 1 then we have “over-relaxation”. It is common to also call this method “Successive 

over relaxation (SOR)”. 

Self Study – see, for example, Example 2.17 in [3], which shows the method being 

applied to the equations similar (but NOT identical) to those that we will be working on 

in equation (4.48). Hint: If you save the code for the Example 2.17 as 

“gaussSeidel_run.py” then you will need to type “python gaussSeidel_run.py” at 

the command line making sure that “gaussSeidel.py” is in the same directory. 

 

Whilst it is not generally possible to compute the optimal value of ω before starting, a 

formula exists that could be used during run time to estimate it during the calculation 

and it can be tuned whilst the calculation progresses (see e.g. [3]) 

2.4 Other methods 
Other methods for the iterative solution of linear equations include 

 Generalized minimal residual (GMRES) method  

 The Alternating Direction Implicit (ADI) method 

 The (pre-conditioned) conjugate gradient method 

In general, however, many of the large systems of linear equations that we encounter in 

science and engineering are derived from the solution of partial differential equations 

and for these a whole range of other techniques have been developed. 

 



16th Oct 2014 v0.75 
Advanced Computational Methods Notes for FEEG6002 (Advanced Computational Methods I) 
 

Copyright Author: Simon J Cox 2013-2015 
7 

3 Ordinary Differential Equations – Euler, Runge Kutta, 
Advanced Methods 

3.1 Introduction 
Differential equations occur frequently in the solution of science and engineering 

problems to model devices, systems, and the world in which we live. You may already 

be familiar with a range of analytic techniques which can tackle a wide range of the 

most commonly occurring differential equations. In this section we show how 

computers can be also used to solve these equations and extend the range of equations 

for which we can obtain an accurate solution in reasonable time and also equations for 

which no closed form solution is possible. A good catalogue of differential equations is 

Zwillinger [4]. 

3.2 Example- Analytic case 
Suppose we had £1000 and deposited in a bank account earning 10% interest 

compounded continuously per year, how much would we have after 5 years (from [1] 

Ex 9.3)? The differential equation governing the amount of money, y, is: 

 yy 1.0  over [0,5] with y(0) = 1000  (3.12) 

We can derive an explicit formula for this. The equation is linear and separable with 

solution: 

 tCety 1.0)(   (3.13) 

where C is an arbitrary constant, but we know that at t = 0, y(0) = 1000: 

 CCey  01.0)0(1000  (3.14) 

So we have the formula: 

 teyty 1.0)0()(   (3.15) 

Thus at t = 5 for an initial investment of £1000, we would have 

 d.p.) (2 1648.72£1000)5( 51.0  ey  (3.16) 

3.3 Euler’s method 
Suppose we want to find an approximate solution to this “initial value problem”. Let [a , 

b] be an interval over which we want to find the solution to a well posed initial value 

problem ),( tyfy   with y(a) given. How might we approximate the solution? Let us 

construct a set of points {(tk , yk)} that approximate the solution so y(tk) ≈ y(t). We could 

chose mesh points and divide the interval up into M equal sub intervals and select mesh 

points 

 
khatk   for k = 0, 1, …, M where 

M

ab
h


  (3.17) 

(h is the step size). We can now begin to approximately solve 

 ),( tyfy   over [t0, tM] with y(t0) = y0. (3.18) 
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Assuming that y(t), )(ty , and )(ty   are continuous, we can use Taylor’s theorem to 

expand y(t) about t = t0. This permits us to write that for every value t there will be a 

value c1 between t0 and t such that: 

 2

012
1

000
))(())(()()( ttcytttytyty   (3.19) 

When ))(,()(
000

tytfty   and h = (t1 - t0) are substituted in, we have an expression for 

y(t1): 

 )())(,()()(
1

2

2
1

0001
cyhtytfhtyty   (3.20) 

If we assume that the step size h is small enough then we can ignore the term in h2 so 

we obtain for our set of discretely chosen points: 

 ),(
0001

ytfhyy   (3.21) 

This is known as Euler’s approximation to approximate the solution curve y = y(t). We 

repeat this step by step and generate a sequence of points that can approximate the curve 

and general we have 

 htt
kk


1
, ),(

1 kkkk
ytfhyy 


 for k = 0, 1, …, M -1. (3.22) 

 

A simple Euler solver based on [5] is: 

# call this file euler2.py 
# Based on 
# http://code.activestate.com/recipes/577647-ode-solver-using-euler-method/ 
# FB - 201104096 
import math 
import numpy as N 
import pylab 
# First Order ODE (y' = f(t, y)) Solver using Euler method 
# ta: initial value of independent variable 
# tb: final value of independent variable 
# ya: initial value of dependent variable 
# n : number of steps (higher the better) 
# Returns value of y at xb.  
def euler(f, ta, tb, ya, n): 
      h = (tb - ta) / float(n) 
      t = ta 
      y = ya 
      for i in range(n): 
          y += h * f(t, y) 
          t += h 
      return y 
 
if __name__ == "__main__": 
     
    # Print out a few sample iterations 
    print ("5      steps:", euler(lambda t, y: 0.1*y, 0, 5, 1000, 5)) 
    print ("60     steps:", euler(lambda t, y: 0.1*y, 0, 5, 1000, 60)) 
    print ("100    steps:", euler(lambda t, y: 0.1*y, 0, 5, 1000, 100)) 
    print ("1800   steps:", euler(lambda t, y: 0.1*y, 0, 5, 1000, 1800)) 
    print ("100000 steps:", euler(lambda t, y: 0.1*y, 0, 5, 1000, 100000)) 
 
    #Print out one in detail and compare with analytic answer 
    print 
    tmp = 1000 
    steps=5 
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    print('') 
    print("Total Steps = ",steps) 
    print('') 
 
    for i in range(steps): 
        print("Interval is:",5.0*float(i)/float(steps), 5.0*(float(i)+1.0)/float(steps)) 
        tmp = euler(lambda t, y: 0.1*y, 5.0*float(i)/steps, 5.0*(float(i)+1.0)/steps, tmp, 1) 
        print ("Interval", i+1,tmp, "Exact", 1000*math.exp(0.1*5.0*(float(i)+1.0)/steps)) 

            
    # Plotting of results 
    t2 = N.arange(1,101,1) 
    y= N.zeros(100) 
    for i in range (100): 
        y[i] = euler(lambda t, y: 0.1*y, 0, 5, 1000,t2[i]) 
    
    pylab.plot (t2, y) 
    pylab.title('Final solution for y at t=5 for M steps') 
    pylab.xlabel ('M'); pylab . ylabel ('y(t=5)') 
    pylab.show() 

 

Inside Python we can use  

>>> execfile("euler2.py") 

('5      steps:', 1610.51) 

('60     steps:', 1645.3089347785883) 

('100    steps:', 1646.6684921165452) 

('1800   steps:', 1648.6068013396516) 

If we run with 100,000 steps we get the solution 

('100000 steps:', 1648.719209806687)  

This agrees with the analytic solution (3.16) above to 2 decimal places: £1648.72. 

Another useful reference implementation is at [6], which also enables you to compare 

the Python implementation with other languages such as C. 

A graph showing how the solution converges as we add more steps and thus decrease 

the interval size for each step is: 
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It takes a very small step size to get to an accurate solution (and bear in mind that at 100 

iterations we are still only at £1646.67 as the approximate solution). Why? Each 

successive iteration continues from the result of the previous iteration, so small errors 

accumulate unless we proceed in very small steps (small h or equivalently large M). 

