

Faculty of Engineering and the

Environment

Matlab Reference BOOK

- 2

0

2

- 2

0

2

- 1 0

- 5

0

5

Prof Simon J Cox

Booklet Production

MATLAB 4 material by SJ Cox.

MATLAB 5 update by SJ Cox.

All material © University of Southampton, October 1996 (Version 1.0)

Second Edition October 1997 (Version 2.0)

Second Edition Reprinting October 1998 (Version 2.1: Minor Corrections)

Second Edition Reprinting October 1999

Reprinted Oct 2000

Reprinted Nov 2001

Reprinted Nov 2010

Key Features Additional Features Extras

Basic Mathematics (1.2)

Handling arrays (1.6) Complex Numbers (1.3)

“Help” (1.4)

Array operations (1.5)

Relational Operators (1.8)

Linear Algebra (1.9.2 – 1.9.5)

2D plotting (1.7) Linear Algebra (1.9.1) Special Matrices (1.10)

3D plotting (1.18)

Text Handling (1.11) Polynomials (1.14)

Programming (1.12 and

1.13)

Curve fitting &

interpolation (1.15.1-

1.15.6)

Numerical Analysis (1.15.7 –

1.15.10)

 Sparse Matrices &

Optimisation tips (1.17)

Data Analysis example (1.16)

i

Contents

1 MATLAB Tutorial 3

1.1 Introduction 3

1.2 Basic Features 4
1.2.1 Simple Mathematics 4

1.2.2 The MATLAB working environment 6

1.2.3 Saving and Retrieving Data 7

1.2.4 Display Precision 7

1.2.5 Variable names 8

1.3 Mathematical Functions 9
1.3.1 Complex Numbers 9

1.4 Help 11

1.5 Array Operations 13
1.5.1 Array Assignments: Rows 13

1.5.2 Array Addressing : Colon Notation I 13

1.5.3 Array Construction: Colon notation II 14

1.5.4 Array Assignments: Columns 16

1.5.5 Scalar-Array Calculations 17

1.5.6 Array-Array Calculations 18

1.5.7 The transpose operator 20

1.5.8 Multidimensional Arrays 21

1.6 Handling Arrays 21
1.6.1 Accessing Array Subsets and Re-ordering Arrays: Colon Notation IV. 21

1.6.2 Re-assigning array elements 22

1.6.3 Reshaping arrays 23

1.6.4 How Big is a Matrix? 24

1.6.5 Other Operations for Handling Arrays 25

1.7 2-D plotting of functions 25
1.7.1 Simple use of the plot command 25

1.7.2 Linestyles, Markers and Colours 26

1.7.3 Multiple plots 27

1.7.4 Labels and Grids 28

1.7.5 Customising Axes 29

1.7.6 A Multitude of Graph Types 32

1.7.7 Handling Plots: Hold, Subplot, Figure, and Zoom. 38

1.7.8 Producing Hardcopy: Printing to Paper or File. 41

1.8 Relational and Logical Operations 42
1.8.1 Relational Operators 42

1.8.2 Logical Operators 43

1.8.3 Using Relational Operators to Address Arrays 44

1.8.4 Other Matrix Operators returning True or False 46

1.9 Linear Algebra 46
1.9.1 Simultaneous Equations 47

1.9.2 Badly-Conditioned Problems 48

1.9.3 Poor Scaling 49

1.9.4 Finding Eigenvalues and Eigenvectors 49

1.9.5 Other Linear Algebra Tools 49

1.10 Special Matrices, and the Rogues’ Gallery 50
1.10.1 Special Matrices 50

1.10.2 The Rogues‟ Gallery 53

1.11 Text 54
1.11.1 Character strings 54

1.11.2 Handling Character Strings 54

ii

1.11.3 Cell Arrays 55

1.12 MATLAB Files and Functions 56
1.12.1 File Handling commands 56

1.12.2 Script Files 57

1.12.3 Adding New Functions 58

1.12.4 Summary 59

1.13 MATLAB Programming Structures 59
1.13.1 For Loops 59

1.13.2 While Loops 61

1.13.3 If .. Else Decisions 61

1.14 Polynomials 62
1.14.1 Polynomial Storage 63

1.14.2 Roots of a Polynomial 63

1.14.3 Adding Polynomials 63

1.14.4 Multiplying Polynomials 64

1.14.5 Dividing Polynomials 64

1.14.6 Polynomial Derivatives 65

1.14.7 Polynomial Evaluation 65

1.14.8 Partial Fractions 66

1.15 An Introduction to Numerical Analysis with MATLAB 66
1.15.1 Curve Fitting: Least Squares 67

1.15.2 Interpolation I: Linear 69

1.15.3 Interpolation II: Polynomials 70

1.15.4 Interpolation III: Splines 71

1.15.5 The Humps function 72

1.15.6 Interpolation III: Surface Splines 72

1.15.7 Function Minimization or Maximization 74

1.15.8 Finding Zeros of a Function 74

1.15.9 Numerical Integration 75

1.15.10 Differential Equations 78

1.16 Data Analysis 79
1.16.1 A Worked Example 79

1.16.2 Visualizing the data 80

1.16.3 Determining Statistical Properties of the Data 81

1.16.4 Other Statistical Properties of Data 82

1.16.5 A Linear Relationship for the data 82

1.16.6 An Power Law Relationship for the data 83

1.17 Some Optimisation Tips 84
1.17.1 Vectorisation and Built-In Functions 84

1.17.2 Subscripting 85

1.17.3 Array Operations 85

1.17.4 Boolean Array operations 86

1.17.5 Constructing Matrices from Vectors 87

1.17.6 Constructing Special Matrices 88

1.17.7 Functions of two variables 89

1.17.8 Redundancy 90

1.17.9 Sparse Matrices 93

1.17.10 Conclusion 94

1.18 3-D Graphics 94
1.18.1 An extension of two dimensional plotting 94

1.18.2 Mesh Plots 95

1.18.3 Colour Maps 97

1.18.4 Back to two dimensions 97

1.18.5 A helpful suggestion 98

1.19 About the front cover 98

 3

1 MATLAB Tutorial

1.1 Introduction

MATLAB is a widely used package for performing calculations, analysing results and

visualising data. In this chapter, we discuss the main features of MATLAB, and indicate how

it might be useful to you in a research environment.

One way to think of MATLAB is as a versatile calculator. Its features include:

 Basic calculations: addition, subtraction, multiplication, and division.

 Scientific calculations: trigonometric functions, complex numbers, square roots

and powers, and logarithms.

 Storage and retrieval of data.

 The ability to write custom functions and link to C or FORTRAN programs.

 Sophisticated plotting and data visualisation in two and three dimensions.

 A full suite of built-in functions to handle matrix calculations.

MATLAB provides an efficient way to develop software applications, process data from

experimental apparatus, or analyse computational simulations. The environment is user

friendly, and the programming language is much easier to use than writing C or FORTRAN

code to analyse results. We believe that this high-level approach allows the user to concentrate

on “what” rather than “how”.

The most recent version of Matlab is version 5, which provides a number of enhancements

over 4.2, and important changes are noted in this booklet.

A number of specialized toolboxes for MATLAB exist. These are written by experts in a

particular field and offer suites of additional routines in fields as diverse as signal processing,

optimization, neural network simulation and symbolic mathematics.

In this chapter we discuss in detail most of MATLAB core functions (including all the

functions discussed in Chapter 5 of the MATLAB User‟s Guide). We have aimed to give

insight into “why” you might use MATLAB, rather then simply saying “how”. Included is

some advanced material, such as a numerical analysis section, and a section discussing how to

write efficient MATLAB code. In our examples, we have tried to use built-in data-files, so

that the material can be followed without the need for excessive typing. Throughout the

chapter we have included screen output as it would appear if you typed in the examples in

MATLAB. The Courier typeface is used to denote MATLAB input and output. The output

lines are what will appear when you type in our examples and press Enter. They often start

thus:

ans =

 (some numbers)

You do not need to type these parts in.

We have provided an Appendix (at the end of the booklet) in which we give an alphabetical

listing of most of the MATLAB commands. We refer to this as the „reference appendix‟

throughout this chapter.

Although we will not have time to cover all the material in this chapter during the lectures,

nor have we had time to discuss every MATLAB function in this tutorial, we hope that you

 4

will be able to find out the rest from the excellent online help system. This is accessed by

typing help <command> at the MATLAB command prompt (UNIX), or using the Windows

help system.

help cos

 COS Cosine.

 COS(X) is the cosine of the elements of X.

 Overloaded methods

 help sym/cos.m

If you have not used MATLAB before, we suggest that you concentrate on the earlier chapters

first. If you are already familiar with MATLAB, we have included some material in the later

chapters, which we hope will interest you.

1.2 Basic Features

The command window is the primary place where you interact with MATLAB. Commands

are typed in at the prompt: >> (or EDU>> for the student version). As MATLAB runs,

additional windows are opened for the output of plots. To start MATLAB under Windows,

double click on the MATLAB icon. In UNIX type matlab (having ensured that any system

specific file locations are in your current path). To exit MATLAB, either type quit, or use

(under Windows) the „Exit MATLAB‟ option from the File Menu.

To interrupt a MATLAB computation, press ctrl + c.

1.2.1 Simple Mathematics

As with many modern calculators, commands are typed in as you would write them down:

3*3+4*3+5*10

ans =

 71

MATLAB does not care about spaces in calculations, and precedence follows the normal

order:

“Expressions are evaluated from left to right with the power operation having the highest

order of precedence, followed by both multiplication and division having equal precedence,

followed by both addition and subtraction having equal precedence. Parentheses can be used

to alter this usual ordering, in which case evaluation initiates within the innermost parentheses

and proceeds outward.” Here some examples that demonstrate this:

8^2 - 3 - 5/2*2

ans =

 56

400/40/(3+2)

ans =

 2

(4+3)^2-12

ans =

 37

 5

In each case, MATLAB defines a variable ans (short for answer) for the result of the last

computation. It is also possible to define variables yourself, and perform calculations with

them:

x=3

y=4

z=5*x+2*y

x =

 3

y =

 4

z =

 23

Here we assigned the value of 5x + 2y to the variable z. In the above cases, MATLAB returns

the current assignment value on the next line. This can be suppressed by adding a semi-colon

at the end of the input line. This is useful for intermediate calculations.

x=3;

y=4;

z=5*x+2*y

z =

 23

Each of the assignment lines is evaluated, but the answer is not returned. However the

variable of interest, z, is returned, since we did not append a semi-colon to the line. A semi-

colon can also be used to put multiple statements on a line:

x=10*3 ; y= 6*5 ; z=x/y

z =

 1

To put multiple statements on a line, but show some intermediate results, a comma is used:

x=10*3 , y= 6*5 ; z=x / y

x =

 30

z =

 1

We can also use the left division operator: \, which follows the convention of dividing the

number above the slash by the number below it:

z = x \ y

z =

 1

If a statement is too long, an ellipsis consisting of three periods(...) followed by Enter

indicates that the statement continues on the next line. This feature is useful only to ensure

that all of the commands can be seen in the available screen window. Most implementations

will wrap the line automatically.

z=5*x +...

2*y

z =

 6

 210

MATLAB remembers past information, once a variable is stored, it is kept in memory until it

is reassigned, or cleared (note that variables may be saved on or loaded from disk). This

enables us to modify calculations easily:

z=10*x + 2*y

z =

 360

Indeed we implicitly used this in the last example- we did not have to re-assign x and y in

order to determine a new value of z.

Early we said that spaces did not matter in calculations, however variable names may not

contain spaces. It is general to use and underscore to join two words to form a single word:

long_name=3*z

long_name =

 1080

See the reference section for other basic MATLAB maths operations.

1.2.2 The MATLAB working environment

Before proceeding further, there are one or two important details to discuss about the

MATLAB environment. During a MATLAB session, MATLAB remembers not only

variables, but also a history of previous commands used (just like some UNIX shells). By

pressing the arrow up, or down key (, or), one can scroll through the list of previous

commands. They can be edited using or and delete or backspace. It is not necessary to

move to the end of the line to press return to re-evaluate an expression- simply press return

when any edits are completed.

MATLAB also allows one to intelligently scroll through the history of commands. If, for

example, you made an assignment to x and subsequently various other assignments, by typing

x and then arrow up (), MATLAB will only show those lines which start with an x. It is

possible to type several characters to narrow the search down further. If no command

matching the characters you type, MATLAB displays the last command in the history list.

MATLAB 5 incorporates a built-in editor and debugger (Windows 95 and Mac versions only),

which highlights and indents Matlab code, which allows code to be stepped through line by

line. It is also now possible to profile the performance of MATLAB code.

If you want to recall the names of variables you have defined, use

who

Your variables are:

D ans d x

E b long_name y

a c pi z

To get a fuller description of variables use:

whos

 Name Size Bytes Class

 D 1x4 32 double array

 7

 E 1x6 48 double array

 a 1x1 8 double array (logical)

 ans 1x1 8 double array

 b 1x1 8 double array (logical)

 c 1x1 8 double array (logical)

 d 1x1 8 double array (logical)

 long_name 1x1 8 double array

 pi 1x1 8 double array

 x 1x1 8 double array

 y 1x1 8 double array

 z 1x1 8 double array

Grand total is 20 elements using 160 bytes

Each element stored takes 8 bytes, and the total memory used is shown. The other headings in

this table will be explained in later sections, when we come to discuss complex numbers and

defining arrays. To recall the value of a variable, type its name at the command prompt

long_name

long_name =

 1080

1.2.3 Saving and Retrieving Data

As we mentioned earlier, it is possible to save to and load from files. In the Windows version

of the program, use the Save Workspace as... menu option from the File menu. This opens a

standard dialog box; the default file extension is .mat. The Load Workspace as... option

works analogously. Under UNIX, it is necessary to type

save my_data.mat

There are other options for saving (and loading), such as saving (loading) specific variables,

and altering the format of the save (load). Using save my_data.txt -ascii it is possible to

write data out into a form that can be read by a text editor or spreadsheet program. Similarly

load my_data.txt -ascii allows such data to be read into a single array (my_data) in

Matlab.

1.2.4 Display Precision

MATLAB always keeps results in memory to full precision (around 16 digits). However it is

usually best to display results with fewer digits due to constraints on screen space (later we

will be looking at matrices; the screen will rapidly scroll by if you display a 100100 matrix

with each element to 16 digit accuracy).

By default, MATLAB displays to around five digits accuracy, removing any trailing zeros. In

the table below we show the effect of various format options on the following assignment:

format short; a=43+1/3

a =

 43.3333

Format Statement Effect Result

 8

format short 5 digits 43.3333

format long 16 digits 43.33333333333334

format short e 5 digits plus exponent 4.3333e+001

format long e 16 digits plus exponent 4.333333333333334e+001

format hex hexadecimal 4045aaaaaaaaaaab

format bank 2 decimal digits 43.33

format + displays positive, negative, or zero +

format rat rational approximation 130/3

1.2.5 Variable names

Up to now we have not discussed any restrictions, however there are a few rules about valid

variable names. Variable names are case sensitive, should not containing spaces, and must

start with a letter. They cannot contain punctuation symbols and symbols after the 19th are

ignored.

MATLAB also defines some special variables: ans, pi, eps, inf, NaN, i, j, realmin,

realmax, which may be used for convenience. Although you may redefine these, they will not

be ready „for convenience‟ if you do this. We suggest that you avoid these variable names, and

also any others that appear as function names in Reference Guide (see the appendix). If you

have to use one of these names, you could always add a number suffix.

In MATLAB, simply setting a variable to a new value will redefine it:

x=3, x=10

x =

 3

x =

 10

x*20

ans =

 200

In the above example the variable x takes on the last value assigned to it. Should you wish to

remove a variable completely from the workspace, it may be cleared

clear x

x

??? Undefined function or variable 'x'.

If you accidentally define a variable to one of the special names, or the name of a function or

command, then clear will restore its original value or operation:

pi=4.3

pi =

 4.3000

clear pi

pi

ans =

 3.1416

To reset all variables use clear on its own

 9

who

Your variables are:

D ans d z

E b long_name

a c y

clear

who

You may only need to use clear to free up memory when handling large amounts of data.

1.3 Mathematical Functions

MATLAB has many built-in common functions used in science and engineering. The

reference appendix at the end of this booklet has a list of these, most of them are abbreviated

in the standard mathematical way.

angle_rad = cos(pi/3)

angle_rad =

 0.5000

acos(angle_rad)

ans =

 1.0472

Note that MATLAB uses radians for all angles.

sqrt(3)+sqrt(5)

ans =

 3.9681

1.3.1 Complex Numbers

To illustrate the use of complex numbers, consider the solutions to the quadratic equation ax +

bx + c = 0.

a=2;b=2;c=-5;

x1=(-b+sqrt(b^2-4*a*c))/(2*a)

x1 =

 1.1583

x2=(-b-sqrt(b^2-4*a*c))/(2*a)

x2 =

 -2.1583

(If I had been entering these equations, I would have used the arrow up key () and edited the

sign in front of the square root).