Let us re-run and watch each iteration: 

('Total Steps = ', 5) 

 

('Interval is:', 0.0, 1.0) 

('Interval', 1, 1100.0, 'Exact', 1105.1709180756477) 

('Interval is:', 1.0, 2.0) 

('Interval', 2, 1210.0, 'Exact', 1221.40275816017) 

('Interval is:', 2.0, 3.0) 

('Interval', 3, 1331.0, 'Exact', 1349.858807576003) 

('Interval is:', 3.0, 4.0) 

('Interval', 4, 1464.1, 'Exact', 1491.8246976412704) 

('Interval is:', 4.0, 5.0) 

('Interval', 5, 1610.51, 'Exact', 1648.7212707001281) 

These small errors accumulate as the method proceeds. Geometrically each step we are 

taking a tangent from the function at each point and moving forward along it and then 

taking a new tangent and repeating. 
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Figure 1 Geometric Interpretation of Euler’s Formula (see also 7). We use the derivative 

at the start point of each interval and then extrapolate to find the next point. 

We could clearly do better by taking high order terms in the Taylor expansion of (3.19) 

and ensure that our approximation to the curve is better. However, this involves 

growing complexity in computing the derivatives and (potentially) prior knowledge of 

how many such terms to take to enable the function to be represented accurately. We 

can also obtain second order accuracy by using the midpoint of the interval to estimate 

the derivative (see Figure 2). 

 

 

Figure 2 Geometric Interpretation of the “Midpoint method” (see also 7). We use the 

initial derivative at each step and then find a point halfway in the interval and use the 

derivative there across the whole interval to work out the next approximate value for the 

function. 

But can we do even better? 

3.4 Runge-Kutta Method 
This class of methods effectively use a Taylor series of method of higher order and a 

fourth order method is usually a good compromise between speed and efficiency of the 

method and complexity of implementation, before it is probably better to consider some 

other ways to get an even better solution. 
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We can build on the concept of the midpoint method to take a trial point in the middle 

of the interval but take into account (in our notation) both y and t (or x more generally). 

Geometrically we can view this as  

 

Figure 3 Geometric Interpretation of 4th order Runge-Kutta Method (see also 7).We 

evaluate the derivative four times (1, 2, 3, 4) and then estimate the new function value 

f(t1, y1)- see body of text for formulae and details. 

We compute the next point as follows: 

 
443322111 kwkwkwkwyy kk  ,  (3.23) 

where (with a1, a2, a3, b1, b2, … b6, w1, w2, w3, and w4 constants to be found): 
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.  (3.24) 

This the k1, … k4 are values being calculated at various points across the interval. After 

some derivation (see [1, p459]), we find that 

 a1 = 2
1  (chosen); a2 = 2

1 ; a3 = 1 

b1 = 2
1 ; b2 = 0 (chosen); b3 = 2

1 ; b4 = 0 ; b5 = 0 ; b6 = 1  

w1 = 6
1 ; w2 = 3

1 ; w3= 3
1  and w4= 6

1 . 

(3.25) 

Which gives 
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22 4321
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yy kk


 ,  (3.26) 

Where 



16th Oct 2014 v0.75 
Advanced Computational Methods Notes for FEEG6002 (Advanced Computational Methods I) 
 

Copyright Author: Simon J Cox 2013-2015 
13 

 

),(

)
2

,
2

(

)
2

,
2

(

),(

34

23

12

1

hfyhtff

f
h

y
h

tff

f
h

y
h

tff

ytff

kk

kk

kk

kk









,  (3.27) 

These correspond to the points 1, 2, 3, 4 marked in Figure 3. A complete derivation of 

this method is given in e.g. [1, 8 or 9]. Along with the geometric view of the method, 

we can also think of the derivation and equations in a similar way to how you may have 

used Simpson’s rule for numerical integration. 

3.5 Example – Runge-Kutta 
(Repeated from previous analytic example). Suppose we had £1000 and deposited in a 

bank account earning 10% interest compounded per year, how much would we have 

after 5 years (from [1] Ex 9.3)? The differential equation governing the amount of 

money, y, is: 

 yy 1.0  over [0,5] with y(0) = 1000  (3.28) 

The solution (see above section 3.2), for an initial investment of £1000, is 

 d.p.) (2 1648.72£1000)5( 51.0  ey  (3.29) 

Code for this is in [10] – you will need printSoln.py and run_kut4.py for this and below 

is the modified version of example 7.4 that solves the above example.  

#!/usr/bin/python 
## Call this runge_kutta.py 
## example7_4 - modified by SJC to solve the example from Euler method section 
from numpy import array,zeros 
from printSoln import * 
from run_kut4 import * 
def F(x,y): 
    F = zeros(1) 
    F[0] = 0.1*y[0] 
    return F 
 
x = 0.0                 # Start of integration 
xStop = 5.0             # End of integration 
y = array([1000.0])     # Initial values of {y} 
h = 1.0                 # Step size 
freq = 1                # Printout frequency 
 
X,Y = integrate(F,x,y,xStop,h) 
printSoln(X,Y,freq) 
print ('Final answer:',Y[len(Y)-1]) 
raw_input("Press return to exit") 

Running this at the command line using “python runge_kutta.py” gives 

        x         y[ 0 ] 

   0.0000e+00    1.0000e+03 

   1.0000e+00    1.1052e+03 

   2.0000e+00    1.2214e+03 

   3.0000e+00    1.3499e+03 

   4.0000e+00    1.4918e+03 
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   5.0000e+00    1.6487e+03 

('Final answer:', array([ 1648.7206386])) 

So even with a step size of 1 we get a solution of 1648.72£ (2 d.p.) which agrees with 

analytic answer… that took >10,000 iterations to achieve using Euler’s method. 

Another useful reference implementation is at [11], which also enables you to compare 

the Python implementation with other languages such as C. 

 

 

3.6 Beyond Runge-Kutta 

 Adaptive methods allow us to take big steps when the function is smooth, but 

tiptoe more carefully when the function is varying more. A typical scheme might 

try a step size of h and then 2h and adapt accordingly. 

 More sophisticated methods e.g. Runge-Kutta-Fehlberg (RKF45) is a further 

refinement of the method which also use a 4th order and 5th order approximation 

which enable the truncation error to be estimated and thence the step size to be 

adapted. 

 The Bulirsch-Stoer Algorithm takes this one step further (no pun intended) and 

carefully extrapolates to what would happen if the step size was zero and 

judicious choice of approximation of the function to produce what is generally 

considered to be a very good way to solve a wide class of ordinary differential 

equation problems. 

 Higher order ODEs can be converted to sets of first order equations which can 

be solved using the methods we have described. 

 Buyer beware that methods can get stuck if the function has discontinuities in 

the range… 

 You should also familiarise yourself with the “stability” of a method and 

whether the underlying equations themselves are “stiff” before blindly using a 

blackbox solver. 

3.7 Other Ordinary Differential equations 

 Initial value vs. two-point boundary value problems. We have considered 

ordinary differential equations that have an initial value so only satisfy a 

boundary at one end – the start in our example. The class of two-point ODEs are 

those where there are boundary conditions at two points: usually the start and 

end, though other cases (such as at interior or singular points) are generally 

considered as in the same class. 

 The Shooting method is commonly used to solve these problems see e.g. [7]. 
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4 Partial Differential Equations – applied methods and 
techniques for simple PDEs 

4.1 Introduction 
Along with the Ordinary Differential Equations we have considered previously, partial 

differential equations are another way in which we model problems in science and 

engineering. Their solution occupies a large amount of the time consumed on large scale 

high performance computers for tasks such as computational fluid dynamics, 

computational mechanics and computational electromagnetics which are used for 

modelling systems as diverse in size scale and complexity as climate and environmental 

modelling, the Universe, cars, planes, trains, ships and optical devices. Specialist 

courses exist which will study an individual application domain and its equations in 

huge detail and often highly tuned and specialised computational methods (and indeed 

even whole computer architectures and subsystems) have been developed for a 

particular system. Our purpose in this section is to introduce some of the key concepts 

and methods that underpin this universe of modelling possibilities. 

4.2 Finite Difference methods 
Our aim with these methods is to replace the differential operator with an approximation 

which averages over nearby points and by using a mesh of such points we derive a set 

of simultaneous equations to solve. 

Consider the following two Taylor expansions of a function f(x) around x at a (small) 

distance, h (see e.g. [3]) 
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  (4.30) 

If we subtract these two equations we get 
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Rearranging gives 
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   (4.32) 

This is known as the first central difference approximation for the first derivative of 

f(x). Higher order partial differential equations may contain terms where these 

derivatives are required to be discretized, see e.g. [4]. 

If, instead, we add them two together we get 
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Rearranging gives 
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   (4.34) 
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This is known as the first central difference approximation for the second derivative of 

f(x). It is possible to derive these for higher order derivatives to various orders of 

accuracy (see e.g. [4] for listings of these “stencils”) 

4.3 Example: Laplace equation in 1D 
A simple time dependent heat equation reduces to Laplace’s equation in steady state 

(once the system has come to equilibrium). This can be written as: 

 
0

2

2


dx

ud
 with boundary conditions for u(x)  (4.35) 

for a 1 dimensional system: we will consider simple fixed boundary conditions for the 

problem. 

Consider the problem which represents an infinitely thin rod of length 1 held at 0 

degrees at one end and 100 degrees at the other. 

 
0

2

2


dx

ud
 with u(0)=0 and u(1) = 100  (4.36) 

Discretizing gives us: 

 
0

)()(2)(
)(

2





h

hxuxuhxu
xu with u(0)=0 and u(1) = 100  (4.37) 

At each point on the rod, where the mesh separation is h. 

 

(A) Let us consider just 1 unknown mesh point 

 

 

Figure 4 Laplace equation in 1D: 1 (unknown) mesh points 
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  (4.38) 

Since u-1 = 0 and u1  = 100, we have: 
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  (4.39) 

Thus 
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  (4.40) 

 

(B) Now let us consider 2 (unknown) mesh points 

 

Figure 5 Laplace equation in 1D: 2 (unknown) mesh points 
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So: 

 

01002
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uu

uu
  (4.42) 

As a matrix this is 
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 (4.43) 

Solving gives 
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 (4.44) 

 

(C) Now let us consider 3 (unknown) mesh points 
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Figure 6 Laplace equation in 1D: 3 (unknown) mesh points 
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  (4.45) 

As a matrix this is 
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 (4.46) 

Solving gives 

 


































75

50

25

2

1

0

u

u

u

 (4.47) 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Python gives 

>>a=[[-2,1,0],[1,-2,0],[0,1,-2]] 

>>b=[[0],[0],[-100]]                                                                                                                                                                                          

>>linalg.solve(a,b) 

array([[ 25.], 

       [ 50.], 

       [ 75.]]) 

The pattern is clear and the solution makes sense – remember that we can solve this 

using the techniques from the first section (though there are specialised methods for 

“tri-diagonal matrices”). 

 

General pattern is for (N+2) mesh points: 
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 (4.48) 

 

Whilst these solutions are straightforward our aim was to show the process of going 

from the differential equation to a set of linear equations that we can solve. 

4.4 Example: Steady State for Heat equation in 2D 
The generalisation of (4.35) in two dimensions is 
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yxu

x

yxu
 with boundary conditions for u(x,y)  (4.49) 

We can discretize this in the x and y direction: 
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yx h

hyxuyxuhyxu

h
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with u(x, 0)=100, u(x, 1)=0, u(0, y), and u(1, y) = 0 and hx and hy the 

mesh size in x and y respectively 

 (4.50) 

If we use a uniform grid then hx = hy = h and we have 
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h
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  (4.51) 

We can view this as a “stencil” for averaging over nearby points (where “u” will remain 

as entries that go into a matrix and v is introduced as a discretisation for the domain) 

The stencil we use is 
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  (4.52) 
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Figure 7 Stencil for first central difference approximation for the second derivative of 

function 

Figure 8 shows this for a plate with fixed boundary conditions on the edges 

 

 

Figure 8 Laplace equation in 2D with mesh. 

The plate is of unit size so 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and the top edge is held at 100K 

Note on index conversion. For an N x N uniform mesh of points so that h = 1/(N+1) we 

have  

 )(),( jNiujiv    (4.53) 
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v u 

i j k = i*N+j 

0 0 0 

0 1 1 

0 2 2 

1 0 3 

1 1 4 

1 2 5 

2 0 6 

2 1 7 

2 2 8 

Figure 9 Index conversion in 2D 

So vi,j can be used easily with a stencil representing a particular way of approximating 

the derivatives and uk are indexes into an ACTUAL matrix. We have indexed from “0” 

in Python and C style. Other languages may index from 1. 

 

 (A) With 25 mesh points (so 9 unknowns) we have 

(i) First row 
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(i) Second row 
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(i) Third row 
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  (4.56) 

We can write this as a matrix 
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(4.57) 

We can solve this using one of the techniques from the first section of the notes. As you 

can imagine for even more mesh points the matrix rapidly gets large and sparse. We 

need to unwrap the solution for u to map onto the mesh for v. 

 

Figure 10 Laplace equation in 2D with mesh with 9 unknowns 

 

For larger matrices we probably need a better way than typing it in by hand. This is the 

whole matrix for n = 5: 
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[[-4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 1 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  1 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  1 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  1 -4  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 1  0  0  0  0 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  1  0  0  0  1 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  1  0  0  0  1 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  1  0  0  0  1 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0  1  0  0  0  1 -4  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  1  0  0  0  0 -4  1  0  0  0  1  0  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  1  0  0  0  1 -4  1  0  0  0  1  0  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  0  1  0  0  0  1 -4  1  0  0  0  1  0  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  1  0  0  0  1 -4  1  0  0  0  1  0  0  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  0  0  0  0  1  0  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  1  0  0  0  0 -4  1  0  0  0  1  0  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  1  0  0  0  1  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  1  0  0  0  1  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  1  0  0  0  1  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  0  0  0  0  1] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0 -4  1  0  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  1  0  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  1  0] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4  1] 

 [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1 -4]] 

 

Code Sample for the method – you may add your own notes to this. Note: 

1) I deliberately have left in other debug/ testing other information to illustrate 

what a “live” piece of code might look like. 

2) This code is NOT designed for efficiency, it is designed to show how all the 

steps work. 