This quadratic will have complex roots, if we try to take the square root of a negative number:

a=3;b=3;c=3;

x1=(-b+sqrt(b^2-4*a*c))/(2*a)

x1 =

 -0.5000+ 0.8660i

 10

x2=(-b-sqrt(b^2-4*a*c))/(2*a)

x2 =

 -0.5000- 0.8660i

The i denotes the square root of -1, and the solution is complex. j can also be used, which is

more common in engineering. The next example shows the ease of using complex numbers;

in MATLAB arithmetic in complex numbers proceeds transparently:

z1=4-4i

z1 =

 4.0000- 4.0000i

z2=2-2j

z2 =

 2.0000- 2.0000i

z3=sqrt(3)*i

z3 =

 0+ 1.7321i

z1+z2

ans =

 6.0000- 6.0000i

z1*z2

ans =

 0-16.0000i

z2/z3

ans =

 -1.1547- 1.1547i

We need to insert a * to a complex part of sqrt(3), since sqrt(3)i has no meaning in

MATLAB. It is possible to extract the real or imaginary parts from complex numbers:

real(z1*z2)

ans =

 0

imag(z1*z2)

ans =

 -16

It is possible to convert Cartesian complex numbers to their polar form using

z1_length=abs(z1)

z1_length =

 5.6569

z1_ang_rad=angle(z1)

z1_ang_rad =

 -0.7854

This angle could also be presented in degrees

z1_ang_deg=angle(z1)*180/pi

z1_ang_deg =

 -45

 11

1.4 Help

Earlier we mentioned the online help. By now you will probably have many things, which you

would like to know whether MATLAB can help you with. In the Windows version of

MATLAB there is the usual windows interactive help system driven by clicking on hypertext

document links. Help can also be obtained (under, for example, UNIX) by using help

command.

help real

 REAL Complex real part.

 REAL(X) is the real part of X.

 See I or J to enter complex numbers.

 See also ISREAL, IMAG, CONJ, ANGLE, ABS.

 Overloaded methods

 help sym/real.m

At the end of each help summary, there is a list of related commands. This is fine if you know

what you are looking for (the reference appendix should help to locate many commands),

however this is not always the case. Typing help on its own yields a list of directories with

MATLAB commands in

help

HELP topics:

matlab\general - General purpose commands.

matlab\ops - Operators and special characters.

matlab\lang - Programming language constructs.

matlab\elmat - Elementary matrices and matrix manipulation.

matlab\elfun - Elementary math functions.

matlab\specfun - Specialized math functions.

matlab\matfun - Matrix functions - numerical linear algebra.

matlab\datafun - Data analysis and Fourier transforms.

matlab\polyfun - Interpolation and polynomials.

matlab\funfun - Function functions and ODE solvers.

matlab\sparfun - Sparse matrices.

matlab\graph2d - Two dimensional graphs.

matlab\graph3d - Three dimensional graphs.

matlab\specgraph - Specialized graphs.

matlab\graphics - Handle Graphics.

matlab\uitools - Graphical user interface tools.

matlab\strfun - Character strings.

matlab\iofun - File input/output.

matlab\timefun - Time and dates.

matlab\datatypes - Data types and structures.

matlab\dde - Dynamic data exchange (DDE).

matlab\demos - Examples and demonstrations.

 12

toolbox\symbolic - Symbolic Math Toolbox.

toolbox\signal - Signal Processing Toolbox.

toolbox\control - Control System Toolbox.

control\obsolete - (No table of contents file)

toolbox\local - Preferences.

For more help on directory/topic, type "help topic".

The exact display may differ from the above. Typing help on one of these entries yields more

topics

help timefun

 Time and dates.

 Current date and time.

 now - Current date and time as date number.

 date - Current date as date string.

 clock - Current date and time as date vector.

 Basic functions.

 datenum - Serial date number.

 datestr - String representation of date.

 datevec - Date components.

 Date functions.

 calendar - Calendar.

 weekday - Day of week.

 eomday - End of month.

 datetick - Date formatted tick labels.

 Timing functions.

 cputime - CPU time in seconds.

 tic, toc - Stopwatch timer.

 etime - Elapsed time.

 pause - Wait in seconds.

This search displays matches between a given a keyword and words in the first line of the help

summaries. It can take some time to complete, if you have a large MATLAB system with

many additional files.

lookfor random

RAND Uniformly distributed random numbers.

RANDN Normally distributed random numbers.

RANDPERM Random permutation.

RJR Random Jacobi rotation.

SPRAND Sparse uniformly distributed random matrix.

SPRANDN Sparse normally distributed random matrix.

SPRANDSYM Sparse random symmetric matrix.

 13

DRMODEL Generates random stable discrete nth order test models.

DRSS Generate random stable discrete-time state-space models.

RMODEL Generates random stable continuous nth order test models.

RSS Generate random stable continuous-time state-space models.

Using the above information, we could determine how to generate random numbers by typing

help rand.

MATLAB 5 provides over 4000 pages of additional information in html files and .pdf

documents (portable document file). These are provided in the Student version. Many

features, such as building graphical interfaces and linking to C/ Fortran code are described in

great detail in these documents. You will need the latest version of ghostview, or an adobe

acrobat reader to view these files.

1.5 Array Operations

So far, all of our examples have used scalar variables. However it is the ability to handle

arrays which makes MATLAB particularly powerful. MATLAB 5 permits the use of

multidimensional arrays. We will deal initially with one or two dimensional arrays, which are

most generally used in linear algebra before returning at the end of the section to

multidimensional arrays.

1.5.1 Array Assignments: Rows

Suppose we want to evaluate 5 separate values of cos(x). Naturally, we could use the cos

function five times, however by assigning an array with the values of interest, this operation

can be completed in two steps

x=[0 , 0.1*pi, 0.3*pi, 0.5*pi, pi];

y=cos(x)

y =

 1.0000 0.9511 0.5878 0.0000 -1.0000

To create the matrix we start with a normal variable assignment, but enclose a list of values in

brackets, [and], and separate each one with a comma. (Although spaces can be used to

separate entries, we strongly advise against this due to possible ambiguities related to

embedded space.) We refer to these as elements x(1), x(2), etc.

x(2)

ans =

 0.3142

MATLAB takes the cos of each of the elements of x and stores them in the corresponding

value of y. We now have

y(2)

ans =

 0.9511

1.5.2 Array Addressing : Colon Notation I

In the above example we have created arrays x and y with one row and 5 columns, and we

accessed individual elements of the array using their subscripts, x(1), x(2), etc. It is also

possible to access groups of elements using the colon notation:

x(1:5)

 14

ans =

 0 0.3142 0.9425 1.5708 3.1416

This returns the elements of x with subscripts between 1 and 5 inclusive. In general, we can

pick out certain columns using

x(1:2:5)

ans =

 0 0.9425 3.1416

This returns elements 1+02, 1+12, 1+22, and literally means “return column 1 and the

next but one column, up to column 5.” It is equivalent to

[x(1), x(3), x(5)]

ans =

 0 0.9425 3.1416

The counting increment can even be negative:

x(5:-1:2)

ans =

 3.1416 1.5708 0.9425 0.3142

We have reversed the order of the array: literally “return column5, and then every previous

column until column 2”.

If you want to pick out particular columns in a certain order, which do not conform to the

above method, it is also possible to specify an array of subscripts to return.

z=y([3 1 4 5])

z =

 0.5878 1.0000 0.0000 -1.0000

Now we have assigned z(1) = y(3), z(2) = y(1), z(3)=y(4), z(4)=y(5). If you try to

access an array subscript larger than one that exists, an error message is returned:

z(13)

??? Index exceeds matrix dimensions.

1.5.3 Array Construction: Colon notation II

Suppose we want to sample the cos function over one period, from 0 to 2. We could type in

a vector of values to sample, and then take the cosine of this vector. However, we can use the

colon notation of the previous section to achieve this much more easily. Let us look at the

following example:

x=(1:2:10)

x =

 1 3 5 7 9

Here we have assigned the odd integers between 1 and 10 to the variable x. The colon notation

also generalizes to allow non integer steps between the first and last values

x=(1:0.1:2)

x =

 Columns 1 through 7

 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000

 Columns 8 through 11

 15

 1.7000 1.8000 1.9000 2.0000

In general we have the form (start: step: end), in which any of the three variables can

take on any real value. Thus to sample the cos function between 0 and 2 we use

x = (0:0.4:2*pi)

x =

 Columns 1 through 7

 0 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000

 Columns 8 through 14

 2.8000 3.2000 3.6000 4.0000 4.4000 4.8000 5.2000

 Columns 15 through 16

 5.6000 6.0000

y = cos(x)

y =

 Columns 1 through 7

 1.0000 0.9211 0.6967 0.3624 -0.0292 -0.4161 -0.7374

 Columns 8 through 14

 -0.9422 -0.9983 -0.8968 -0.6536 -0.3073 0.0875 0.4685

 Columns 15 through 16

 0.7756 0.9602

We often want to sample a function a certain number of times between two end values.

Suppose we want 10 samples between 0 and 2 we could use

x = (0: (2*pi-0)/9 : 2*pi)

x =

 Columns 1 through 7

 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888

 Columns 8 through 10

 4.8869 5.5851 6.2832

However MATLAB gives us a simple way to do this

x = linspace(0,2*pi,10)

x =

 Columns 1 through 7

 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888

 Columns 8 through 10

 4.8869 5.5851 6.2832

In MATLAB, there are often several ways to perform the same task. A similar function exists

to produce logarithmically spaced vectors

x=logspace(0,2,7)

x =

 1.0000 2.1544 4.6416 10.0000 21.5443 46.4159 100.0000

 16

Here we start at 10
0
 and produce 7 logarithmically spaced vectors up to 10

2
. The general

syntax is logspace(start exponent, end exponent, number of values), and non-

integer exponents are acceptable.

When you require an array that is not easy to build up using the above methods, you may be

forced to type in the values individually. However, a little thought can sometimes save effort.

Suppose we want a list of numbers 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1. We can combine the methods

above:

part_1 = (1:1:5)

part_1 =

 1 2 3 4 5

part_2 = (5:-1:1)

part_2 =

 5 4 3 2 1

x = [part_1, 6, part_2]

x =

 1 2 3 4 5 6 5 4 3 2 1

Can you do this using only one temporary array assignment? Yes

part_3 = (1:5)

part_3 =

 1 2 3 4 5

x = [part_3, 6, part_3(5:-1:1)]

x =

 1 2 3 4 5 6 5 4 3 2 1

Although running out of memory is unlikely to be an issue in simple examples, there is no

need to be profligate. This last example uses techniques from this section (1.5.3) and the

previous one (1.5.2):

 Colon notation to create a linearly spaced array.

 Colon notation to generate a set of subscripts to address an array.

1.5.4 Array Assignments: Columns

Up to now we have considered matrices with only one row, in which elements are separated

by commas. To specify row breaks we use a semi-colon:

a = [1, 2, 3; 4, 5, 6; 7, 8, 1]

a =

 1 2 3

 4 5 6

 7 8 1

This defines a 33 matrix. We can also use press return at the end of a row, when entering a

matrix:

a = [1, 2, 3

4, 5, 6

7,8, 1]

 17

a =

 1 2 3

 4 5 6

 7 8 1

To convert a row matrix to a column matrix, we use the transpose operator ('). You can create

a linearly spaced column vector using

a=(1:5)'

a =

 1

 2

 3

 4

 5

In summary of 1.5.1 and 1.5.4: we use a comma to separate elements of a matrix on the same

row, and a semi-colon to specify a new column. In a matrix, all rows must be defined with the

same number of columns.

1.5.5 Scalar-Array Calculations

Now we can construct arrays, we will look at scalar-array calculations in which a single

number acts on the whole of the array. Consider

p = (1:2:10)

p =

 1 3 5 7 9

To multiply all the elements by, for example, 3, we use:

q = 3*p

q =

 3 9 15 21 27

We could derive a list of even numbers between 1 and 10 using

q = p+1

q =

 2 4 6 8 10

If we combine operations, the order of precedence for scalar-array computations is the same as

the scalar-scalar case.

q = 4 * p - 10 / 2

q =

 -1 7 15 23 31

Here we have subtracted 5 (= 10 / 2) from 4*p. We can also perform the same operations on

matrices with multiple row and columns

a = [1, 2, 3; 4, 5, 6; 7, 8, 1]

a =

 1 2 3

 4 5 6

 7 8 1

 18

a+4

ans =

 5 6 7

 8 9 10

 11 12 5

1.5.6 Array-Array Calculations

In this section we consider how array-array computations work. Firstly we consider element-

wise calculations, and then consider conventional linear-algebra matrix calculations. To

perform a computation element-wise between the elements of two matrices, you must ensure

that the dimensions of the matrices are the same.

a=[1, 2; 3, 4] ; b=[3, 5; 2, 1] ;

a+b

ans =

 4 7

 5 5

a-b

ans =

 -2 -3

 1 3

We specify an element-wise operation by using the dot operator (.) in front of the operation

to be performed (this is not necessary for addition and subtraction, since the rules of linear

algebra always perform these operations element-wise). There is no space between the dot and

the operation.

a .* b

ans =

 3 10

 6 4

a ./ b

ans =

 0.3333 0.4000

 1.5000 4.0000

a .\ b

ans =

 3.0000 2.5000

 0.6667 0.2500

Note that element-wise division (like scalar division) can use either a forward or backward

slash, with the elements above the slash being divided by the element below the slash. So b

.\ a is the same as a ./ b. We can also consider raising the elements of an array to a given

power

a = [1, 3, 5, 7]

a =

 19

 1 3 5 7

a .^3

ans =

 1 27 125 343

Here we have cubed each element in the array. We can also raise a number to the power of

each element in an array:

2 .^ a

ans =

 2 8 32 128

Given two matrices with the same dimensions, we can raise each element of one to the power

of the corresponding element in the other

a = [1, 6, 3, 2]; b = [10, 3, 2, 8];

a.^b

ans =

 1 216 9 256

To perform normal multiplication, we omit the dot. According to the rules of linear algebra, if

A is a k*l matrix, and B is m*n, the we must now ensure that l = m. The result is a matrix of

dimension k*n.

a = [1, 2, 3; 4, 5, 6], b = [2, 3; 5, 6; 5, 9]

a =

 1 2 3

 4 5 6

b =

 2 3

 5 6

 5 9

a*b

ans =

 27 42

 63 96

Since taking powers of a matrix is identical to repeatedly multiplying a matrix by itself, you

can only take powers of square matrices.

c = [3, 4; 2, 10]; c^2

ans =

 17 52

 26 108

Conventionally division of matrices is not defined. One always thinks of dividing A by B as

multiplying A by the inverse of B. This is exactly the case in MATLAB, except it is calculated

by a numerically stable method by solving the set of equations Ax=B by Gaussian elimination.

a = [1, 2; 4, 5], b = [2, 4; 5, 6]

a =

 1 2

 4 5

b =

 20

 2 4

 5 6

a / b

ans =

 0.5000 0

 0.1250 0.7500

a*inv(b)

ans =

 0.5000 0

 0.1250 0.7500

We can also use the left division \ which divides the matrix above the slash by the matrix

below the slash:

a \ b

ans =

 0 -2.6667

 1.0000 3.3333

In general the results of matrix division do not give results the same size as A and B. If the set

of equations Ax=B is over-determined, then the solution given is the least-squares for x (see

the reference appendix for more details).

1.5.7 The transpose operator

As we mentioned earlier, we take the transpose of a row matrix to give a column matrix. In

general we can apply it to matrices, as in standard linear algebra

a = [4, 3; 2, 9]

a =

 4 3

 2 9

a'

ans =

 4 2

 3 9

If we can use the operation element-wise, the result is the same for real matrices

a.'

ans =

 4 2

 3 9

If the matrix has complex entries then the transpose is in fact the complex conjugate

transpose, so each element a(i,j) becomes real(a(j,i)) - imag(a(j,i)).

z = [1+i, 2-2i; 1+sqrt(3)*i, sqrt(7) + 4*i]

z =

 1.0000+ 1.0000i 2.0000- 2.0000i

 1.0000+ 1.7321i 2.6458+ 4.0000i

z'

ans =

 21

 1.0000- 1.0000i 1.0000- 1.7321i

 2.0000+ 2.0000i 2.6458- 4.0000i

If we use the operation element-wise

z.'

ans =

 1.0000+ 1.0000i 1.0000+ 1.7321i

 2.0000- 2.0000i 2.6458+ 4.0000i

Then we obtain the transpose of z, without conjugation of the elements.