3) For demonstration of the principles, I have not been strict on ordering/ 

unwrapping operations matrix coordinates and real space (x,y). 

 
import numpy,scipy 
 
def embed(a,value): 
    # Embed Matrix into an array with the boundary conditions in 
    # a is the matrix and value is the value on the (fixed) boundary 
    # http://wiki.scipy.org/NumPy_for_Matlab_Users 
    size=a.shape[0] 
    #print size 
    a_tmp=numpy.zeros([size+2,size+2]) 
        
    for i in range(1,size+1): 
        for j in range(1,size+1): 
            a_tmp[i,j]=a[i-1,j-1] 
 
    for i in range(0,size+2): 
        a_tmp[0,i]=value 
    return a_tmp 
 
#Set up the printing of the array so it shows "nicely" 
numpy.set_printoptions(precision=0,linewidth=120) 
 
#n is the size of the mesh with the unknowns in it 
# So the matrix will be of size (n+2) 
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n=3 
n_full=n+2 
 
#The h value is 1/(n+2) : taking into account the intervals 
#to get to the boundary 
h=1.0/n_full 
 
 
# Clear matrix and set it up 
a=numpy.zeros([n**2,n**2]) 
 
#Check indices 
#for i in range(0,n): 
#    for j in range(0,n): 
#        print i,j,i*n+j 
#print('===============') 
 
print('===============') 
print('Interior') 
 
 
#Build full matrix 
#Interior 
for i in range(1,n-1): 
    for j in range(1,n-1):      
        north = (i-1)*n+j 
        west  = i*n+j-1 
        index=  i*n+j 
        east  = i*n+j+1 
        south = (i+1)*n+j 
 
        a[index,north]=1 
        a[index,west] =1 
        a[index,index]=-4 
        a[index,east] =1 
        a[index,south]=1 
        print i,j,index 
 
print(a) 
#Edges 
 
#North/ Top    (nothing further North) 
print('===============') 
print("Top") 
 
# First row number 
i=0 
#Note that the range (1,n-1) means that we JUST middle ones 
#e.g. if n=5 then range(1,4) =[1,2,3] 
for j in range(1,n-1): 
    #north = (i-1)*n+j 
    west  = i*n+j-1 
    index=  i*n+j 
    east  = i*n+j+1 
    south = (i+1)*n+j 
 
    #a[index,north]=1 
    a[index,west] =1 
    a[index,index]=-4 
    a[index,east] =1 
    a[index,south]=1 
    print i,j,index 
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#West/ Left    (nothing further West) 
print('===============') 
print("West") 
 
j=0 #First Column Number 
 
for i in range(1,n-1): 
    north = (i-1)*n+j 
    #west  = i*n+j-1 
    index=  i*n+j 
    east  = i*n+j+1 
    south = (i+1)*n+j 
 
    a[index,north]=1 
    #a[index,west] =1 
    a[index,index]=-4 
    a[index,east] =1 
    a[index,south]=1 
    print i,j,index 
 
#East/ Right   (nothing further East) 
print('===============') 
print("East") 
 
j=n-1 # Last Column number 
for i in range(1,n-1): 
    north = (i-1)*n+j 
    west  = i*n+j-1 
    index=  i*n+j 
    #east  = i*n+j+1 
    south = (i+1)*n+j 
 
    a[index,north]=1 
    a[index,west] =1 
    a[index,index]=-4 
    #a[index,east] =1 
    a[index,south]=1 
    print i,j,index 
 
#South/ Bottom (nothing further South) 
print('===============') 
print("South") 
 
i=n-1 # Last row number 
for j in range(1,n-1):      
    north = (i-1)*n+j 
    west  = i*n+j-1 
    index=  i*n+j 
    east  = i*n+j+1 
    #south = (i+1)*n+j 
 
    a[index,north]=1 
    a[index,west] =1 
    a[index,index]=-4 
    a[index,east] =1 
    #a[index,south]=1 
    print i,j,index 
     
print('===============') 
print("Corners") 
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#Top Left 
i=0 
j=0 
index=  i*n+j 
east  = i*n+j+1 
south = (i+1)*n+j 
 
a[index,index]=-4 
a[index,east] =1 
a[index,south]=1 
print i,j,index 
   
#Top Right 
i=0 
j=n-1 
west  = i*n+j-1 
index=  i*n+j 
south = (i+1)*n+j 
 
a[index,west] =1 
a[index,index]=-4 
a[index,south]=1 
print i,j,index 
 
#Bottom Left 
i=n-1 
j=0 
north = (i-1)*n+j 
index=  i*n+j 
east  = i*n+j+1 
 
a[index,north]=1 
a[index,index]=-4 
a[index,east] =1 
print i,j,index 
 
#Bottom Right 
i=n-1 
j=n-1 
north = (i-1)*n+j 
west  = i*n+j-1 
index=  i*n+j 
 
a[index,north]=1 
a[index,west] =1 
a[index,index]=-4 
print i,j,index 
 
print('===============') 
# THIS IS THE FINAL MATRIX 
print a 
print("====================") 
raw_input("Press return to continue") 
print("") 
 
#Reset printing options 
numpy.set_printoptions() 
numpy.set_printoptions(edgeitems=3,infstr='inf',linewidth=75, nanstr='nan', 
precision=8,suppress=False, threshold=1000) 
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# Example 3: 2D Heat equation in steady state. i.e. Laplace equation with 
boundary conditions. 
print("====================") 
print("Set up b") 
b=numpy.zeros([n**2,1]) 
 
for i in range(0,n): 
     
    b[i]=-100. 
    print i 
for i in range(n,n**2): 
    b[i]=0. 
 
print(b) 
print("====================") 
raw_input("Press return to continue") 
print("") 
 
# This sets it up by hand as a check 
#b=[[-100],[-100],[-100.0],[0],[0],[0],[0],[0],[0]] 
print("In 2D With 9 unknowns, Solution is:") 
#Could use iterative method from first part of notes 
soln = numpy.linalg.solve(a,b) 
 
print(soln) 
print("====================") 
raw_input("Press return to continue") 
print("") 
 
# Wrap the solution onto grid and embed 
soln_wrap=numpy.reshape(soln,[n,n]) 
soln_full=embed(soln_wrap,100) 
print soln_full 
 
#3D Plotting part 
from mpl_toolkits.mplot3d import Axes3D 
from matplotlib import cm 
from matplotlib.ticker import LinearLocator, FormatStrFormatter 
import matplotlib.pyplot as plt 
import numpy as np 
 
fig = plt.figure() 
ax = fig.gca(projection='3d') 
 
steps = 2.0+n 
print steps 
 
h=1.0/(steps-1) 
print('h=',h) 
X = np.arange(0, steps, 1)*h 
print(X) 
print 
Y = np.arange(0, steps, 1)*h 
X, Y = np.meshgrid(X, Y) 
 
print("X is:") 
print(X) 
 
print("Y is:") 
print(Y) 
 
#R = np.sqrt(X**2 + Y**2) 



16th Oct 2014 v0.75 
Advanced Computational Methods Notes for FEEG6002 (Advanced Computational Methods I) 
 

Copyright Author: Simon J Cox 2013-2015 
28 

#surf = ax.plot_wireframe(X, Y, R, rstride=1, cstride=1) 
 
#surf = ax.plot_surface(X, Y, soln_full, rstride=1, cstride=1, cmap=cm.coolwarm, 
#        linewidth=0, antialiased=False,shade=True) 
surf = ax.plot_wireframe(X, Y, soln_full, rstride=1, cstride=1) 
ax.set_xticklabels([]) 
ax.set_yticklabels([]) 
 
plt.show() 
raw_input("Press return to continue") 
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Figure 11 Laplace equation in 2D with mesh with 25 unknowns (so n = 5) 

 

Figure 12 Laplace equation in 2D with mesh with 121 unknowns (so n = 11) 
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…at this point, we should move away from using “solve” and use an iterative method 

for the solution of the equations, which is where we started in the first part of the notes. 

4.5 Order of methods for solving equations 
The order of a solver can dramatically change the time to a solution – indeed as much or 

much more than just buying a bigger computer (or waiting for Moore’s Law) e.g. 

(where n is the size of the matrix) 

 Gaussian Elimination/ Dense LU methods ~O(n3) 

 Jacobi type ~O(n2) 

 Gauss-Seidel ~O(n2 : can be better) 

 (Optimal) Successive Over-relaxation ~O(n3/2) 

 Conjugate Gradient ~O(n~3/2) (depending on precise pre-conditioner used) 

 Sparse LU ~O(n3/2) 

 Fast Fourier Transform ~O(n log n) 

 Multigrid ~O(n) 

4.6 Other type of equations 
There are a number of different types of differential equations and, in particular, time 

dependent equations require further procedures where not only is it important to work 

with a fine enough mesh for the spatial (x, y) components, but also the time steps, t. 

These include: 

 Heat flow: Temperature (space and time)  

 Diffusion: Concentration (space and time) 

 Electrostatic or Gravitational potential: Potential (space)  

 Electromagnetic field strength: Field (space and time) 

 Fluid flow: Velocity, Pressure, and Density (space and time) 

 Semiconductor modelling: Electron density (space and time) 

 Quantum Mechanics: Wave function (space and time) 

 Elasticity: Stress and Strain (space and time) 

4.7 Other methods 
Along with finite difference methods, other very broad categories of methods for 

solving partial differential equations include: 

 Finite element and finite volume methods 

 Meshfree or meshless methods 

 Particle-based methods 

 Monte Carlo methods 

 Spectral methods 

… and others yet to be invented and researched. 
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5 Eigenvalue problems 

5.1 Introduction 
Along with the differential equations we have covered to date, there is another class of 

problems that are important in science and engineering: eigenvalue problems. They are 

often associated with vibrations and they also have some interesting and unique solvers 

which bring together a number of the techniques and methods we have covered. 

Examples of eigenvalue “problems” 

1) Tacoma Narrows Bridge Collapse: 

http://www.youtube.com/watch?v=3mclp9QmCGs 

http://www.youtube.com/watch?v=j-zczJXSxnw 

2) Millenium Bridge: 

http://www.youtube.com/watch?v=eAXVa__XWZ8  

http://www.youtube.com/watch?v=gQK21572oSU  

3) Butterflies, Opals, and Peacocks… 

   
(Image copyright as per metadata) 

5.2 Background 
The generalised eigenvalue problem for two n x n matrices A and B, is to find a set of 

eigenvalues λ and (non-trivial) vectors x such that: 

 xBxA    with x ≠ 0  (5.58) 

If B is the identity matrix, then this reduces to the eigenvalue problem: 

 xxA    with x ≠ 0  (5.59) 

We will focus on the latter equation as techniques to solve the generalised problem are 

an extension of solving the reduced problem and can be found in the literature [e.g. 12]. 

Many of the matrices that occur in science and engineering – often as a result of 

discretizing differential equations – have special properties that can be exploited when 

solving the eigenvalue problem. 

5.3 Example: Hand Calculation 
We can solve the eigenvalue problem as follows. If we have 

 xBxA    with x ≠ 0  (5.60) 

Then 

   0 xIA    with x ≠ 0  (5.61) 

http://www.youtube.com/watch?v=3mclp9QmCGs
http://www.youtube.com/watch?v=j-zczJXSxnw
http://www.youtube.com/watch?v=eAXVa__XWZ8
http://www.youtube.com/watch?v=gQK21572oSU
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For each {eigenvalue, eigenvector} pair. This is true when the following condition on 

the determinant of the matrix is true: 

   0det  IA    with x ≠ 0  (5.62) 

Consider 

 

A = 























310

121

013

 (5.63) 

We can find the eigenvalues by solving 
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Thus we have the characteristic polynomial: 
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 (5.66) 

This can be solved to give solutions for the eigenvalues as {1,4,3}. It is also possible to 

work out that the corresponding eigenvectors are: 
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cba  , (5.67) 

Where a, b, and, c are arbitrary constants. We can use Python to help us with this 

symbolically 

>>> from sympy import * 

>>> L = symbols('L') 

>>> M=Matrix( [[(3-L),-1,0], [-1,(2-L),-1] , [0 , -1 , (3-L)]]) 

>>> M.det() 

-L**3 + 8*L**2 - 19*L + 12 

>>> solve(M.det()) 

[1, 4, 3] 

But writing out the characteristic polynomial and solving it is generally not a good way 

to solve as the matrix gets larger. 

Clearly if the matrix was of the form 
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A = 

















300
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 (5.68) 

Then we would find the eigenvalues by writing 
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 IA  (5.69) 

Thus we have the characteristic polynomial: 

 0)3)(4()1(    (5.70) 

Which can be trivially solved to give solutions for the eigenvalues as {1,4,3}. 

Our first method will attempt to transform the matrix into this form and will also yield 

the eigenvalues 

5.4 Jacobi Method for Eigenvalues 
This method is a fairly robust way to extract all of the eigenvalues and eigenvectors of a 

symmetric matrix. Whilst it is probably only appropriate to use for matrices up to 20 by 

20, the principles of how this method operates underpin a number of more complicated 

methods that can be used more generally to find all of the eigenvalues of a matrix 

(assuming that finding such eigenvalues is actually a well-posed/ stable/ sensible 

problem). 

The method is based on a series of rotations (Jacobi rotations) which are chosen to 

eliminate off-diagonal elements. Whilst successive rotations will undo previous set 

zeros the off-diagonal elements get smaller until eventually we are left with a diagonal 

matrix. By accumulating products of the transformations as we proceed we obtain the 

eigenvectors of the matrix. See e.g. [7] for additional details. 

Consider the transformation matrix Ppq 
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Ppq  (5.71) 

All diagonal elements are unity apart from two elements c in rows p and q and all off-

diagonal are zero apart from the element s and –s (in rows p and q also). We pick 

 
 





sin
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s

c
, where   is a rotation angle (5.72) 

This transformation matrix is a plane rotation which can transform the matrix: 

  pq

T

pq PAPA 
~

 (5.73) 
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The key concept is that APT

pq   only changes the rows p and q of A, whilst pqPA  only 

changes the columns p and q of A and EACH STEP we can judiciously choose the 

rotation to “zero-off” the elements at these intersection points of the rows and columns 

p and q. 

… 

Additional steps/ proofs can be found in e.g. [7]. 

… 

Eventually this leads to a matrix, D, that is diagonal to machine precision or a pre-

designated tolerance, whose elements are the eigenvalues of A: 

  VAVD T   (5.74) 

where 

   321 PPPV  (5.75) 

With Pi being the successive Jacobi rotation matrices and the columns of V are the 

eigenvectors since DVVA   

Various enhancements to this basic routine are deployed to determine the order of 

zeroing off the elements. 