1.5.8 Multidimensional Arrays

Often data takes the form of a multidimensional array. MATLAB 5 extends MATLAB to

allow an arbitrary number of dimensions in an array. A three-dimensional array may be

formed by stacking a number of two-dimensional arrays:

a = [1, 3; 8, 9];

b = [2, 4 ; 6, 8];

c = [3, 5; 7, 0];

d = cat(3, a, b, c)

d(:,:,1) =

 1 3

 8 9

d(:,:,2) =

 2 4

 6 8

d(:,:,3) =

 3 5

 7 0

1.6 Handling Arrays

In the last section, we considered how to construct an array, and perform basic matrix

arithmetic. In this section, we look at MATLAB‟s ability to re-arrange matrices and access

subsets of the matrix.

1.6.1 Accessing Array Subsets and Re-ordering Arrays: Colon Notation IV.

When we discussed the colon notation in 1.5.2, we rearranged the columns of a matrix. In

general, we can build one matrix from another by specifying the rows and columns to take

a = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12; 13, 14, 15, 16]

a =

 1 2 3 4

 5 6 7 8

 9 10 11 12

 13 14 15 16

b = a(1:2, 3:4)

b =

 22

 3 4

 7 8

Here we have taken out the upper corner 22 submatrix from a. To reverse order of the rows

of a, we could use

b = a(4: -1: 1, :)

b =

 13 14 15 16

 9 10 11 12

 5 6 7 8

 1 2 3 4

Note that we can use the colon on its own as a shorthand for 1:4, meaning “take all the

columns.”

We can build up a matrix by repeating sections of another matrix:

b = [a(:,2), a(:,1), a(:,2), a(:,1)]

b =

 2 1 2 1

 6 5 6 5

 10 9 10 9

 14 13 14 13

This produces a matrix made up of columns 2 and 1 of matrix a repeated twice. It is

equivalent to

b = a(:, [2, 1, 2, 1])

b =

 2 1 2 1

 6 5 6 5

 10 9 10 9

 14 13 14 13

where we have used a vector subscript to address the columns of a. MATLAB often allows

several ways for a problem to be solved. The colon notation gives much scope for different

techniques to be used.

1.6.2 Re-assigning array elements

Suppose we have a matrix already defined, but want to change an individual element of the

matrix:

a = [1, 2, 3; 4, 5, 6; 7, 8, 1]

a =

 1 2 3

 4 5 6

 7 8 1

To change an existing element, we use:

a(1,1) = 66

a =

 66 2 3

 23

 4 5 6

 7 8 1

If you try to change a matrix element which is outside the current bounds for this array,

MATLAB will augment the matrix with sufficient extra rows and columns to make the

assignment. It sets the extra values in the matrix to 0.

a(4, 3) = 1

a =

 66 2 3

 4 5 6

 7 8 1

 0 0 1

To remove a whole row or column of a matrix, we assign to have a null value: []. It is only

possible to remove a whole column or row (if you try to remove an element, MATLAB would

not know how to reform the array).

a(2, :) = []

a =

 66 2 3

 7 8 1

 0 0 1

We can also re-assign whole rows (or columns) of a matrix at once. In this example we

replace the second column of a with b:

a = [1 2; 3 1], b = [10; 9]

a =

 1 2

 3 1

b =

 10

 9

a(:,2)=b

a =

 1 10

 3 9

1.6.3 Reshaping arrays

If we index a matrix with a single colon, then MATLAB forms a column vector, by stacking

the columns of the matrix on top of each other.

a = [2, 4, 6; 3, 5, 7; 1, 2, 3]

a =

 2 4 6

 3 5 7

 1 2 3

b=a(:)

b =

 24

 2

 3

 1

 4

 5

 2

 6

 7

 3

It is also possible to reshape an array entirely. reshape(a, m, n, p, ..) returns an m by n

by p (etc.) array from a with the elements taken column-wise. a must have mnp…

elements:

a = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 1]

a =

 1 2 3 4

 5 6 7 8

 9 10 11 1

b = reshape(a, 2, 6)

b =

 1 9 6 3 11 8

 5 2 10 7 4 1

1.6.4 How Big is a Matrix?

In the examples, we have created matrices, and so we know how large they are. If we load in

data from disk into an array, this may not be the case. MATLAB provides the function size to

enable you to determine the dimensions of an array.

a = [1, 2, 3; 4, 5, 6]

a =

 1 2 3

 4 5 6

d = size(a)

d =

 2 3

This returns the size of each dimension of a (in the order rows, columns, …) as the elements

of the matrix d. For two-dimensional arrays there are two approaches to return the numbers of

rows and columns in separate variables

[num_rows, num_cols] = size(a)

num_rows =

 2

num_cols =

 3

num_rows = size(a,1) , num_cols = size(a,2)

num_rows =

 25

 2

num_cols =

 3

This extends to determine the size of multidimensional arrays.

1.6.5 Other Operations for Handling Arrays

 flipud(a) flips a matrix upside down.

 fliplr(a) flips a matrix left to right.

 rot90(a) rotates a matrix anticlockwise by 90º.

1.7 2-D plotting of functions

Easy and efficient visualization of data is one of the most important tools in engineering.

Many packages exist which are optimized to view particular forms of data in two and three

dimensions. Where available, a specialist package should be used, since it will almost always

outperform a general package.

However, such packages often reside on dedicated machines, and more frequently we need a

quick plot of some data or equations, to get an idea about how a simulation or experiment is

progressing. Spending some time analyzing data without having to write complex computer

code is often more productive than simply producing more and more results and serves to

focus future research. It is in this area that we believe MATLAB is useful.

In this section we will consider how to produce two dimensional plots with a variety of line

markers, colours, labels and customized views. We will then consider the different types of

plot available, how to manipulate these plots, and finally how to produce hardcopy.

1.7.1 Simple use of the plot command

Earlier we produced a linearly spaced array of values of between 0 and 2. We could use this

to look at the cosine function over this range

x = linspace(0, 2*pi, 40);

y=cos(x);

plot(x,y)

 26

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

We have sampled the function cos(x) at 40 evenly spaced points between 0 and 2, setting

the y values to the cosine of each of the x values. When a plot command is issued, a figure

window is opened and a plot is produced in which the individual points are connected with

straight lines. In this case these were sufficient points to give the illusion of a smooth curve.

The axes are scaled and tick marks are added automatically, although later we will see how to

customize these. If a figure window is already open, plot replaces the old plot with the new

one, clearing the window first.

If we omit to specify a set of x points, then MATLAB plots the vector value against its

subscript:

plot(y)

0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.7.2 Linestyles, Markers and Colours

 27

Naturally, it is possible to format lines on a plot. This will be particularly useful when we

come to consider multiple plots in the next section. plot(x, y, s) plots x and y using a

format s chosen from the below table. The format consists of a number of characters, which

specify a colour, marker, and/ or line style. In MATLAB 5 there is a greater choice of markers

for plots.

Symbol Colour Symbol Marker Symbol Line Style

y yellow . point - solid line

m magenta o circle : dotted line

c cyan x x-mark -. dash-dot line

r red + plus -- dashed line

g green * star

b blue s square

w white d diamond

k black v triangle (down)

 ^ triangle (up)

 < triangle (left)

 > triangle (right)

 p pentagram

 h hexagram

plot(x,y,'x')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

If no colour is specified, MATLAB cycles the colours from yellow to red (depending on other

plots which may be present). In the next section we will see how to create multiple plots, and

plots with lines and markers.

1.7.3 Multiple plots

In the previous section, we saw that the point styles did not connect up points on the graph.

However it is possible to put multiple plots on the same axes, using plot(x1, y1, s1, x2,

 28

y2, s2, x3, y3, s3, ..), which enables us to put a plot marking the points, and a plot

with a solid line on the same axes. We can also plot other functions, using a comma to

separate the triples specifying the x and y vectors and the format statement.

x= linspace(0, 2*pi, 30); y1= cos(x); y2= sin(x);

plot(x, y1, 'go', x, y1, 'g-', x, y2, 'r+', x, y2, 'r--')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(Note that we may abbreviate the above command to plot(x, y1, 'go-', x, y2, 'r+--

').)

If one of the x or y entry vectors is a matrix, then the vector is plotted versus the rows or

columns of the matrix (whichever line up).

x = linspace(-2, 2, 20); a = [x.^2; x.^3];

plot(x,a);

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

6

8

1.7.4 Labels and Grids

 29

It is important to label axes on a graph with units and a title. A grid is often added to a graph

to ease visualisation. To add a label in a particular place on the graph, use text(x, y,

'string'), where (x, y) specifies the centre left edge of the text string, using the units from

the grid axis.

grid on

x = linspace(0, 100, 30); plot(x, exp(0.05*x),'r');

xlabel('Time in years')

ylabel('Number of Rabbits (in Rabbits per acre)')

title('Uncontrolled Exponential Population Growth of Rabbits')

text(20,105,'Number of Rabbits crosses danger threshold')

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Time in years

N
u
m

b
e
r

o
f
R

a
b
b
it
s
 (

in
 R

a
b
b
it
s
 p

e
r

a
c
re

)

Uncontrolled Exponential Population Growth of Rabbits

Number of Rabbits crosses danger threshold

Using the grid we can see that the rabbit population roughly trebles in the last 20 years of the

graph (from 80 to 100). The grid on command turns the grid on; grid off turns it off. grid

on its own toggles the current state of the grid.

You can place text on the graph using a mouse with gtext('string'), when this command

is issued, MATLAB switches to the current figure window, and the mouse becomes a cross-

hair. When a button on the mouse or keyboard is pressed, the text is placed with the lower left

corner of the first character at that location

1.7.5 Customising Axes

Sometimes it is necessary to override the MATLAB default views and formatting of the axes.

The axis command allows you to vary the appearance and view of the axes. In its simplest

form typing axis on, or axis off will turn the axes, grid and tick labels on and off

respectively. Typing axis alone toggles the state of the current axes.

 30

x = linspace(-2*pi, 2*pi, 100); y = tan(x);

plot(x,y); axis off;

Since the function tan(x) gets very large around pi/2, it may be best to restrict the view of

the axis. To obtain a custom view of the graph use axis([xmin, xmax, ymin, ymax]),

where the custom x axis runs from xmin to xmax, and the custom y axis runs from ymin to

ymax:

plot(x,y); axis([0, 2*pi, -5, 5]);

0 1 2 3 4 5 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

There are numerous options for this function, see help axis for further details. Here is a list

of some of them

 axis('auto') or axis auto returns the plot to axis view to its default values.

 31

 axis('xy') or axis xy uses the default Cartesian co-ordinate system, with (0,0)

in the bottom left of the plot and x and y axes increasing to the right and up

respectively.

 axis('ij') or axis(ij) uses matrix co-ordinates in which the system origin is

at the top left corner, and the x and y axes increase to the right and bottom

respectively.

 axis('square') or axis square sets the height-width ratio of the plot to be

square, rather than rectangular.

 axis('equal') or axis equal sets both axis scaling factors to equal.

 axis('normal') or axis normal turns off axis('square') or axis('equal').

Not only can you change the axis view, but it is possible to specify base 10 logarithmic axes.

In the case of our exponential population growth, we could have used:

x = linspace(0, 100, 30);

semilogy(x,exp(0.05*x));

title('Exponential Population Growth of Rabbits');

grid on

0 20 40 60 80 100
10

0

10
1

10
2

10
3

Exponential Population Growth of Rabbits

This view allows clearer measurements to be made from the graph in the region between 0

and 40 years. The plotting options for semilogy and semilogx (which gives a logarithmic

scale on the x axis) are the same as for plot. If you want a logarithmic scale on both axes,

then use loglog(x,y,s), which again has the same options as the plot command.

x = logspace(-1, 3, 50);

loglog(x,x.*x);grid on;

title('x ^ x');

 32

10
-1

10
0

10
1

10
2

10
3

10
-2

10
0

10
2

10
4

10
6

x x

Logarithmic plots are very useful in digital signal processing, where one needs to produce

graphs that span many orders of magnitude. Drawing these graphs by hand can be very time

consuming.

1.7.6 A Multitude of Graph Types

You can also use MATLAB to produce other types of common graph, such as graphs in polar

coordinates, bar graphs, stair plots, histograms, stem plots, graphs with error bars, plots of

complex numbers, rose plots. In this section we give examples of each, we have used the

examples similar to those given in the help summary for each of these commands. We suggest

that you read the appropriate help summary for full details of all the options available for

these plots.

A polar plot parameterises a curve using the distance of the curve from the origin as a function

of the angle measured from the x axis.

theta = 0: 0.01: 2*pi;

r = sin(8*theta) .* cos(3*theta);

polar(theta, r, 'r');

title('Polar plot of sin(8*theta)cos(3*theta)'); axis('equal')

 33

Polar plot of sin(8*theta)cos(3*theta)

 0.24579

 0.49158

 0.73738

 0.98317

30

210

60

240

90

270

120

300

150

330

180 0

This is a bar chart of the Gaussian (or normal) distribution with mean 0 and standard deviation

1:

x = linspace(-3,3,20);

y = exp(-x.*x / 2) / sqrt(2*pi);

bar(x, y);

title('Bar Chart of Gaussian Distribution')

-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Bar Chart of Gaussian Distribution

A stair plot traces the outside of a bar chart.

stairs(x, y);

title('Stair Plot of Gaussian Distribution')

 34

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Stair Plot of Gaussian Distribution

If you have a set of data from an experiment, you may want to produce a histogram of the

results. The simplest way to do this is hist(y), which produces a histogram with 10 equally

spaced bins along the x axis. hist(x,y) produces a histogram of y with the bins as specified

in x, if x is a vector. If x is a scalar, then x equally spaced bins are used. We have generated

some random data:

r1 = rand(5000,1) .* rand(5000,1); % A sample from a random variable

hist(r1,20);

title('Histogram of a Random Variable')

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000
Histogram of a Random Variable

MATLAB gives a specialized histogram for viewing a set of angles, theta, between 0 and 2:

rose(theta, x) produces a histogram of the angles displaying their distribution between 0

and 2, with the bins as specified in x, if x is a vector. If x is a scalar, then x equally spaced

bins are used. If x is omitted, then 10 bins are used.

r1 = rand(1000,1)*2*pi;

rose(r1,20);

title('Rose plot of Random Angles');

 35

Rose plot of Random Angles

 20.6667

 41.3333

 62

30

210

60

240

90

270

120

300

150

330

180 0

A stem plot connects each data value in a vector with the horizontal axis using a line (which

can be specified using the same formats as the plot function).

r2 = rand(50, 1) - 0.5;

stem(r2, ':');

title('A Stem Plot of Random Data');

0 10 20 30 40 50
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
A Stem Plot of Random Data

In an experiment, there are uncertainties in the measured variable. To plot a function with

errorbars, MATLAB provides the errorbar(x, y, e) function, which plots (x(i), y(i)),

and draws an errorbar of length e(i) above and below the line at each point. Each errorbar is

2*e(i) long. In this example, the errorbars are proportional to the x measurement. These sorts

of errors occur in electronic systems, due to thermal (Johnson) noise, where the errors are

proportional to the temperature of the system.

x = linspace(0, 10, 15); y = x.^2; err = 0.8*x;

errorbar(x, y, err);

 36

title('Errorbar plot with increasing errors as x increases')

-2 0 2 4 6 8 10 12
-20

0

20

40

60

80

100

120
Errorbar plot with increasing errors as x increases

MATLAB gives two ways to visualize complex numbers. They can be useful for examining

the distribution of complex eigenvalues. A compass plot displays the magnitude and direction

(i.e. the length and polar angle) for a vector of complex numbers as lines which start at the

origin.

z = eig(randn(20,20));

compass(z);

title('Compass Plot of the Eigenvalues of a Random Matrix')

-6 -4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

Compass Plot of the Eigenvalues of a Random Matrix

A feather plot displays the same, but spaces the complex numbers along a horizontal line.

feather(z);

title('Feather Plot of the Eigenvalues of a Random Matrix')

 37

0 5 10 15 20
-6

-4

-2

0

2

4

6
Feather Plot of the Eigenvalues of a Random Matrix

Previously we have plotted functions by defining a vector of points at which to sample, and

then calculating the value at each of these points. Using fplot('function', [xmin, xmax,

ymin, ymax]), we can plot a function of one variable between xmin and xmin. The ymin and

ymax are optional; if given, they determine the plot view.