Sample code for this can be found in [3]. This code saved as “jacobi_eig_ex.py” is a 

driver routine for it, where we have renamed the code in [3] to “jacobi_eig” to 

differentiate from the Jacobi method we covered previously and made some tweaks. 

import numpy as np 
import scipy 
from numpy import linalg 
from jacobi_eig import jacobi_eig 
 
import matplotlib.pyplot as plt 
 
#Create full matrix 
#Example 1 
A= np.array([[3.,-1,0], [-1,2,-1] , [0 , -1 , 3]]) 
 
#Example 2 
A= np.array([[8.,-1,3,-1], [-1,6,2,0] , [3 , 2 , 9, 1], [-1, 0, 1, 7]]) 
 
#Show A 
#print(A) 
 
#Find eigenvalues of A 
 
#Python Jacobi Example 
w,v = jacobi_eig(A,tol =  1.0e-9) 
 
# Now sort them into order with argsort 
idx = w.argsort()    
 
w = w[idx] 
v = v[:,idx] 
 
print('Eigenvalues:') 
print w 
print '' 
 
print('Eigenvectors:') 
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print v 
print '' 

 

The specific changes to the sample code [3] are 

ORIGINAL MODIFIED 

## module Jacobi ## module jacobi_eig 

def jacobi_eig(a,tol = 1.0e-9 def jacobi_eig(a,tol = 1.0e-9) 

rotate(a,p,k,l) 

 

rotate(a,p,k,l) 
# Extra debug 
print('Step:',i) 
print(a) 
print'----------------' 

 

 

Examples of use with “python jacobi_eig_ex.py” at the command line 

 

1) For A = 
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013

 

Eigenvalues: 

[ 1.  3.  4.] 

 

Eigenvectors: 

[[  4.08248290e-01   7.07106781e-01   5.77350269e-01] 

 [  8.16496581e-01  -2.59319211e-10  -5.77350269e-01] 

 [  4.08248290e-01  -7.07106781e-01   5.77350270e-01]] 

 

2) For A = 



























7101

1923

0261

1318

 

Eigenvalues: 

[  3.29569866   6.59233804   8.40766196  11.70430134] 

 

Eigenvectors: 

[[ 0.52877937  0.23009661 -0.57304222  0.58229764] 

 [ 0.59196687 -0.62897514  0.47230121  0.17577558] 

 [-0.53603872 -0.07123465  0.28204972  0.79248727] 

 [ 0.2874545   0.73916943  0.60745546  0.04468031]] 

 

We can also examine successive steps in the routine to show the zeroing of elements at 

each step along with reduction in their size even when they are made non-zero in 

successive iterations. 
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5.5 Givens and Householder reduction and QR method 
For the Jacobi method we iterated until the matrix was diagonal. A refinement of this is 

to iterate until the starting symmetric matrix is tridiagonal – this is the basis for Givens 

reduction. Householder’s method is a further refinement which is more efficient, but 

achieves the same aim. Once the matrix is in tridiagonal form, the eigenvalues can be 

found efficiently. 

The QR method uses the same procedure of transformations, but instead focuses (1) on 

producing a matrix which has zeros in the upper triangle and the diagonal just below 

this known as the “Hessenberg form” and then (2) on finding the eigenvalues of the 

resulting Hessenberg matrix. Reduction to the Hessenberg form may use an approach 

analogous to Gaussian Elimination with pivoting, which is a technique used in the 

solution of linear equations. These techniques are described in detail in e.g. [7]. 

5.6 Example: Vibrating String modes 
Consider waves on a vibrating string: in differential equation terms we are separating 

out any time dependent behaviour about how the string might move and just looking at 

the normal modes of oscillation. This leads to a boundary value eigenvalue problem 

 0)()( 2  xkx   with ϕ(0)=0 and ϕ(L)=0  (5.76) 

for a 1 dimensional system which describes the vibration of a string of length L which is 

pinned at both ends. It can be shown analytically that the solutions of this are k = nπ 

where n = 1, 2, 3, … for a string of length L = 1. 

 

Figure 13 Vibrating String configuration 

 

We can use the following to discretize the operator: 

 

2
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h
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    with ϕ(0) = 0 and ϕ (L) = 0  (5.77) 

At each point on the string, where the mesh separation is h. 

This leads to an eigenvalue problem 
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   with ϕ(0) = 0 and ϕ (L) = 0  (5.78) 

Simplifying and introducing λ we have 



16th Oct 2014 v0.75 
Advanced Computational Methods Notes for FEEG6002 (Advanced Computational Methods I) 
 

Copyright Author: Simon J Cox 2013-2015 
37 

 )()()(2)( xhxxhx        (5.79) 

Note where we have incorporated the sign change and we will need to scale the λ values 

to get back to the original k: 

 
2h

k       (5.80) 

Writing out in full we have 
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  (5.81) 

We have x-1 = x3=0 so this yields an eigenvalue problem: 
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  (5.82) 

which we can solve using the techniques above. 
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Figure 14 Vibrating String modes (3 unknowns, plot 3) 

Figure 15 Vibrating String modes (5 unknowns, plot 5) 
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Figure 16 Vibrating String modes (11 unknowns, plot 11) 

 

Figure 17 Vibrating String modes (10 unknowns, plot 10) 
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Figure 18 Vibrating String modes (51 unknowns, plotting 5 solutions) 

 

Some observations: 

1) We can see the convergence of the eigenvalues to their correct analytic values as 

we improve the mesh size. 

2) We need to use a finer mesh to capture the higher modes of oscillation of the 

function… but we (generally) observe that only about the lower (1/3) of the 

eigenmodes are captured well for any mesh size: this is simply due to sampling 

the wave, which is a frequent class of science and engineering calculations 

where eigenproblems arise. 

3) The matrices have very few non-zero entries in them: they are “sparse” 

4) It seems somewhat wasteful to be calculating all of the eigenvalues: not only 

because of (2) but often we might only need a few of them – perhaps only the 

smallest or largest. 

5) Be careful whether you have an odd or even number of mesh points- think about 

the problem 

We could do better on (1) by buying a bigger computer and just increasing the mesh 

size or using a higher order discretization for the function. (2) is a property of the 

underlying physics and those laws are well known to be harder to change. By using 

better data structures for storing/ handling the arrays we can also address (3). (4) [and 

by implication not being wasteful because of (2)] can be addressed by using a different 

algorithm, and this is where we turn our attention next.  

 

Code sample (“normal” caveats apply- NOT designed for efficiency, ‘debug’ left in, 

etc.) 
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import numpy as np 
import scipy 
import math 
from numpy import linalg 
from numpy import ones 
from numpy import linspace 
from jacobi_eig import jacobi_eig 
import matplotlib.pyplot as plt 
 
#Number of unknowns to solve for (i.e. mesh points in middle of string) 
n=5 
h=1.0/(n+1) 
#print h 
#Number of eigenvalues to plot 
eigs_to_plot = 5 
 
# Create leading diagonal with 2 on it and(-1) for entries above and below 
a=2*ones(n) 
b=(-1)*ones(n-1) 
 
#Create full matrix 
A= np.diagflat(a)+np.diagflat(b,-1)+np.diagflat(b,1) 
#Show A 
#print(A) 
 
#Find eigenvalues of A 
# Note that The normalized (unit length) eigenvectors, such that the 
# column v[:,i] is the eigenvector corresponding to the eigenvalue w[i] 
 
#Python Jacobi Example 
w,v = jacobi_eig(A,tol = 1.0e-9) 
#Built in version: uses QR 
#w,v = linalg.eig(A) 
# Now sort them into order with argsort 
idx = w.argsort()    
# DON't forget to rescale them with "h" 
w = w[idx] 
kk= np.sqrt(w/h**2) 
v = v[:,idx] 
 
print('Eigenvalues:') 
print w 
print '' 
 
print('k values:') 
print kk 
print '' 
 
print('Eigenvectors:') 
print v 
print '' 
 
#Now do some plotting 
x_grid=np.linspace(0,1,n+2) 
#Append the fixed values of 0 onto the arrays 
v=np.concatenate( (np.zeros([1,n]),v,np.zeros([1,n])),axis=0) 
 
for i in range(min(n,eigs_to_plot)): 
    ax = plt.subplot(eigs_to_plot ,1,i+1) 
    ax.plot(x_grid, v[:,i], 'bo-',linewidth=2) 
    ax.set_yticklabels([]) 
 
plt.show() 
#raw_input("Press return to exit") 

 



16th Oct 2014 v0.75 
Advanced Computational Methods Notes for FEEG6002 (Advanced Computational Methods I) 
 

Copyright Author: Simon J Cox 2013-2015 
42 

 

5.7 Finding just a few eigenvalues: Power and Inverse Power 
Method 
There are also methods that will find just a few of the eigenvalues of a large matrix such 

as the power or inverse power method. These “power type” iterative methods generally 

become more useful and relevant when considering larger scale systems in science and 

engineering. Extension to matrices with complex numbers as entries are also possible. 

These extend into Krylov subspace methods and (implicity restarted) Arnoldi 

Iteration13. 

5.8 Other eigenvalue methods 
Methods also exist to find the eigenvalues of real symmetric matrices matrix such as 

Jacobi’s and Householder’s method. QR can be used to find all the eigenvalues of a real 

symmetric and positive definite matrix. It is also possible to exploit structures such as 

when the matrix is tridiagonal (such as the one above) using as Sturm sequences (see 

e.g. [3, 8, 9]). For nonsymmetric matrices, general solution can be more difficult but one 

should study carefully any problem that yields such a matrix to ensure that a different 

formulation of the problem (or mesh labelling or discretization technique) will yield a 

symmetric variant for the same problem – though this may not always be possible. 

5.9 Python  
In Python we have the eig function (based on QR). For the above example, it operates as 

follows. 

>>> from numpy import linalg 

>>> w, v = linalg.eig(matrix([[3,-1,0],[-1,2,-1],[0,-1,3]])) 

>>> w 

array([ 1.,  3.,  4.]) 

>>> v 

matrix([[  4.08248290e-01,  -7.07106781e-01,   5.77350269e-01], 

        [  8.16496581e-01,   4.02265225e-16,  -5.77350269e-01], 

        [  4.08248290e-01,   7.07106781e-01,   5.77350269e-01]]) 

There is no “built-in” Python equivalent in numpy at the time of writing to “eigs” in 

Matlab for just finding a few eigenvalues of a matrix [see e.g. 14], however there is a 

sparse solver which can find a few eigenvalues in scipy: this interfaces to ARPACK 

[15]. 
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6 Monte Carlo Methods 

These methods use random numbers to sample an experiment and can be used to solve a 

number of applied computational modelling problems such numerical integration, 

solution of partial differential equations, eigenvalue problems and queuing problems. 

They are also useful in simulating physical systems or determining statistical 

fluctuations or uncertainties that might arise from a process. 
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7 References and useful links 

7.1 Main books 
Whilst there is no single book which covers all of the material for the course, you 

should find much of it in either of the first two books. 

Burden, RL and Faires, JD (2005) “Numerical Analysis.” Brooks/Cole ISBN 

0534404995.  

Fausett L (2007) “Applied Numerical Analysis: Using Matlab” Pearson Education. 

ISBN 0132397285. 

Press, WH, Teukolsky, SA, Vetterling, WT, and Flannery BP (1992, 1996, 2007,  and 

later) “Numerical Recipes in C” , “Numerical Recipes in Fortran”, “Numerical Recipes 

3rd Edition”. These books contain both the code and algorithms. See also www.nr.com 

for more details and you can also read these books online there too. The PDFs are at 

http://www.nrbook.com/a/bookcpdf.php (marked as old and obsolete and secured with 

the FileOpen plugin.) 

For more detailed mathematics and proofs of equations see 

Stoer J and Bulirsch R (2010) “Introduction to Numerical Analysis” Springer. ISBN 

144193006X  

7.2 Python Information 
This is a really good Python book on Numerical Methods with a focus on Engineering: 

Jaan Kiusalaas “Numerical Methods in Engineering with Python” Hardcover: 432 pages 

Publisher: Cambridge University Press; 2nd edition (29 Jan 2010). ISBN-10 is 

0521191327 and ISBN-13 is 978-0521191326. NOTE that the new 3rd Edition is also 

available from March 2013 (ISBN: 9781107033856) but this is based on Python 3 NOT 

Python 2.5/2.7. 

The source code is available under “Resources” at: 

http://www.cambridge.org/gb/academic/subjects/engineering/engineering-mathematics-

and-programming/numerical-methods-engineering-python-2nd-edition 

 

For an introduction to Python examples on numerical methods, see Chapter 16 of Prof 

Fangohr’s notes at: 

http://www.southampton.ac.uk/~fangohr/training/python/pdfs/Python-for-

Computational-Science-and-Engineering.pdf [last checked October 2013] 

This online tutorial is useful: http://www.learnpythonthehardway.org/  

If you have a Windows machine, then you can use 

- Python Tools for Visual Studio at http://pytools.codeplex.com/  

- and get Visual Studio through Dreamspark: http://www.dreamspark.com/ 

- Winpython: http://code.google.com/p/winpython/ 

Devices based around ARM processors running various flavours of Linux are now 

cheaply and readily available. You might consider getting yourself a Raspberry Pi. 

Python is one of the languages used on this device: 

http://www.raspberrypi.org/ 

We also use the Beaglebone Black: 

http://beagleboard.org/  

http://www.nr.com/
http://www.nrbook.com/a/bookcpdf.php
http://www.southampton.ac.uk/~fangohr/training/python/pdfs/Python-for-Computational-Science-and-Engineering.pdf
http://www.southampton.ac.uk/~fangohr/training/python/pdfs/Python-for-Computational-Science-and-Engineering.pdf
http://www.learnpythonthehardway.org/
http://pytools.codeplex.com/
http://www.dreamspark.com/
http://code.google.com/p/winpython/
http://www.raspberrypi.org/
http://beagleboard.org/
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8 Matlab/ Python Appendix 

Matlab includes extensive help and tutorials. Other packages offering a high-level 

‘problem solving environment (PSE)’ for computational modelling include Python 

(open source), Mathematica (numerical and symbolic calculations), and Maple 

(symbolic calculations). Spreadsheets such as Excel can also be useful for simple 

calculations and visualization of results. 

8.1 MATLAB and Python features 
MATLAB and Python are versatile and interactive tools for performing numerical 

calculations. 

Can be used for 

 testing algorithms 

 running small programs 

 interactive visualisation of data 

Other features: 

 Specialist toolboxes can be used to solve particular problems 

 Numerical Computation 

 Interaction visualization and presentation graphics 

 High Level Programming Language based on vectors and matrices 

 Specialist toolboxes written by experts 

 Tools for interface building 

 Integrated debugger, editor and performance profiler 

 On-line electronic documentation 

8.2 Availability of MATLAB and Python 
The Matlab User’s guide, software, and thousands of pages of online documentation is 

available in a student version. It is on iSolutions PC Clusters and the major University 

High Performance Computing (HPC) facilities. 