The sinc
2
 function arises in the brightness patterns of light diffracted through a slit

fplot('(sin(x) ./ x).^2 ', [-10, 10, 0, 1]);

title('Plot of sinc^2 function')

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Plot of sinc^2 function

Having produced a plot, it may be necessary to select some points from the plot, for further

analysis. [x, y] = ginput(n) takes n points from the current plots and returns their x, y co-

ordinates in the vectors x and y. If n is not specified, then points are gathered until return is

pressed. We can use this to gather the maxima of the sinc
2
 function, which plotted in the last

example by typing

[x, y] = ginput(5);

 38

after the last graph, and clicking on the maxima of the function. This returns the five values at

which you clicked into the vectors x and y. These maxima give the displacements about the

origin at which the diffracted light will be a maximum on a screen behind the slits.

Using the fill(x, y, c) command, we can fill the polygon with vertices specified by the

vectors x and y in the colour c (using the same specification for colours as the plot command-

see 1.7.2). If the polygon is not closed, MATLAB will join the last point of the polygon to the

first point.

x = [0, 1, 1, 0]; y = [0, 0, 1, 1];

fill(x, y, 'r');

title('Red Square');

axis([-0.5 1.5 -0.5 1.5])

axis equal

-0.5 0 0.5 1 1.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Red Square

1.7.7 Handling Plots: Hold, Subplot, Figure, and Zoom.

Normally MATLAB clears the axes when a plot command is issued. However, more plots can

be added to a graph using hold on, which freezes the current plots on the graph. If a new plot

will not fit on the axes, they are re-scaled. hold off turns this feature off, and MATLAB will

clear the axes before producing the next plot. This is particularly useful if the plot commands

are complex.

theta = linspace(-pi, pi, 100);

plot(2*cos(theta).*(1 + cos(theta)), 2*sin(theta).*(1+cos(theta)))

title('Cardioid');

 39

-1 0 1 2 3 4
-3

-2

-1

0

1

2

3
Cardioid

hold on

plot(2*2*cos(theta).*(1 + cos(theta)), 2*2*sin(theta).*(1+cos(theta)))

plot(2*4*cos(theta).*(1+ cos(theta)), 2*4*sin(theta).*(1+cos(theta)))

title('Cardioid Family');

hold off

-5 0 5 10 15 20
-15

-10

-5

0

5

10

15
Cardioid Family

To plot several plots in the same figure window, we use subplot(m, n, p), which separates

the current plot area into and m by n region, and sets the p‟th sub plot to be active. The plots

are numbered consecutively along the rows left to right, and then down the columns. In the

next example, we display members of the “deltoid” family

theta = linspace(-pi, pi, 100);

x = 2*1*cos(theta).*(1+cos(theta)) - 1;

y = 2*1*sin(theta).*(1-cos(theta));

subplot(2, 2, 1); % Upper left corner

plot(x, y); axis([-10 20 -20 20]);

subplot(2, 2, 2); % Upper right corner

 40

plot(2*x, 2*y); axis([-10 20 -20 20]);

subplot(2, 2, 3); % Lower left corner

plot(3*x, 3*y); axis([-10 20 -20 20]);

subplot(2, 2, 4); % Lower right corner

plot(4*x, 4*y); axis([-10 20 -20 20]);

-10 0 10 20
-20

-10

0

10

20

-10 0 10 20
-20

-10

0

10

20

-10 0 10 20
-20

-10

0

10

20

-10 0 10 20
-20

-10

0

10

20

To return to a single plot in the figure window, use subplot(1, 1, 1).

Sometimes it is necessary to produce several full-sized plots in separate figure windows.

Using the figure command opens a new figure window for the next plot. The figure windows

are numbered consecutively from 1, and figure(n) sets figure number n to be the next active

window for the next plot. If there are several windows on the screen, the active one will be

brought into the foreground. When using operations such as hold and axis, they all refer to

the active plot. Under Windows, it is possible to select New Figure from the File Menu.

MATLAB allows you to zoom in on a plot. When you type zoom, clicking in the current plot

window with the left mouse button zooms in by a factor of two centred on the position of the

mouse click; clicking with the right mouse button zooms out by a factor of two. By clicking

and dragging a bounding box, MATLAB zooms in on the area surrounded. To return the plot

to its original state, use zoom out. zoom off turns off zoom mode. On its own, zoom toggles

the zoom state of the current figure window. Try zooming in on the following hypotrochoid.

subplot(1,1,1);

theta = linspace(-pi, pi, 100);

x = 8*cos(theta) + 5*cos(8*theta/2);

y = 8*sin(theta) - 5*sin(8*theta/2);

plot(x,y);

title('Hypotrochoid with n=8, h=5, b=2')

 41

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
Hypotrochoid with n=8, h=5, b=2

(By replacing the values of 2, 5, and 8, you can generate many of the figures that old

spirographs produced !)

1.7.8 Producing Hardcopy: Printing to Paper or File.

After your graph is formatted labelled with all the grids and axes required, it is time to

produce hardcopy.

On its own, print is used to send a copy of the plot in the active figure window to the default

printer. This can also be accessed under Windows from the Print option on the File Menu.

print can also write output to files in various formats, using print -ddevice 'filename',

which produces a file in the current directory that contains a picture of the plot in the current

active figure window as follows:

 -dps PostScript for black and white printers.

 -dpsc PostScript for color printers.

 -dps2 Level 2 PostScript for black and white printers.

 -dpsc2 Level 2 PostScript for color printers.

 -deps Encapsulated PostScript (EPSF).

 -depsc Encapsulated Color PostScript (EPSF).

 -deps2 Encapsulated Level 2 PostScript (EPSF).

 -depsc2 Encapsulated Level 2 Color PostScript (EPSF).

 -dwin Send figure to currently installed printer in monochrome (Windows).

 -dwinc Send figure to currently installed printer in color (Windows)

 -dmeta Send figure to clipboard in Metafile format (Windows)

 -dbitmap Send figure to clipboard in bitmap format (Windows)

 -dsetup Bring up Print Setup dialog box, but do not print (Windows)

 42

MATLAB will append a suitable extension, such as .ps or .eps, if the filename does not

include one. Since plot outputs the whole of the current figure window, subplots are

maintained as they appear on the screen. See 1.12.1 for details about changing directories in

MATLAB.

You can also change the orientation of the current plot. The default is portrait, and prints

the figure in the centre of the page vertically. To find out the current setting use

orient

ans =

portrait

You can change the current orientation to

 landscape, which prints the figure horizontally and fills the page using: orient

landscape.

 tall, which prints the figure vertically, but makes it fill the whole page using:

orient tall.

Once a figure is in PostScript, or bitmap form, it is easy to include it in a document such as a

report, paper or thesis.

1.8 Relational and Logical Operations

Relational and logical operations return true or false values, numerically represented as 1 and

0 respectively. MATLAB uses these operators to perform element-wise operations between

two matrices, returning 1 where the condition or operation evaluates to be true, and 0

elsewhere. They can also be used to extract elements (or their indices) from a matrix which

obey certain conditions. In a later section, we will see that they can also be used for flow

control in pieces of MATLAB code.

On input to a relational or logical expression, MATLAB considers the number 0 to mean

false; any other number is true. The output is always 0 or 1.

1.8.1 Relational Operators

Using these we can make comparisons between matrices. As in the case of element-wise

arithmetic, If two matrices are to be compared, they must have the same dimensions:

a = [1, 2, 3, 4; 5, 6, 7, 8], b = [8, 7, 6, 5; 4, 3, 2, 1]

a =

 1 2 3 4

 5 6 7 8

b =

 8 7 6 5

 4 3 2 1

c = b > a

c =

 1 1 1 1

 0 0 0 0

The first four elements of b are greater than those in a, so c(1), c(2), c(3), c(4) are set to 1

(true), the rest evaluate to 0. The other relational operators are

 43

 < Less than.

 <= Less than or equal to.

 > Greater than.

 >= Greater than or equal to

 == Equal to.

 ~= Not equal to.

Note that = means an assignment, whereas == means a test.

a = (1:1:5), b = (5:-1:1)

c = a==b

a =

 1 2 3 4 5

b =

 5 4 3 2 1

c =

 0 0 1 0 0

a and b are only equal for the centre number in the list.

We can also compare a matrix with a scalar. The size of the matrix returned is the size of the

matrix, and the elements are formed by comparing the scalar with each element of the matrix

in turn:

 a = (1:1:6), c = a >= 3

a =

 1 2 3 4 5 6

c =

 0 0 1 1 1 1

Since the values returned are 0 and 1, it is possible to perform arithmetic with the values

returned. We could, for example, mask out those values of an array that do not fulfil a

condition.

a = (1:1:6), c = (a > 3).* a

a =

 1 2 3 4 5 6

c =

 0 0 0 4 5 6

This sets the entries in c to be the same as that in a, or 0 otherwise, depending on whether the

entry in a was greater than 3 or not, respectively.

1.8.2 Logical Operators

Using logical operators, it is possible to build up more complicated tests. MATLAB provides

the following Boolean operators

 & And

 44

 | Or

 ~ Not

a = [2, 3, -10, 2, 3, 6; 3, 6, 4, -3, -4, 8]

a =

 2 3 -10 2 3 6

 3 6 4 -3 -4 8

b = (a > 5) | (a < -6) | (a ==3)

b =

 0 1 1 0 1 1

 1 1 0 0 0 1

To return the list of values meeting this set of conditions, we use

b = a((a > 5) | (a < -6) | (a ==3))

b =

 3

 3

 6

 -10

 3

 6

 8

1.8.3 Using Relational Operators to Address Arrays

In 1.8.1, we used arithmetic to mask out those values in an array that did not satisfy a

condition. However, it is more often the case that we only require those values which meet the

criteria, or their indices. MATLAB provides a way to do both of these.

Consider an array with both negative and positive values. If we are measuring some physical

quantity, there may be a restriction that the only feasible values are positive. To return only

the positive values we use

a = [-1, -2, 2, 4, 5, -2, 10, -15]

a =

 -1 -2 2 4 5 -2 10 -15

positive = a(a > 0)

positive =

 2 4 5 10

In MATLAB 5, we must indicate explicitly using the function logical that we are indexing

an array with an array of 0s and 1s and that MATLAB should return only those values which

are true:

a = [1, 2, 3, 4, 5], a(logical([0, 0, 1, 1, 1]))

a =

 45

 1 2 3 4 5

ans =

 3 4 5

So our previous example is equivalent to

a = [-1, -2, 2, 4, 5, -2, 10, -15]; a(logical([0, 0, 1, 1, 1, 0, 1, 0]))

ans =

 2 4 5 10

When we extract a list of values from a matrix, they are returned as a column vector:

a = [-1, 2, -3; 4, -5, 6], positive = a(a>0)

a =

 -1 2 -3

 4 -5 6

positive =

 4

 2

 6

Sometimes it is more helpful to know the indices of the values matching a given condition.

We can use find to achieve this.

a = [2, 1, 2, 2; 1, 2, 5, 3]

a =

 2 1 2 2

 1 2 5 3

[i, j] = find(a == 2)

i =

 1

 2

 1

 1

j =

 1

 2

 3

 4

The matrix a has the value 2 at (1,1), (2,2), (1,3), and (1, 4). For a row or column vector, find

returns the subscripts of the elements meeting the condition:

a = [3; 4; 3; 2;], find(a ~=3)

a =

 46

 3

 4

 3

 2

ans =

 2

 4

Elements 2 and 4 are not equal to three, and so these indices are returned.

If find is used without any condition, MATLAB returns those elements that are non-zero.

This is often used in sparse matrix calculations.

a = [0, 0, 3, 0, 0, 6], find(a)

a =

 0 0 3 0 0 6

ans =

 3 6

1.8.4 Other Matrix Operators returning True or False

MATLAB provides a number of useful test operations

The exclusive or operation is used to determine whether one or the other (but not both)

elements of two matrices evaluate to true or false.

a = [1, 0, 0, 2, 4, -4], b = [1, -1, 0, 0, 2, 2]

a =

 1 0 0 2 4 -4

b =

 1 -1 0 0 2 2

xor(a, b)

ans =

 0 1 0 1 0 0

Here a(2) = 0 (false) and b(2) = -1 (true), so xor(0, -1) = 1 (true).

Other operations include:

 any(a) Return one if any element in a vector a is nonzero. If a is a matrix,

then one is returned for each column that has a nonzero element.

 all(a) Return one if all elements in a vector a are nonzero. If a is a matrix,

then one is returned for each column that has all nonzero elements.

 isnan(a) Return ones at NaNs (Not a Number) in a.

 isinf(a) Return ones at Infs (Infinities) in a.

 finite(a) Return ones at finite values in a.

1.9 Linear Algebra

MATLAB was first written to handle matrices, and simplify linear algebra computations. In

this section we assume some knowledge of linear algebra and numerical analysis and examine

how to use MATLAB to solve simultaneous equations and find eigenvalues.

 47

1.9.1 Simultaneous Equations

We can write a set of simultaneous equations in the form Ax = b. A is a matrix of coefficients,

b is a vector of numbers and x is a vector of unknowns, which we wish to find. Consider the

following definition for A

A = [1, 2, 3; 4, 5, 6; 7, 8, 9]

A =

 1 2 3

 4 5 6

 7 8 9

The set of equations Ax = b will have a unique solution if the determinant of A is non-zero.

The determinant is found using the det function. In this case we have

det(A)

ans =

 0

So this set of linear equations has no unique solution. (I think it is a cruel twist of faith that

one of the most obvious matrices to write down as a test example has a zero determinant, and

cannot be used to demonstrate most linear algebra functions!) If we consider the following

matrix, the determinant is non-zero:

A = [1, 2, 3; 4, 5, 6; 7, 8, 1], b = [14; 32; 26]

A =

 1 2 3

 4 5 6

 7 8 1

b =

 14

 32

 26

det(A)

ans =

 24

We could calculate the solution to Ax = b using the inverse of A:

x = inv(A)*b

x =

 1.0000

 2.0000

 3.0000

However, finding the inverse of a matrix is often a numerically unstable problem and there are

faster and more stable routines. To solve the set of linear equations, it is much better to use the

left division operator (see 1.5.6):

x = A \ b

x =

 1.0000

 2.0000

 3.0000

 48

which finds the solution to the linear equations using the LU method.

1.9.2 Badly-Conditioned Problems

Unfortunately, at the heart of most interesting problems in engineering and science are „badly-

conditioned‟ matrices. If we attempt to solve the set of linear equations Ax = b when the

matrix A is badly conditioned, a small change in b will result in a large change in the solution

x. Remember, b represents the data we have, A represents some physical knowledge about the

system, and x represents the quantities we are trying to estimate. There can easily be small

random errors in b. Using the following 3 by 3 matrix, we will show the dangers. This matrix

is from the MATLAB gallery of matrices (see 1.10.2).

A = gallery(3)

A =

 -149 -50 -154

 537 180 546

 -27 -9 -25

Recall that the equation system will only have a solution if det(A) ~= 0:

det(A)

ans =

 6

So this all looks fine. Now let us find the solution for the following right hand sides, using the

numerically stable LU decomposition:

rh1 = [-711; 2535; -120], x = A \ rh1

rh1 =

 -711

 2535

 -120

x =

 1.0000

 2.0000

 3.0000

rh2 = rh1 + [1; 1; 0.1], x = A \ rh2

rh2 =

 1.0e+003 *

 -0.7100

 2.5360

 -0.1199

x =

 99.6667

 -312.0667

 9.5000

What has gone wrong? We perturbed the right hand side by 0.1%, well within the bounds of

experimental error, but the solution changed by two orders of magnitude in one case! The

matrix is very badly conditioned. We can measure this using:

cond(A)

 49

ans =

 2.7585e+005

This number is a measure of how badly conditioned the matrix is. The larger the number, the

worse the conditioning for the matrix, which in turn means that even small errors in the data b

will be amplified and make huge changes in our estimates of x. There are other ways to

measure, or estimate how badly-conditioned a matrix is, see help cond for details. Using

MATLAB, it is a simple matter to determine the condition number of a given matrix, before

attempting to work with it.

1.9.3 Poor Scaling

A different problem that can arise is „poor scaling‟, in which matrix elements vary over

several orders of magnitude. Numerical rounding errors cause a loss of accuracy in the final

solution. Fortunately MATLAB‟s built-in functions use techniques such as pivoting to reduce

the effects of poor scaling. If you find a difference between MATLAB‟s results and those

from a numerical FORTRAN or C routine, you should check to see whether the coefficients of

the problem are poorly scaled. MATLAB will have attempted to control any loss of accuracy.

1.9.4 Finding Eigenvalues and Eigenvectors

The eigenvectors of a matrix are the non-trivial solutions to the equation Ax = sx, where A is

a square matrix, x is an eigenvector and s the corresponding eigenvalue. In MATLAB we can

find the eigenvalues or eigenvectors of a matrix using the eig function.

A = [1, 2, 3; 4, 5, 6; 7, 8, 1]

A =

 1 2 3

 4 5 6

 7 8 1

d = eig(A)

d =

 12.4542

 -0.3798

 -5.0744

In this case, the eigenvalues of A are returned in the column vector d. If we use:

[V, D] = eig(A)

V =

 -0.2937 -0.7397 -0.2972

 -0.6901 0.6650 -0.3987

 -0.6615 -0.1031 0.8676

D =

 12.4542 0 0

 0 -0.3798 0

 0 0 -5.0744

The eigenvectors are returned as the columns of V, and its eigenvalue is the corresponding

diagonal entry of the matrix D.

1.9.5 Other Linear Algebra Tools

 50

MATLAB provides many other functions for numerical linear algebra. Here are some of them:

 A.' is the transpose of the matrix A.

 A' is the complex conjugate transpose of A.

 [L, U] = lu(A) returns the lower and upper triangular LU factorisation of

the square matrix A in L and U respectively, such that LU = A.

 [Q, R] = qr(A) returns an upper triangular matrix, R, and a unitary matrix,

Q, such that QR = A, for the matrix A.

 [S, V] = svd(A) returns a diagonal matrix, S, of the same dimension as A,

with non-negative diagonal elements in decreasing order, and unitary matrices U

and V such that U*S*V' = A.

 rank(A) returns the rank of the matrix A.

 norm(A) computes the norm of the matrix A, which gives some

measure of the elements of a matrix using a single number. The l-norm, 2-norm,

F-norm, and -norm can be found.

 poly(A) finds the characteristic polynomial associated with the

square matrix A. The roots of this polynomial are the eigenvalues of A.

1.10 Special Matrices, and the Rogues’ Gallery

MATLAB offers some special functions to enable you to create common matrices easily. It

also has a small library of famous test matrices with pathological features, which are useful

for testing numerical linear algebra routines.

1.10.1 Special Matrices

Here are some examples of commonly needed matrices, which can be produced using special

MATLAB functions. We give examples of matrices of specific size; they all generalize to

produce matrices of size m by n by passing in different parameter values. To produce a matrix

filled with the same number, we have a function:

ones(2, 3)

ans =

 1 1 1

 1 1 1

This provides an easy way to fill a matrix with any number:

ones(2, 3)*17

ans =

 17 17 17

 17 17 17

If we require a matrix with all zero entries, a separate function we can also use:

zeros(3, 2)

ans =

 0 0

 51

 0 0

 0 0

This may not, at first sight be particularly useful. However, it can be deployed to reserve

storage space for a matrix of a given size, rather than repeatedly augmenting an existing

matrix. This results in a faster execution of the MATLAB code. Consider

for i = 1:1000; x(i) = i; end

which is identical to x=1:1000; (only slower, see 1.13.1 for loop details). On a SPARC-1,

this takes about 1.2 seconds, if you precede the loop by

x = zeros(1, 1000);

the loop takes only 0.2 seconds! In fact, as we shall see later, such a loop should never be used

in MATLAB, since there is a more easy (and efficient) vector form for the assignment (see

1.17).

To generate matrices with uniform random entries between 0 and 1 we can use

rand(4, 1)

ans =

 0.0435

 0.3317

 0.2292

 0.7966

MATLAB also provides a function to generate random numbers with mean 0 and variance 1.

randn(3, 4)

ans =

 -0.0715 0.1798 0.8252 -0.5081

 0.2792 -0.5420 0.2308 0.8564

 1.3733 1.6342 0.6716 0.2685

You can scale the random numbers from both routines to produce random variables with other

characteristics:

2*rand(3, 2) - 1

ans =

 -0.0640 0.1643

 0.6692 -0.1343

 -0.0628 -0.9695

is a matrix with entries uniformly distributed between -1 and +1.

The identity matrix is accessed using

eye(3)

ans =

 1 0 0

 0 1 0

 0 0 1

This generalizes to a matrix with ones on the diagonal and zeros elsewhere, if you do not

specify a square matrix:

eye(3, 4)

ans =

 52

 1 0 0 0

 0 1 0 0

 0 0 1 0

(The purpose in calling this matrix eye, seems to be to admit a pun on the word eyedentity in

the User Guide.)

Using A = diag(v, k) MATLAB allows a user to create a square matrix, A, or order

n+abs(k) with the vector v on the k-th diagonal. If k = 0 (or is omitted), this is the leading

diagonal. If k > 0, it is above the main diagonal, and if k < 0 it is below the main diagonal.

v = [1, 2, 3];

A = diag(v)

A =

 1 0 0

 0 2 0

 0 0 3

A = diag(v, -1)

A =

 0 0 0 0

 1 0 0 0

 0 2 0 0

 0 0 3 0

Note that if we use v = diag(A, k), where A is a matrix, this returns the k-th diagonal of A in

the column vector v:

A = rand(4)

A =

 0.4875 0.3936 0.8733 0.2025

 0.2652 0.4567 0.1278 0.4905

 0.6827 0.3519 0.8477 0.7910

 0.8088 0.2888 0.3490 0.6320

v = diag(A, 2)

v =

 0.8733

 0.4905

You can use the function size to return the dimensions of another array (see 1.6.4). We can

use it as follows to enable a special matrix to be created with the same dimensions as an

existing one:

test = [1, 2, 3; 4, 5, 6]

test =

 1 2 3

 4 5 6

same_size = rand(size(test))

same_size =

 0.2332 0.7386 0.8133

 53

 0.4215 0.1306 0.8325

1.10.2 The Rogues’ Gallery

In 1.9.2 we used the first of these as an example of a badly-conditioned matrix:

A = gallery(3)

A =

 -149 -50 -154

 537 180 546

 -27 -9 -25

The following matrix is one with an interesting eigenvalue structure:

A = gallery(5)

A =

 -9 11 -21 63 -252

 70 -69 141 -421 1684

 -575 575 -1149 3451 -13801

 3891 -3891 7782 -23345 93365

 1024 -1024 2048 -6144 24572

If we evaluate the eigenvalues numerically, we obtain five distinct eigenvalues: two pairs of

complex eigenvalues, and a real eigenvalue:

eig(A)

ans =

 -0.0328+ 0.0243i

 -0.0328- 0.0243i

 0.0130+ 0.0379i

 0.0130- 0.0379i

 0.0396

However analytically, there is in fact a single eigenvalue with value 0 and algebraic

multiplicity of 5. The roots of the characteristic polynomial are the eigenvalues. The

characteristic polynomial of the matrix A is found using:

poly(A)

ans =

 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

This means that the eigenvalues are the solutions of z5 = 0, which are z = 0 with an

algebraic multiplicity of five. Using any number other than 3 or 5 as input to gallery yields

an empty matrix.

A less serious matrix included in MATLAB is the magic square:

magic(4)

ans =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

 54

magic(n), for n 3 returns the n by n matrix constructed from the integers 1 to n^2, with

equal row and column sums. Other matrices are

 hadamard(n) returns the Hadamard matrix of order n. They are matrices

whose entries are 1, and whose columns are orthogonal.

 hilb(n) returns the Hilbert matrix of order n, which is a poorly

conditioned matrix.

 invhilb(n) returns the inverse of the Hilbert matrix of order n.

Comparing this invhilb(n) with the inv(hilb(n)) examines the effects of

numerical rounding errors in the computation

 rosser(n) returns an 8 by 8 matrix test matrix, whose eigenvalues are

hard to find.

 wilkinson(n) returns the Wilkinson matrix of order n. They are test

matrices, whose eigenvalues are hard to find.

1.11 Text

MATLAB provides many features to handle numbers. In this section we discuss how

MATLAB handles text. Already we have seen, in 1.7.4, how to add text to graphs.

1.11.1 Character strings

A character string is a set of ASCII characters surrounded by single quotes. MATLAB handles

character strings like a row vector:

old = 'Hello World'

old =

Hello World

old(1:5)

ans =

Hello

Since the character string is like a row vector, we can access sections of the text using colon

notation. You can also define character string arrays, however, since MATLAB considers the

individual strings as the rows of the array, you must add spaces to the strings to make them

have the same length:

a_string = ['Hello '

 'How are'

 'You ']

a_string =

Hello

How are

You

1.11.2 Handling Character Strings

It is possible to perform mathematical operations on character strings, using the ASCII

number (between 0 and 255) for the character. These numbers are returned as the output

 55

a = 'Hello', b = 'World'

a =

Hello

b =

World

a+b

ans =

 159 212 222 216 211

MATLAB applies all the normal rules of matrix compatibility when performing these

calculations, so in this example, the two character strings must have the same number of

characters (or be padded with spaces).

To obtain the string representation of a number (or set of numbers), we use setstr(x), where

x is a vector of integers in the range 0:255. If an element of x is not an integer in this range,

MATLAB determines the character to be printed using fix(rem(x, 256)).

This can be used for a simple transposition cipher:

code = 'HAL'

code =

HAL

decode = code +1

decode =

 73 66 77

setstr(decode)

ans =

IBM

(HAL was the name of the computer in “2001, A Space Odyssey”, Arthur C. Clarke got the

name by this transposition of the letters of „IBM‟)

1.11.3 Cell Arrays

MATLAB 5 introduces a new kind of array, which enables data types of different sizes and

types to be handled simply.

c = {'Cell arrays ';'do not'; 'need to have the same number of elements in

each row'}

c =

 'Cell arrays '

 'do not'

 'need to have the same number of elements in each row'

This cell array has three rows and one column, but each element of the array consists of a

character string with a different number of elements. Cell arrays may be addressed and

maniupalated just like normal arrays. A cell array may be converted to a character array:

 56

char_array = char(c)

char_array =

Cell arrays

do not

need to have the same number of elements in each row

The new character array will be padded with spaces:

size(char_array)

ans =

 3 52

1.12 MATLAB Files and Functions

Up to now, we have used MATLAB by typing in commands at the command line, and

receiving the answer back immediately. However, MATLAB provides mechanisms for users

to add new functions and write blocks of MATLAB code. In this section we will examine how

to handle files in MATLAB, how to bundle together lists of instructions for MATLAB to

process, and how to add new functions to the MATLAB language.

1.12.1 File Handling commands

MATLAB allows the user to access the Operating system commands directly using the !

operator before specifying a command.

MATLAB uses the default extension .m on files, if an extension is not specified; script files

and functions should be saved with this extension.

The most important MATLAB file handling command is the MATLAB search path. This

originates in the operating system environment variable „MATLABPATH‟, which is set in the

MATLAB startup script, or in matlabrc.m. It may be set individually set in startup.m (we

will discuss using .m files in 1.12.2) The startup.m file is placed in a user‟s MATLAB

directory, and is processed if it exists.

The path determines how MATLAB determines how a command is interpreted. If you type

hello, then MATLAB:

 looks for hello as a variable.

 checks to see whether hello is a built-in function.

 looks in the current directory for the files hello.mex, or hello.m.

 searches for hello.mex, or hello.m in the directories specified in the current

path.

If you want to access your own functions or scripts, they must either be in the current

directory, or you must add the directory in which they reside to the MATLAB path. You can

use path(p1,p2) to change the path to the concatenation of p1 and p2.

path(path,'c:\')

is used to add the root directory of the c drive (under Windows) to your current path. On its

own, path displays the current search path. MATLAB 5 (Windows and Mac versions)

includes a graphical path browser.

 57

To display the current working directory, use

cd

C:\MATLAB\bin

chdir or pwd will do the same. If you specify a name after cd, (or chdir or pwd), MATLAB

will change the current working directory to that directory:

cd c:\

To access other operating system commands, you can use the MATLAB functions:

 what lists all of the MATLAB .m files in the current working

directory.

 dir, or ls lists all files in the current working directory.

 type hello displays the MATLAB file hello.m in the command window.

 delete hello deletes the MATLAB file hello.m.

 which test returns the directory path to hello.m.

1.12.2 Script Files

This is a list of MATLAB commands saved to a file, which execute when you type in the

name of the file at the command prompt (they are similar to shell scripts in UNIX). As we

mentioned in 1.12.1, the file must reside within MATLAB‟s search path. In MATLAB these

files have the extension .m, and are called M-files.

Under Windows, select New from the File menu and select M-file. This will bring up the built

in editor and debugging environment and you can type in the list of MATLAB commands.

Under UNIX, you should create M-files using your favourite text editor (vi, Emacs, etc.), and

save them with the .m extension.

If you create the file startup.m, in your MATLAB directory, the commands in this will be

executed when you start MATLAB. This is commonly used to define the MATLAB search

path for your MATLAB extensions, physical constants, and engineering conversion factors.

It is very helpful to add comments to script files. Anything on a line after a % sign is ignored.

inches = 2.54; % Conversion factor from inches to centimetres

3*inches % 3 inches is 3*inches centimetres

ans =

 7.6200

MATLAB variables defined in a script file are available to the whole workspace, and the

script file has access to any variables defined in the workspace. If you type echo on before

executing a script, all of its commands are displayed as they are processed (as well as any

output). If you use echo off, then commands (but not any assignment outputs) are

suppressed. The default is echo off. Note that with echo turned off, only those assignments

that are not terminated with a semicolon are displayed.

Script files are useful for entering large arrays using a text editor, or setting up a list of data

files to load after a simulation run. In this form, they can be saved to disk and easily edited

later. Once saved to disk, they can be used repeatedly.

You can use them to list a set of load commands to retrieve important output files from a

computational simulation. This saves typing in the list of files each time you want to load and

analyze your results. Generally, the names of these files are known to the simulation code.

 58

With a little ingenuity you can write a short routine in C or FORTRAN, so that the list of

output files, and the load command is written to a .m file when the code is run. By running

this M-file, all of your data is loaded into MATLAB, and you are ready to start processing

your data.

Script files (and functions) are compiled by MATLAB 5 into an internal representation when

they are first called and will run faster on subsequent calls.

1.12.3 Adding New Functions

Up to now, you have used functions to operate on a list of parameters and pass back the

results. Although we create functions in a text editor just like script files, they operate in a

different manner:

 they can only access workspace variables passed into them.

 they can only alter the workspace variables which the results are passed back in.

 intermediate variables defined in the workspace are local to the function, and do

not affect the workspace.

To learn how to write your own functions, let us display the linspace function:

type linspace

function y = linspace(d1, d2, n)

%LINSPACE Linearly spaced vector.

% LINSPACE(x1, x2) generates a row vector of 100 linearly

% equally spaced points between x1 and x2.

%

% LINSPACE(x1, x2, N) generates N points between x1 and x2.

%

% See also LOGSPACE, :.

% Copyright (c) 1984-96 by The MathWorks, Inc.

% $Revision: 5.2 $ $Date: 1996/03/29 20:24:44 $

if nargin == 2

 n = 100;

end

y = [d1+(0:n-2)*(d2-d1)/(n-1) d2];

linspace is supplied with MATLAB, and is used to create an array of linearly spaced

numbers (see 1.5.3). There are a number of features of the file to note:

 The first line marks the M-file as a function, and gives its name, and the input and

output variables expected.

 The function name and file name must be identical. The linspace function is

saved in the file linspace.m.

 Any comment lines (starting with a %) up to the first line which does not start with

a % form the text returned when you type, in this case, help linspace.

 59

 The first help line (known as the Hl line) contains a synopsis of the function, and

is the line which lookfor uses to search for functions matching a given keyword.

 All variables are local to the function, and do not affect the MATLAB workspace.

The only workspace variables that the function knows about are those passed in,

in this case (d1, d2, n). The only variables that are changed are those on the

(left) output side: y. Note that these names only define the names within the

function- you do not need to call the function with variables called d1, d2, n, or y.

 To specify more than one output variable, the function definition is as follows

function [in1, in2, in3, etc] = my_function(out1, out2, out3, etc)

 When a function is first executed, MATLAB compiles the code into an internal

representation, and the function will execute faster on subsequent calls.

 To determine the number of input variables passed to the routine, we use nargin.

In the case of linspace, the n is optional. If only two variables are passed in, n is

set to 100.

 To determine the number of output variables specified for the routine, we use

nargout. This can be used to allow several possible outputs, but only perform the

computations necessary for them if they are requested.

1.12.4 Summary

Mastering the use of functions allows you to add to the functionality of MATLAB. There are

many user-contributed M-Files for a wide variety of tasks on the web site, see the

bibliography. In section 1.17 we make some comments about how to write efficient M-files.

1.13 MATLAB Programming Structures

In the last section, we discussed how to write MATLAB code to add functions, and gather

together commands to avoid re-typing them. MATLAB provides some additional

programming structures to allow loops and decision making. This section will only concern

you if you are trying to write script, or function files, and we assume basic knowledge of the

programming structures discussed.