Python is available as Open Source and is on iSolutions machines and widely available 

on desktop machines, tablet PCs (including Windows, Android and iOS systems) and 

boards/ devices such as the Raspberry Pi and Beaglebone family. Versions can be found 

for almost all major operating systems. 

8.3 Matlab Summary 

8.3.1 Basic Features 

 Mathematical calculations can be typed in as you would write them 

 Variables are defined using ‘a = 3’ 

 Once a variable is defined, it can be used in mathematical expressions 

 The commands who and whos display information about variables 

8.3.2 Help 

 Typing help <command> gives a summary of the command 

 lookfor allows you to search for a keyword 

 Under Windows, help can be accessed interactively and online 
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8.3.3 Array Operations 

 Commas separate columns of a matrix : “,” 

 Use a semicolon: “;” to start a new row 

 To index individual array elements use 

 e.g. x(1), x(3) 

8.3.4 Colon Notation 

The colon can be used in several ways 

 To index an array: 

x(start element: step : last) 

e.g. x(1:2:5) returns elements x(1), x(3), x(5) 

 To construct an array: 

x=(first number : step : last) 

e.g. x=(2:2:6)is the same as x=[2,4,6] 

8.3.5 Array Mathematics 

Array Manipulation 

 Elementwise: 

a.*b gives a1,1b1,1 and a1,2b1,2 etc. 

 Conventional linear algebra (the dimensions of the matrices must be compatible) 

a*b means use a1,1b1,1 + a1,2b2,1 + a1,3b3,1 etc. 

8.3.6 2D Plotting 

 plot(x1,y1,s1, x2,y2,s2, x3,y3,s3,...) places plots of the vectors (x1,y1) 

with style s1 and (x2,y2) with style s2 etc. on the same axes. 

 xlabel(‘text’)adds a label to the x axis. 

 ylabel(‘text’) add a label to the y axis. 

 grid on turns on a grid over the plot. 

8.3.7 Other plots 

 semilogy(x,y) and semilogx(x,y) gives axes marked in powers of 10. 

 loglog(x,y) plots both axes with a logarithmic scale. 

 MATLAB supports many common types of plot (see the booklet). 

 fill(x,y,s) draws a fills a polygon with the colour r. 

8.3.8 3D Plotting 

 plot3(x1,y1,z1,s1, x2,y2,s2,z2, .. ) plots the points defined by the triples 

(x1,y1,z1) with style s1 and (x2,y2,z2) with style s2 etc. on the same axes. 

 zlabel(‘text’)adds a label to the z axis. 

 mesh(x,y,z) draws a wire frame grid for the surface defined by (x,y,z). 

 surf(x,y,z) gives a shaded surface plot for the surface defined by (x,y,z). 

8.3.9 3D plotting 

 Change the shading using colormap(map) 
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 To examine a coloured map of a matrix, A, use imagesc(A) 

 colorbar displays the colour coding for the matrix shading 

8.3.10 Programming MATLAB 

 MATLAB provides loops using 

for k = 1:n 

[instructions] 

end 

 MATLAB commands can be put together in a script (or text) file to group together a 

set of instructions. 

 MATLAB also provides tools to build user-friendly interfaces for programs. 

 A good comparison of Python and Matlab equivalents using NumPy is at [14] [last 

checked Oct 2013] 
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9 Credits and other book/ resources used 

Some examples in these notes are based on and derived from various books and texts (in 

print and out of print). I have given these for reference so you can see them with 

additional context or with their original notation/ implementation details: 

 

[1]  Mathews, J.H. and Fink, K.D. “Numerical methods using Matlab: 3rd edition” 

Prentice-Hall. ISBN 0132700425. There is a 4th edition of this available (ISBN-

13: 978-0130652485) 

[2]  From http://quantstart.com/articles/Jacobi-Method-in-Python-and-NumPy 

(last checked Oct 2013) 

[3] Jaan Kiusalaas “Numerical Methods in Engineering with Python” Hardcover: 432 

pages Publisher: Cambridge University Press; 2nd edition (29 Jan 2010). ISBN-10: 

0521191327 and ISBN-13: 978-0521191326 

[4] Daniel Zwillinger “Handbook of Differential Equations” Hardcover, Academic 

Press. ISBN 0127843965. 3rd (Revised) Edition (29th Oct 1997). A CD-Rom 

Version is available too. 

[5]  Based: http://code.activestate.com/recipes/577647-ode-solver-using-euler-method/ 

(last checked Oct 2013) 

[6]  http://rosettacode.org/wiki/Euler_Method (last checked Oct 13) Useful for 

comparing between languages e.g. : 

http://rosettacode.org/wiki/Euler_Method#Python (Oct 13) 

 http://rosettacode.org/wiki/Euler_Method#C (Oct 13) 

[7] Press, WH, Teukolsky, SA, Vetterling, WT, and Flannery BP (1992, 1996, 2007,  

and later) “Numerical Recipes in C” , “Numerical Recipes in Fortran”, 

“Numerical Recipes 3rd Edition”. These books contain both the code and 

algorithms. See also www.nr.com for more details and you can also read these 

books online there too. 

[8] Stoer J and Bulirsch R (2010) “Introduction to Numerical Analysis” Springer. 

ISBN 144193006X  

[9] Quarteroni, A., Sacco, R., and Saleri F.  “Numerical Mathematics” (Texts in 

Applied Mathematics 37) Springer-Verlag 2000 ISBN 0387989595. There is also 

a second edition (2007) with ISBN 3540346589  

[10] Jaan Kiusalaas “Numerical Methods in Engineering with Python” Hardcover: 432 

pages Publisher: Cambridge University Press; 2nd edition (29 Jan 2010). ISBN: 

0521191327 (see notes above in section 7.2) 

[11]  http://rosettacode.org/wiki/Runge-Kutta (last checked Oct 13) Useful for 

comparing between languages e.g. : 

http://rosettacode.org/wiki/Runge-Kutta#Python  (Oct 13) 

 http://rosettacode.org/wiki/Runge-Kutta#C   (Oct 13) 

[12] Golub, GH and Van Loan, CF “Matrix Computations” Johns Hopkins University 

Press; third edition edition (15 Oct 1996) ISBN-10: 0801854148 

[13] See http://www-users.cs.umn.edu/~saad/books (last checked Oct 13) 

 Books available include both excellent works by Yousef Saad: 

Saad, Y. “Numerical methods for large eigenvalue problems” (2011) 

http://quantstart.com/articles/Jacobi-Method-in-Python-and-NumPy
http://code.activestate.com/recipes/577647-ode-solver-using-euler-method/
http://rosettacode.org/wiki/Euler_Method
http://rosettacode.org/wiki/Euler_Method#Python
http://rosettacode.org/wiki/Euler_Method#C
http://www.nr.com/
http://rosettacode.org/wiki/Runge-Kutta#Python
http://rosettacode.org/wiki/Runge-Kutta#C
http://www-users.cs.umn.edu/~saad/books
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http://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf 

 Saad, Y. “Iterative Methods for Sparse Linear Systems” (2003) 

http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf 

[14]  http://wiki.scipy.org/NumPy_for_Matlab_Users (last checked Oct 13) 

[15] http://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html (last checked Oct 

13) 

http://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://wiki.scipy.org/NumPy_for_Matlab_Users