1.13.1 For Loops

This feature of the MATLAB programming language should never be used, until you have

tried every other way to generate the required result. It is often possible to replace loops with

vector statements using the colon notation, where possible, such techniques should be

employed, since they are considerably more efficient (see 1.5.3).

A for loop can be used to repeat a set of commands a fixed number of times:

for count = x

 commands

end

The commands are repeated once for every column in the array x. At each iteration, k, the

count variable takes on the value of the respective column of the array: x(:,k).

a = zeros(1,10);

for k = 1:10

 a(1,k) = k^2;

 60

end

a

a =

 1 4 9 16 25 36 49 64 81 100

In this example we set up an array with the squares of the numbers 1 to 10. Note the use of

zeros before the loop; by predefining the size of the array, the code runs faster. In this

example it would have been better to use

a = (1:10).^2

a =

 1 4 9 16 25 36 49 64 81 100

which is more efficient.

Since the count variable takes on the value of the respective column of the array x, we can

exploit this:

a = [1, 2, 3; -10, -9, -8]

a =

 1 2 3

 -10 -9 -8

for count = a

 count(1) + count(2)

end

ans =

 -9

ans =

 -7

ans =

 -5

MATLAB supports nesting of for loops:

a = zeros(3);

for k = 1:3

 for l = 1:3

 a(l,k)=1 / (k+l-1);

 end

end

a

a =

 1.0000 0.5000 0.3333

 0.5000 0.3333 0.2500

 0.3333 0.2500 0.2000

This defines the square Hilbert matrix of order 3.

hilb(3)

ans =

 1.0000 0.5000 0.3333

 61

 0.5000 0.3333 0.2500

 0.3333 0.2500 0.2000

1.13.2 While Loops

A while loop is used to repeat a set of commands while all the elements in an array evaluate

to true. This algorithm returns the power of two closest to, but not greater than n.

n = 12345;

x = 1;

while x<=n

 x = x*2;

end

x/2

ans =

 8192

To perform a fast Fourier transform, on a set of data, we need the number of values to be a

power of two. If we are to truncate the data, we need to determine the closest power of two,

which does not exceed the number of data we have. There are many other ways to implement

this, we have used the above method as an example of a while loop.

1.13.3 If .. Else Decisions

We have seen an example of making a decision in a function file. In 1.12.3, the function

linspace tests to determine how many variables have been passed to it:

type linspace

function y = linspace(d1, d2, n)

%LINSPACE Linearly spaced vector.

% LINSPACE(x1, x2) generates a row vector of 100 linearly

% equally spaced points between x1 and x2.

%

% LINSPACE(x1, x2, N) generates N points between x1 and x2.

%

% See also LOGSPACE, :.

% Copyright (c) 1984-96 by The MathWorks, Inc.

% $Revision: 5.2 $ $Date: 1996/03/29 20:24:44 $

if nargin == 2

 n = 100;

end

y = [d1+(0:n-2)*(d2-d1)/(n-1) d2];

If it has only received 2, then the function returns 100 equally spaced values across the range

specified. There are three forms of if statement:

1) In the simplest form, a set of statements are executed if an expression evaluates to true:

 if x

 62

 commands

 end

2) Here there are two sets of commands, one set to execute if x is true. The other set is

executed if x is false.

 if x

 commands to execute if x is true

 else

 commands to execute if x is false

 end

3) This gives the generalization in which several expressions are tested. The set of commands

following the first expression to evaluate to true is executed, and then the rest of the tests and

commands are skipped (no more tests are performed). The final else is optional.

if x1

 commands to execute if x1 is true

 elseif x2

 commands to execute if x2 is true

 elseif x3

 commands to execute if x3 is true

 (etc)

 else

 commands to execute if no other commands are true.

end

This example shows the use of the third form of if.

x1 = [1 0]; x2 = [1, 1]; x3 = [2, 2]; x4=[666];

if x1

 x1

elseif x2

 x2

elseif x3

 x3

else

 x4

end

x2 =

 1 1

Note that the conditions can be arrays, which evaluate to true only if all of their components

are true. In this case x2 was the first matrix tested which evaluated to true, and so it was

returned.

MATLAB 5 provides switch .. case structure, which is more convenient if you wish to

test a single argument for equality with one of a number of options, see help switch for

more details.

1.14 Polynomials

 63

1.14.1 Polynomial Storage

MATLAB handles evaluation of simple polynomials by storing the coefficients of the

polynomial in a row vector in descending order of power. MATLAB represents the

polynomial z
5
 - 2z

4
 + 3z

3
 + 4z - 12 using:

z = [1, -2, 3, 0, 4, -12]

z =

 1 -2 3 0 4 -12

Note the zero entry for the coefficient of z
2
 must be included.

1.14.2 Roots of a Polynomial

To find the roots of a polynomial, we find the values of x that satisfy z
5
 - 2z

4
 + 3z

3
 + 4z - 12 =

0.

soln = roots(z)

soln =

 1.1667+ 1.7265i

 1.1667- 1.7265i

 -0.8790+ 1.0805i

 -0.8790- 1.0805i

 1.4245

In general, some of the roots of a polynomial will be complex, and MATLAB returns a

complex column vector with the solutions in. It is important to appreciate that finding the

roots of a polynomial can be a badly conditioned problem (see 1.9.2 for an example of a badly

conditioned problem). Small changes in the coefficients can result in large changes in the

polynomial roots.

MATLAB can also construct a polynomial, given its roots:

cubic_roots = [12, 1 + i, 1 - i]

cubic_roots =

 12 1001 -999

cubic_poly = poly(cubic_roots)

cubic_poly =

 1 -14 -999975 11999988

So the polynomial is z
3
- 14z

2
 + 26z - 24. The polynomial coefficients may be complex.

1.14.3 Adding Polynomials

If two polynomials are of the same order, then standard array addition can be used. If not, you

must add zero coefficients for the higher powers in the lower order polynomial.

To add z
3
- 14z

2
 + 26z - 24 to 10z

2
 + 3z - 2, we define

z1 = [1, -14, 26, -24], z2 = [0, 10, 3, -2]

z1 =

 1 -14 26 -24

z2 =

 0 10 3 -2

z1+z2

 64

ans =

 1 -4 29 -26

1.14.4 Multiplying Polynomials

Multiplying two polynomials is the same as taking the Fourier transform of the coefficients,

multiplying and then taking the inverse Fourier transform (this comes from the „convolution

theorem‟). MATLAB provides a single function, conv, to do this. Consider multiplying z
3
-

14z
2
 + 26z - 24 and 10z

2
 + 3z - 2:

z1 = [1, -14, 26, -24], z2 = [10, 3, -2]

z1 =

 1 -14 26 -24

z2 =

 10 3 -2

conv(z1,z2)

ans =

 10 -137 216 -134 -124 48

The product is 10z
5
 - 137z

4
 + 216z

3
 - 134z

2
 - 124z + 48. Note that we do not need to zero pad

the second array. We can check whether this is the same as using Fourier transforms using

MATLAB‟s fft function:

z1 = [1, -14, 26, -24]; z2 = [10, 3, -2];

x = fft([z1 zeros(1, length(z2) - 1)]);

y = fft([z2 zeros(1, length(z1) - 1)]);

cmplx_poly = ifft(x .* y)

cmplx_poly =

 1.0e+002 *

 Columns 1 through 4

 0.1000- 0.0000i -1.3700- 0.0000i 2.1600+ 0.0000i -1.3400+ 0.0000i

 Columns 5 through 6

 -1.2400- 0.0000i 0.4800- 0.0000i

Taking the real part of the last array yields

real(cmplx_poly)

ans =

 10.0000 -137.0000 216.0000 -134.0000 -124.0000 48.0000

which is precisely the product of the polynomials, as determined previously. The actual

implementation of conv is more subtle (see type conv for details).

1.14.5 Dividing Polynomials

Using the deconv function, it is possible to divide one polynomial by another. To determine

10z
5
 - 137z

4
 + 216z

3
 - 134z

2
 - 124z + 48 / 10z

2
 + 3z - 2, we use

z1 = [10, -137, 216, -134, -124, 48];

z2 = [10, 3, -2];

[q, r] = deconv(z1,z2)

q =

 1.0000 -14.0000 26.0000 -24.0000

 65

r =

 1.0e-013 *

 0 0.2842 0 0.2842 0.1421 -0.0711

This yields a polynomial part, q, which is z
3
- 14z

2
 + 26z - 24, and a remainder, r, which is 0

(excluding numerical rounding errors).

z1 = [1, 2, 12, 11, 1];

z2 = [1, 0, 4];

[q, r] = deconv(z1,z2)

q =

 1 2 8

r =

 0 0 0 3 -31

In this case:

z z4 32

+12z +11z +1

z + 4
z + 2z + 8

3z - 31

z + 4

2

2

2

2
(1.14.1)

1.14.6 Polynomial Derivatives

MATLAB provides the polyder function to obtain the derivatives of a polynomial.

z1 = [1, 2, 12, 11, 1];

polyder(z1)

ans =

 4 6 24 11

d

dz
z z z4 3 32 4 +12z +11z +1 + 6z + 24z +112 2

(1.14.2)

1.14.7 Polynomial Evaluation

To evaluate a polynomial at a point, you can use the MATLAB polyval(z, z0) function,

which finds the value of the polynomial defined by the coefficients in z at the points in z0. An

efficient algorithm is used, and it is always best to evaluate a polynomial at a point using this

function (see type polyval for details). We can plot the polynomial z
3
 + 3z

2
 - 2z + 1 using

z = [1, 3, -2, 1];

z0 = linspace(-4,3,100);

value = polyval(z, z0);

plot(z0, value);

title('Plot of z^3 + 3z^2 - 2z + 1')

xlabel('z')

 66

-4 -3 -2 -1 0 1 2 3
-10

0

10

20

30

40

50
Plot of z^3 + 3z^2 - 2z + 1

z

1.14.8 Partial Fractions

MATLAB provides a function to expand a polynomial ratio into partial fractions. [r, p, d]

= residue(f, g) expands:

f

g

r(1)

z p(1)

r 2)

z p(2)
...

r(n)

z p(n)
d

(

(1.14.3)

where f and g are polynomials in z, the residues are the r(i), the poles are p(i), and the

direct term is the polynomial d.

Consider:

z1 = [1, 0, 1];

z2 = [1, -1, 0];

[r, p, k] = residue(z1, z2)

r =

 2

 -1

p =

 1

 0

k =

 1

This is interpreted as

z

z z z z

2

2

1 2

1

1
1

(1.14.4)

There are other options for using residue, see help residue for details. For a general

polynomial ratio, evaluating a partial fraction expansion is an ill-posed problem: small

changes in the input coefficients can make large changes in the partial fraction expansion.

1.15 An Introduction to Numerical Analysis with MATLAB

 67

In this section we introduce some MATLAB tools for performing basic numerical analysis.

For more details about the issues raised in this section, see a numerical analysis textbook such

as those mentioned in the bibliography.

Throughout this section we will consider MATLAB‟s built-in humps function, which has

interesting properties.

1.15.1 Curve Fitting: Least Squares

Given a discrete sample of points from some function, what kind of curve could we draw

which best represents the trends in the data. Naturally there are lots of possible curves, an

infinite number in fact, so which one can we choose? When we fit a curve, we do not expect

that the curve will pass through each of the data points.

One way to fit the curve is to minimize the sum of the squares of the discrepancies (or

“residuals”) between the data and the values predicted by the hypothetical function. We adjust

the parameters of the function to minimise this sum. This is known as least squares fitting of

data.

MATLAB provides polyfit(x, y, o) to perform a least squares fit of a polynomial of order

o to the data in x and y. The function polyval(p, x), evaluates the polynomial defined by p

at the set of points x.

Let us take 15 equally spaced points from the function humps, and consider qualitatively the

effect of plotting polynomials of various order through these points.

x = linspace(0,2,15);

y = humps(x);

plot(x,y,'ro')

title('Sample of Humps')

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-20

0

20

40

60

80

100
Sample of Humps

With just this sample of points, it is hard to know what sort of curve to fit. We could try a

second order polynomial as follows

order_2 = polyfit(x,y,2);

x_2 = linspace(0,2,100);

y_2 = polyval(order_2, x_2);

 68

plot(x, y, 'ro', x_2, y_2, 'b:')

title('Quadratic (2nd) Fitting of Humps')

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-20

0

20

40

60

80

100
Quadratic (2nd) Fitting of Humps

The fit does not look very impressive. Perhaps a higher order polynomial will do better:

order_6 = polyfit(x,y,6); x_6 = linspace(0,2,100);

y_6 = polyval(order_6, x_6);

plot(x, y, 'ro', x_6, y_6, 'b:')

title('6th Order Curve Fitting of Humps')

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-20

0

20

40

60

80

100
6th Order Curve Fitting of Humps

This fit looks more reasonable. Using polyval, we can evaluate the function at each of the

sample points, and determine the residual (the difference between the estimate given by our

function, and the actual function value).

y_s = polyval(order_6, x);

 69

residual = y_s - y;

results = [x; y; y_s; residual; residual/std(residual)]'

results =

 0 5.1765 -1.3549 -6.5314 -0.4710

 0.1429 24.4541 52.4369 27.9827 2.0177

 0.2857 94.3961 56.5751 -37.8210 -2.7271

 0.4286 35.5055 42.7865 7.2809 0.5250

 0.5714 12.7098 27.5492 14.8393 1.0700

 0.7143 12.9303 17.1772 4.2469 0.3062

 0.8571 21.0235 12.0047 -9.0187 -0.6503

 1.0000 16.0000 9.6716 -6.3284 -0.4563

 1.1429 5.4912 7.5085 2.0173 0.1455

 1.2857 0.3160 4.0234 3.7074 0.2673

 1.4286 -2.0900 -0.5119 1.5781 0.1138

 1.5714 -3.3478 -4.3748 -1.0270 -0.0741

 1.7143 -4.0802 -5.6036 -1.5235 -0.1099

 1.8571 -4.5434 -4.1103 0.4331 0.0312

 2.0000 -4.8552 -4.6910 0.1642 0.0118

The table above gives the x and y values, our estimate of the y value using a 6th order

polynomial, the residual and the normalized residual. A normalized residual of more than 2 is

surprising, so if the humps function were a set of experimental results, we would be

suspicious of the y values of 52.4369 and 56.5751, but we would probably not reject them.

In 1.16, we give a worked example of data-fitting in which the fit is considerably better.

1.15.2 Interpolation I: Linear

Given a discrete sample of points from some function, how can we determine the function

value between those points. This is like curve fitting, but the curve must pass through every

data point.

The simplest type of interpolation is the linear interpolation used by MATLAB when plotting

a curve; the points are joined up by straight lines.

x = linspace(0, 2, 15);

y = humps(x);

plot(x, y,'r-', x, y, 'ro');

title('Linear Interpolation of Humps')

 70

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Linear Interpolation of Humps

As the number of sample points increases and the distance between them decreases, linear

interpolation becomes more accurate. However, if we only have a fixed number of samples,

then we want to do the best job fitting the points we have.

1.15.3 Interpolation II: Polynomials

For n data points, a polynomial of order n-1 will pass through each data point.

order_14 = polyfit(x,y,14);

x_14 = linspace(0,2,100); y_14 = polyval(order_14, x_14);

plot(x, y, 'ro', x_14, y_14, 'b:')

title('14th Order Interpolation of Humps')

0 0.5 1 1.5 2
-300

-250

-200

-150

-100

-50

0

50

100

150
14th Order Interpolation of Humps

The curve fits through every data points, but it oscillates wildly- especially between the first

pair and last pair of points. There is no evidence in the data for this oscillatory behaviour, and

yet our attempt to plot a curve through all the points has produced it. If we have more data

points, we require an even higher order polynomial. The oscillatory behaviour will be worse,

and evaluating the polynomial may become very time-consuming.

 71

1.15.4 Interpolation III: Splines

Fortunately, there is a rigorous way to draw a smooth curve between a set of points. The basis

of this method is to fit sections of curve between sets of points, using the „spline‟ method.

Many cars are designed using splines to ensure „smoothness‟ of the chassis. MATLAB

provides the function interp1(x, y, xi, 'method') to perform various types of

interpolation between points x and y and return the interpolated value at the points in xi:

 linear fits a straight line between pairs of points. This is the default if no

method is specified, and is the method used by MATLAB when joining adjacent

points on a plot.

 spline fits cubic splines between adjacent points.

 cubic fits cubic polynomials between sets of 4 points. The x points must be

uniformly spaced

In all cases, x must be monotonic (it must either increase or decrease over the range). None of

the values in xi can lie outside the range of the x values supplied- interp1 will not perform

extrapolation.

spline_x = linspace(0,2,100);

cubic_spline = interp1(x,y,spline_x,'spline');

plot(x, y, 'ro', spline_x, cubic_spline, 'b:')

title('Cubic Spline Interpolation of Humps')

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Cubic Spline Interpolation of Humps

We now have a smooth curve between the points.

cubic_x = linspace(0,2,100);

cubic = interp1(x,y,cubic_x,'cubic');

plot(x, y, 'ro', cubic_x, cubic, 'b:')

title('Cubic Interpolation of Humps')

 72

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Cubic Interpolation of Humps

In this case, the 'cubic' method provides the smoothest curve with the least oscillations

between points. In the next section, we reveal what the function looks like.

1.15.5 The Humps function

Here is a plot of the humps function.

fplot('humps',[0 2]);

title('A Plot of Humps')

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
A Plot of Humps

The cubic interpolation reproduced a similar plot using only a sample of ten points across the

range. For more information about interpolation, see one of the numerical analysis books in

the bibliography.

1.15.6 Interpolation III: Surface Splines

(This section includes some 3D plots, so you might like to look briefly at 1.18 first.)

 73

Interpolating over a surface is an extension of interpolating between two data points. In

MATLAB we can use interp2(X, Y, Z, XI, ZI, 'method') to interpolate at the points

(XI, YI) the function whose value is Z at X, Y.

Two methods that can be used

 linear linear interpolation. This is the default if no method is specified.

 cubic cubic interpolation. The X and Y points must be uniformly spaced.

In all cases, X and Y must be monotonic. None of the values in XI can lie outside the range of

the X or Y values supplied- interp2 will not perform extrapolation.

In this example, we use cubic interpolation to produce a smooth mesh from samples of

MATLAB‟s peaks function:

[X, Y] = meshgrid(-3:1:3);

Z = peaks(X, Y);

[XI, YI]= meshgrid(-3:0.5:3);

ZI_linear = interp2(X, Y, Z, XI, YI, 'linear');

ZI_cubic = interp2(X, Y, Z, XI, YI, 'cubic');

mesh(XI, YI, ZI_cubic+25);

hold on

mesh(X, Y, Z);

colormap([0,0,0]);

hold off

axis([-3, 3, -3, 3, -5, 25]);

title('Interpolation of the peaks function')

-3
-2

-1
0

1
2

3

-2

0

2

-5

0

5

10

15

20

25

Interpolation of the peaks function

The bottom part of the figure shows the coarse samples, and the top shows the interpolated

grid. We have displace the interpolated grid upwards.

 74

1.15.7 Function Minimization or Maximization

After a function is plotted successfully, either by evaluating the function at many points along

the region of interest, or by interpolating between a smaller number of points, we may want to

determine where the function has minimum or maximum values. Since maximizing a function

f(x) is equivalent to minimizing -f(x), we only need a function for minimization.

Analytically, mimima, or maxima are points on the curve where the derivative of the function

is zero. In the case of the humps function, we are not given its analytic form, so we cannot use

this technique. In engineering one may not have an analytical function, or it may be too hard

to find the points at which the derivative is zero. MATLAB provides fmin('function',

xmin, xmax) to search for the minimum value of a function in the range xmin to xmax.

fmin('humps', 0.5, 0.9)

ans =

 0.6370

From the plot of the function in 1.15.2, there is a minimum at 0.6370 (4 dp). To find the

position of the maximum value of humps, we evaluate

fmin('-humps(x)', 0.5, 0.9)

ans =

 0.8927

This is a local maximum between 0.5 and 0.9. The global maximum is at

fmin('-humps(x)', 0, 1)

ans =

 0.3004

Note that we have specified an independent variable x, so that MATLAB knows the variable

over which to minimize. To minimize (or maximize) a complex function, you can set up an

M-file that returns the function value at a given point. For this, and other uses of fmin, see

help fmin.

1.15.8 Finding Zeros of a Function

In an engineering optimization problem, for example a design, you may wants to determine

when a function takes on some value c. This may be some critical design parameter, or may

reflect the cost of the product.

To find the x values at which a function f(x) takes on a certain value, c, we can consider

when the function f(x)-c takes on the value 0. In MATLAB, we can use

fzero('function', xstart) to search for a value near to xstart, where the function is

zero.

fzero('humps',0)

ans =

 -0.1316

fzero('humps',2)

ans =

 1.2995

humps crosses zero at -0.1316 (4 dp) and 1.2995 (4 dp).

 75

To find the x value for which humps(x) = 60, we must write a function which returns

'humps(x) -60', and then pass the name of this function to fzero. To quote the MATLAB

(version 4) User‟s Guide: “it was never given the capability to accept a function described by

a character string using x as the independent variable”. To translate: this is a bug they are

aware of, but have not fixed (yet)!

fzero = fzero('humps(x)-60',0.5)

Warning: Reference to uninitialized variable 'fzero'.

??? Matrix indices must be full double.

If this worked, it would return the value of the zero. You could write a function:

function y = humps2(x)

% Defines the function humps-60

y = humps(x)-60;

and save it to disk as 'humps2.m'. Using fzero('humps2',0.5), you would find that the

function humps takes on the value 60 at 0.3769 (4dp), and using fzero('humps2',0.2), it

also takes on the value 60 at 0.2250 (4 dp).

MATLAB returns the first zero it finds near to the start value given, if there are no zeros, then

MATLAB will stop and provide a diagnostic message.

1.15.9 Numerical Integration

There are some functions (such as that defining the Gaussian distribution) which it is not

possible to integrate. MATLAB provides three functions for evaluating a definite integral, by

summing up the area under the curve:

 trapz(x,y) uses the Trapezium rule.

 quad('function',a,b,tol) uses an adaptive recursive Simpson‟s Rule.

 quad8('function',a,b,tol) uses an adaptive recursive Newton-Cotes 8

panel rule.

The Trapezium rule adds up the areas of trapezia under the curve, the value of the function, y,

at the points x are passed in and MATLAB sums the area of the resulting trapezia.

Before performing any numerical integration it is imperative to plot the function first, to

examine it for singularities or to determine whether the function is negative over some of the

range of integration. MATLAB takes no account of whether the function is negative or

positive over the range. If you want all the area to be strictly positive, you should work with

the absolute value of the function using abs. In the next example we return to the humps

function, and plot the trapezia with the function, and then give the answer in both cases

fplot('humps',[-1,2])

x = linspace(-1, 2, 9);

y = humps(x);

hold on

stem(x,y,':')

plot(x,y,':')

title('Trapezium Rule for Humps (9 points)')

hold off

 76

-1 -0.5 0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Trapezium Rule for Humps (9 points)

After plotting the function and the trapezium rule approximation, we know already that the

answer will be an underestimate:

trapz(x,y)

ans =

 17.5601

To find a better answer, we can use more points on the curve, but first a plot, to visualize the

numerical procedure:

fplot('humps',[-1,2])

x = linspace(-1, 2, 30);

y = humps(x);

hold on

stem(x,y,':')

plot(x,y,':')

title('Trapezium Rule for Humps (30 points)')

hold off

 77

-1 -0.5 0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Trapezium Rule for Humps (30 points)

This looks better, although some of the area in the largest peak has been missed:

trapz(x,y)

ans =

 26.2102

Using MATLAB, we can find the total area between the curve and the x axis by working with

the absolute value of the function:

fplot('abs(humps(x))',[-1,2])

x = linspace(-1, 2, 30);

y = abs(humps(x));

hold on

stem(x,y,':')

plot(x,y,':')

title('Trapezium Rule for Humps (30 points)')

hold off

-1 -0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100
Trapezium Rule for Humps (30 points)

 78

The area is now given by:

trapz(x,y)

ans =

 37.5159

From the plots, we know in all of these cases that some of the area has been missed. We could

add more points along the range of interest, until the approximation was good enough,

however this would result in a considerable amount of extra work. There are two solutions to

this:

 Add more points around the area of interest. In general there are more subtle and

effective ways to do this, than by hand, and it is generally inadvisable to use the

trapezium rule on an unequally spaced grid.

 Use a higher order method. This is similar to the method of using the splines to

perform linear interpolation (see 1.15.4). This is known as quadrature: by fitting

sections of polynomial between groups of points, and calculating the area under

these, we can approximate the area more accurately. In many cases, they also

require the function to be evaluated at less points than the trapezium rule to

achieve a given accuracy.

The functions quad and quad8 are two such methods (with quad 8 using a higher order

method). quad('function',a,b,tol) finds the definite integral of function from a to b,

accurate to the tolerance tol. If tol is not specified the value 1e-3 is used. MATLAB warns

you if the specified tolerance can‟t be reached.

area = quad('humps',-1,2,1e-3)

area =

 26.3450

area = quad8('humps',-1,2,1e-4)

area =

 26.3450

These answers are slightly large than those obtained using the trapezium, which is to be

expected from our plots. The exact answer is

format long

(10*atan(17) + 5*atan(5.5) - 12) - (10*atan(-13) + 5*atan(-9.5) + 6)

format short

ans =

 26.34496047137833

For a more detailed discussion of quadrature and numerical integration, see help quad, and

the numerical analysis references in the bibliography.

1.15.10 Differential Equations

Finding numerical derivatives and solving differential equations is a complex field crossing

the boundaries of mathematics, computer science, and engineering. We do not feel that it is

appropriate to attempt to cover this field in a few pages of text. Instead, we suggest that you

consult the references in the bibliography (and also look at the references contained within

 79

them) before attempting a numerical solution of any differential equation. Many research

hours have been wasted by starting the numerics before understanding the theory.

Here are some MATLAB functions which you may find useful for finding numerical

derivatives and solving differential equations

 diff Differences between elements in columns.

 del2 Five-point discrete Laplacian.

 ode23 Solve differential equations, low order method.

 ode45 Solve differential equations, higher order method.

MATLAB 5 includes a suite of programs to solve differential equations, see odedemo for

more details.

1.16 Data Analysis

In MATLAB data is stored in the form of matrices, and we can perform statistical analysis on

this data. In this section we analyze a data set, which was produced in one of the laboratories

in the University, and demonstrate how some of the features of MATLAB can be employed.

1.16.1 A Worked Example

In general, we store data sets in columns: each variable is in a different column, and samples

of each variable are in the rows. This mimics the way in which a lab book would be set out.

The following data is a measurement of the resistance (in ohms) of a Nickel wire at various

temperatures (in Celsius). We are trying to determine whether there is any relationship

between the resistance and the temperature of the wire.

wire = [18.0, 1.221; 21.5, 1.233; 25.8, 1.258; 30.5, 1.284; 31.5, 1.290;

33.0, 1.298; 34.6, 1.305; 38.0, 1.322; 46.5, 1.368; 50.0, 1.384; 55.6,

1.424; 60.0, 1.445; 70.0, 1.510; 73.2, 1.530; 74.8, 1.540; 76.4, 1.550;

78.0, 1.560; 81.0, 1.580]

wire =

 18.0000 1.2210

 21.5000 1.2330

 25.8000 1.2580

 30.5000 1.2840

 31.5000 1.2900

 33.0000 1.2980

 34.6000 1.3050

 38.0000 1.3220

 46.5000 1.3680

 50.0000 1.3840

 55.6000 1.4240

 60.0000 1.4450

 70.0000 1.5100

 73.2000 1.5300

 74.8000 1.5400

 76.4000 1.5500

 78.0000 1.5600

 80

 81.0000 1.5800

In our calculations, we will require the temperature to be in Kelvin, so we define a new matrix

with our data in:

wire_K = [wire(:,1) + 273, wire(:,2)]

wire_K =

 291.0000 1.2210

 294.5000 1.2330

 298.8000 1.2580

 303.5000 1.2840

 304.5000 1.2900

 306.0000 1.2980

 307.6000 1.3050

 311.0000 1.3220

 319.5000 1.3680

 323.0000 1.3840

 328.6000 1.4240

 333.0000 1.4450

 343.0000 1.5100

 346.2000 1.5300

 347.8000 1.5400

 349.4000 1.5500

 351.0000 1.5600

 354.0000 1.5800

1.16.2 Visualizing the data

In MATLAB, it is easy to visualize the data

plot(wire_K(:,1), wire_K(:, 2));

title('Resistance of Nickel Wire as a function of Temperature')

xlabel('Temperature (Kelvin)')

ylabel('Resistance (Ohms)')

 81

290 300 310 320 330 340 350 360
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
Resistance of Nickel Wire as a function of Temperature

Temperature (Kelvin)

R
e

s
is

ta
n
c
e

 (
O

h
m

s
)

1.16.3 Determining Statistical Properties of the Data

We can determine the range of temperatures and resistances measured using:

range = max(wire_K) - min(wire_K)

range =

 63.0000 0.3590

We have used max and min find the maximum and minimum of the columns of wire. We

measured temperatures over a range of 63 ºC, and resistances over a range of 0.3590 ohm.

MATLAB also allows us to determine the row index of the maximum (or minimum) value in

each column.

[maximum, index] = max(wire_K)

maximum =

 354.0000 1.5800

index =

 18 18

In this case, we have taken eighteen data samples, and the final temperature and resistance

yielded the largest readings.

The average resistance of the wire is given by:

mean(wire_K(:,2))

ans =

 1.3946

where we have specified that we only require the mean of the second column of data. To

determine the correlation between the columns in the data, we use the correlation matrix:

corrcoef(wire_K)

ans =

 1.0000 0.9992

 0.9992 1.0000

 82

The (i, j) entry of this matrix gives the correlation between column i and j of the data. The

correlation function quantifies any link we may see when the columns of a matrix are plotted

against each other. The entries are between -1 and +1, when -1 means strong negative

correlation, and +1 means strong positive correlation. This diagonals are +1, since there is

naturally correlation between a number and itself. In this case there seems to be a strong

positive correlation between temperature and resistance.

1.16.4 Other Statistical Properties of Data

In other cases, we may wish to use some of the following functions:

 cov(x) Covariance matrix.

 cumprod(x) Cumulative product of columns.

 cumsum(X) Cumulative sum of columns.

 diff(x) Differences between elements in columns.

 median(x) Median value of columns.

 prod(x) Product of elements in columns.

 sort(x) Sort columns in ascending order.

 std(x) Standard deviation of columns.

1.16.5 A Linear Relationship for the data

From the plot of the data, we could fit a linear relationship, of the form

resistance = m temperature + c (1.16.1)

MATLAB provides the polyfit function for this (see 1.15.1):

format short e

p = polyfit(wire_K(:,1), wire_K(:,2),1)

format short

p =

 5.7523e-003 -4.6293e-001

For n points, the error in the slope is given by

error in slope =

Var y f x

x x

i i

i

()

2
=

residual

xn 1

(1.16.2)

We can evaluate the fitted function, f(xi), at each of the points xi using polyval(p, x). p is

the polynomial row vector, and x is a set of points at which to evaluate the polynomial. Hence

we can determine the error in the slope:

residual = polyval(p,wire_K(:,1)) - wire_K(:,2);

slope_error = std(residual)/(sqrt(size(wire_K,1)-1)*std(wire_K(:,1)))

slope_error =

 5.7351e-005

The slope of the line is (5.75 0.06) m K
-1

 (3 sf). The error in the intercept is given by

 83

error in intercept =

residual

x

x

n

2

1

(1.16.3)

intercept_error = slope_error * sqrt(mean(wire_K(:,1).^2))

intercept_error =

 0.0186

The intercept of the line is (-463 19) m (3 sf).

Thus we have a relationship

1.16.6 An Power Law Relationship for the data

If we find the slope of the data from the first 9 points, and compare it to the slope from the last

9 points, we see

format short e

p_first9 = polyfit(wire_K(1:9,1), wire_K(1:9,2),1)

p_first9 =

 5.2485e-003 -3.0923e-001

p_last9 = polyfit(wire_K(10:18,1), wire_K(10:18,2),1)

format short

p_last9 =

 6.2535e-003 -6.3473e-001

Thus the slope changes from 5.25 m K
-1

 (3 sf) for the first nine points, to 6.25 m K
-1

 (3

sf). So we may try a power relationship between resistance and temperature:

resistance = A temperature

 (1.16.4)

Taking logs yields:

log(resistance) = log(temperature) + log(A) (1.16.5)

In MATLAB we have:

log_temp = log10(wire_K(:,1));

log_res = log10(wire_K(:,2));

format short e

p = polyfit(log_temp,log_res,1)

format short

p =

 1.3288e+000 -3.1900e+000

We can calculate the errors in the power and intercept using:

residual = polyval(p,log_temp) - log_res;

pow_error = std(residual)/(sqrt(size(log_temp,1)-1)*std(log_temp))

pow_error =

 0.0112

intercept_error = pow_error * sqrt(mean(log_temp.^2))

Resistance of Nickel Wire in m =

(5.75 0.06) temperature - (463 19)

 84

intercept_error =

 0.0282

Thus we have a relationship

With the power law fit, the correlation coefficients for the fit of the data has increased

slightly:

corrcoef([log_temp,log_res])

ans =

 1.0000 0.9994

 0.9994 1.0000

Note that there are more rigorous statistical methods to determine what sort of relationship

gives a better fit to a given set of data.

1.17 Some Optimisation Tips

Once you have written a piece of MATLAB code and tested it on some small examples, you

may want to scale up the problem size, or analyze more data. We have used MATLAB as a

test bed for an algorithm, and then translate to another programming language once we are

sure that the method works.

Until recently, the only way to do this was by hand. There are now programs which will turn

MATLAB into a variety of other languages (including C, Fortran-77, Fortran-90, and the

extensions of these languages designed to run on parallel computers). There are also programs

that will compile MATLAB code into an executable. This typically results in a speedup of

about a factor of 6, since the code is no longer being interpreted line by line.

However, much work can be done by writing good MATLAB code. We know of a code which

was being used extensively in an engineering calculation, which ran over 200 times faster

when a few of the techniques used below were applied to it! (Unfortunately, it was being used

as a test for a MATLAB to Parallel C translator. Once the MATLAB was optimized, it ran too

fast to be used as a test of the performance of the translator).

The methods we describe follow our own experiences after receiving a technical support note

from the MathWorks (the authors of MATLAB). Knowing these techniques is only half the

story; it is also important to recognize when to use them.

1.17.1 Vectorisation and Built-In Functions

When we introduced the for loop, we suggested that it should not be used. The vector

MATLAB operations are implemented in highly optimized C, and you are unlikely to do

better by implementing your own for loop versions of these routines.

Other built-in procedures, for example those for finding eigenvalues, are also optimized, and

cover many possible cases to ensure that the methods used is numerically stable. They should

be used wherever possible.

An advantage of using these comes if you later translate to another programming language.

Most computers have efficient implementations of numerical linear algebra packages (such as

LINPACK, BLAS libraries, or ESSL libraries), and the calls to MATLAB routines can easily

be replaced with calls to numerical library routines.

Resistance of Nickel Wire in m =

10
(-3.19 0.03)

 temperature
(1.33 0.01)

 85

Using the professional version of MATLAB you can dynamically link to C or FORTRAN

subroutines. We will not discuss this further, see the MATLAB External Interface Guide for

details of „MEX Files‟.

1.17.2 Subscripting

MATLAB allows two types of subscripting:

 indexed subscripting

 logical subscripting

In indexed subscripting, the values of the subscript are the indices of the matrix whose

elements we require:

x = 1:2:10

x =

 1 3 5 7 9

require = x([1, 4])

require =

 1 7

In logical subscripting, the matrix used to perform the subscripting has the same dimensions

as the matrix to be subscripted. The subscript matrix contains 0‟s and 1‟s. The elements

returned are those which have a 1 in the corresponding subscripted matrix.

x = 1:2:10

x =

 1 3 5 7 9

logic = x(logical([0 1 0 1 0]))

logic =

 3 7

We will use logical subscripting later in this section.

1.17.3 Array Operations

In MATLAB operations operate on whole matrices. In most programming languages, it is

necessary to set up loops to perform vector calculations, such as a dot product:

u = zeros(1,7);

s = rand(1,7); t = rand(1,7);

for k = 1:7

 u(k) = s(k) * t(k);

end

u

u =

 0.1342 0.0083 0.2266 0.0217 0.2711 0.3629 0.2218

In MATLAB, this calculation proceeds without explicit reference to the array size:

s .* t

ans =

 0.1342 0.0083 0.2266 0.0217 0.2711 0.3629 0.2218

 86

Whenever possible, you should use array operations. When this is not possible, it is always

best to define the ultimate size of any array to be built-up in the loop. Otherwise, since

MATLAB operates by interpreting commands line by line, it will spend a lot of time

augmenting the array on each iteration.

1.17.4 Boolean Array operations

We can also perform comparison operations on whole arrays. Suppose you wish to determine

which numbers in an array are greater than 3, we can use:

x = [1, 5, 2, 6, 2, 9, 10, 2, 0];

x > 3

ans =

 0 1 0 1 0 1 1 0 0

Since this is an array of the same length as x, we can use the logical subscripting features of

MATLAB to return the required values:

greater_3 = x(x>3)

greater_3 =

 5 6 9 10

MATLAB provides two functions to perform Boolean AND and OR operations across a

whole vector: all and any respectively.

if any(x> 9)

 disp('Elements greater than 9 in matrix')

end

Elements greater than 9 in matrix

You can also compare two vectors of the same size using the Boolean operators, resulting in

expressions such as:

x = [2, 4, 6, 8, 10, 12]

x =

 2 4 6 8 10 12

y = [2, 5, 6, 8, 9, 11]

y =

 2 5 6 8 9 11

(x==y) & (y>6)

ans =

 0 0 0 1 0 0

Since MATLAB uses IEEE arithmetic, there are special values to denote overflow, underflow,

and undefined operations: Inf, -Inf, and NaN, respectively. Inf and -Inf can be tested for

normally:

test = Inf == Inf

test =

 1

test is true, since the two infinities are equal. By the IEEE standard, NaN is never equal to

anything (even other NaN‟s). MATLAB provides two special Boolean operators, isnan and

isinf, to test for these values.

 87

1.17.5 Constructing Matrices from Vectors

To select specific elements from a matrix, it is not always necessary to write out a. In this

example we take elements [2, 3, 4, 6, 7, 8, 10, 11, 12...] from a matrix using:

x = 1:20;

y = reshape(x, 4, length(x)/4);

index = y(2:4,:);

index = index(:)'

index =

 Columns 1 through 12

 2 3 4 6 7 8 10 11 12 14 15 16

 Columns 13 through 15

 18 19 20

In 1.10.1, we created a matrix with all entries 17:

ones(2, 3)*17

ans =

 17 17 17

 17 17 17

To duplicate a vector of size n by 1, k times, the first column of the vector is indexed k times:

x = (1:4)';

a = x(:,ones(4,1))

a =

 1 1 1 1

 2 2 2 2

 3 3 3 3

 4 4 4 4

Thus to create a matrix with all the same entry, we can avoid the matrix multiplication:

x = 17;

x = x(ones(2,3))

x =

 17 17 17

 17 17 17

We can use the same method to duplicate row vectors by swapping the subscripts. It can also

be used to duplicate rows or columns of a matrix, provided:

 that you are not selecting the first row or column, or

 that the resulting matrix is not the same size as the original matrix.

If these conditions both hold, then there is an ambiguity. The subscripting vector, which is all

ones, could represent logical subscripting where all columns or rows are chosen once, or it

could represent indexed subscripting where just the first column or row is chosen several

times. If there is ambiguity, MATLAB chooses to view the intent as logical subscripting:

x = rand(3)

x =

 0.2855 0.0704 0.9642

 88

 0.1061 0.3048 0.6130

 0.3135 0.6970 0.4901

In the next case, the subscript to the array is viewed as a logical subscript:

x(:,ones(1,3))

ans =

 0.2855 0.2855 0.2855

 0.1061 0.1061 0.1061

 0.3135 0.3135 0.3135

However, in the next example the subscripting array is not the same size as the array, and so

the first column is duplicated:

x(:,ones(1,2))

ans =

 0.2855 0.2855

 0.1061 0.1061

 0.3135 0.3135

1.17.6 Constructing Special Matrices

The Toeplitz and Hankel matrix functions can be used to create matrices with particular

structures.

help toeplitz

 TOEPLITZ Toeplitz matrix.

 TOEPLITZ(C,R) is a non-symmetric Toeplitz matrix having C as its

 first column and R as its first row.

 TOEPLITZ(C) is a symmetric (or Hermitian) Toeplitz matrix.

 See also HANKEL.

help hankel

 HANKEL Hankel matrix.

 HANKEL(C) is a square Hankel matrix whose first column is C and

 whose elements are zero below the first anti-diagonal.

 HANKEL(C,R) is a Hankel matrix whose first column is C and whose

 last row is R.

 Hankel matrices are symmetric, constant across the anti-diagonals,

 and have elements H(i,j) = P(i+j-1) where P = [C R(2:END)]

 completely determines the Hankel matrix.

 See also TOEPLITZ.

To create a matrix in which each row is the row above shifted cyclically to the right, we

specify an initial row and use:

x = (1:4)';

 89

cycle_row = toeplitz(x, x([1, length(x):-1:2]))

cycle_row =

 1 4 3 2

 2 1 4 3

 3 2 1 4

 4 3 2 1

The Hankel function allows us to do the same, but with rows (and the cycle shifts elements

upwards):

x = (1:4)';

cycle_column = hankel(x, x([length(x), 1:length(x)-1]))

cycle_column =

 1 2 3 4

 2 3 4 1

 3 4 1 2

 4 1 2 3

By constructing matrices efficiently and in a general way (the examples above will work just

as well if x = (1:10)'), they can be used in other processing operations.

1.17.7 Functions of two variables

We can often learn a lot by studying the way in which MATLAB implements a function. In

this case we examine the way in which MATLAB implements meshgrid, which is used to

evaluate functions of two variables across the domain specified by two matrices. Here is a

version of the meshgrid implementation to evaluate x*exp(-x^2-y^2) over the range -2 < x

< 2 and -2 < y < 2:

xx = (-2:2);

yy = (-1.5:0.5:1.5)';

X = xx(ones(size(yy)), :);

Y = yy(:,ones(size(xx)));

f = X .* exp(-X.^2-Y.^2)

f =

 -0.0039 -0.0388 0 0.0388 0.0039

 -0.0135 -0.1353 0 0.1353 0.0135

 -0.0285 -0.2865 0 0.2865 0.0285

 -0.0366 -0.3679 0 0.3679 0.0366

 -0.0285 -0.2865 0 0.2865 0.0285

 -0.0135 -0.1353 0 0.1353 0.0135

 -0.0039 -0.0388 0 0.0388 0.0039

The trick of repeating the first column, or row has been used to produce a mesh of points over

which to evaluate the function and is equivalent to using:

[X, Y] = meshgrid(-2:2, -1.5:0.5:1.5);

f = X .* exp(-X.^2-Y.^2)

f =

 -0.0039 -0.0388 0 0.0388 0.0039

 -0.0135 -0.1353 0 0.1353 0.0135

 90

 -0.0285 -0.2865 0 0.2865 0.0285

 -0.0366 -0.3679 0 0.3679 0.0366

 -0.0285 -0.2865 0 0.2865 0.0285

 -0.0135 -0.1353 0 0.1353 0.0135

 -0.0039 -0.0388 0 0.0388 0.0039

Using the matrix multiplication operator, you can sometimes avoid having to define

intermediate matrices.

x = (-2:2);

y = (-1.5:0.5:1.5);

f = x'*y

f =

 3.0000 2.0000 1.0000 0 -1.0000 -2.0000 -3.0000

 1.5000 1.0000 0.5000 0 -0.5000 -1.0000 -1.5000

 0 0 0 0 0 0 0

 -1.5000 -1.0000 -0.5000 0 0.5000 1.0000 1.5000

 -3.0000 -2.0000 -1.0000 0 1.0000 2.0000 3.0000

There are also cases where sparse matrices allow more efficient use of storage space, and also

allow very efficient algorithms. We discuss this in more detail in 1.17.9.

1.17.8 Redundancy

If you may have a set of values with duplicates, you may want to know:

 What is the „core‟ set of values?

 How many times were each of the core values duplicated in the original set?

There are several MATLAB functions which can help with this:

 diff finds difference between adjacent pairs of entries in a vector.

 find returns the indices of the non-zero, non NaN elements of a matrix.

 sort returns a sorted array.

 max finds maximum entry of an array.

 min finds minimum entry of an array.

Firstly, we will address: “what is the „core‟ set of values?” If we sort an array of values, any

repeated elements will be adjacent, any NaNs will be at the end.

x = [1, NaN, 1, 3; 8, 6, 4, 8; 3, 6, 6, 4; 0, 8, 3, 1]

x =

 1 NaN 1 3

 8 6 4 8

 3 6 6 4

 0 8 3 1

y = sort(x(:))'

y =

 91

 Columns 1 through 12

 0 1 1 1 3 3 3 4 4 6 6 6

 Columns 13 through 16

 8 8 8 NaN

The difference between adjacent pairs in this vector will be zero where elements are repeated:

z = diff(y)

z =

 Columns 1 through 12

 1 0 0 2 0 0 1 0 2 0 0 2

 Columns 13 through 15

 0 0 NaN

We could use the places where this matrix is zero to determine the core elements of y.

However the vector z has one less element than y. To remedy this, we actually define z as

follows.

z = diff([y, max(y)+1])

z =

 Columns 1 through 12

 1 0 0 2 0 0 1 0 2 0 0 2

 Columns 13 through 16

 0 0 NaN NaN

We now select the elements we require using

core = y(z~=0)

core =

 0 1 3 4 6 8 NaN

We did not use the find function mentioned above, since it does not return indices for entries

which are NaNs, and so elements would have been missed.

Secondly, we will consider: “how many times were each of the core values duplicated in the

original set?”

After the vector x is sorted, we can use find to determine the where the resulting distribution

changes. This time we must not append a NaN to the list

x = [0, 1, 1, 3; 8, 6, 4, 8; 3, 6, 6, 4; 0, 8, 3, 1]

x =

 0 1 1 3

 8 6 4 8

 3 6 6 4

 0 8 3 1

y = sort(x(:))'

y =

 Columns 1 through 12

 0 0 1 1 1 3 3 3 4 4 6 6

 Columns 13 through 16

 6 8 8 8

 92

z = diff([y, max(y)+1])

z =

 Columns 1 through 12

 0 1 0 0 2 0 0 1 0 2 0 0

 Columns 13 through 16

 2 0 0 1

find(z)

ans =

 2 5 8 10 13 16

The difference between adjacent elements will give the number of counts of each element.

Note that we must prepend a 0 to the list, so that diff returns how many times the first

element was repeated

repeats = diff([0,find(z)])

repeats =

 2 3 3 2 3 3

core = y(find(z))

core =

 0 1 3 4 6 8

A plot shows our results

stem(core,repeats)

xlabel('Number');

ylabel('Frequency');

title('Occurences of Numbers in a Set');

axis([0, 8, 0,4]);

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Number

F
re

q
u
e

n
c
y

Occurences of Numbers in a Set

The above procedure breaks down if there are NaNs or Infs in the input set. These should be

removed first, and then totaled separately using

 repeats_nans = sum(isnan(x(:)))

 93

 repeats_infs = sum(isinf(x(:)))

1.17.9 Sparse Matrices

Sparse matrices contain a large number of zero entries. You can save memory and avoid

storing the large number of zeros in the matrix by using MATLAB‟s extensive sparse matrix

functions.

In this section we discuss a way to exploit sparse matrices to solve the problem above. If we

know that the elements of the set x are integers larger than 1, let us set up a list of all the

integers covering the range of x values:

x2 = fix(rand(1,50)*10)+1;

y = min(x2):max(x2)

y =

 1 2 3 4 5 6 7 8 9 10

We could now define a matrix a(i,j), in which

a(i,j) = 1 if x2(i) = y(j), and

a(i,j) = 0 otherwise.

Most of the entries in this matrix will be zero, the others will be 1. We can set up the

following sparse matrix, and visualise it using:

x = sort(x2(:));

big = sparse(1:length(x),x(:),1,length(x),max(x)+1);

spy(big)

0 5 10

0

5

10

15

20

25

30

35

40

45

50

nz = 50

By summing the entries in the columns of big, we determine the number of each element

present in the original set:

sum(big)

ans =

 (1,1) 3

 (1,2) 4

 (1,3) 10

 94

 (1,4) 5

 (1,5) 3

 (1,6) 4

 (1,7) 2

 (1,8) 5

 (1,9) 7

 (1,10) 7

MATLAB provides many functions to handle and visualise sparse matrices. If your matrices

contain only a relatively small number of non-zero entries, then you should investigate sparse

matrix formulations. You can use all the normal matrix handling routines on sparse matrices,

but use considerably less memory. We suggest that you read the help entry for sparse (help

sparse), and examine the other related functions, which are listed there.

1.17.10 Conclusion

There are many tricks that you can employ to write efficient MATLAB code. You should aim

to use MATLAB‟s built-in functions wherever possible, since these will assist in translating

the code to another programming language.

By examining the code for MATLAB‟s own functions (using type), you will pick up many

other useful techniques.

1.18 3-D Graphics

Visualizing three dimensional data can be hard. MATLAB provides many ways to assist in

this. In this section, we will briefly introduce some of MATLAB‟s three dimensional plotting

features and discover how to produce the plot on the front cover of this booklet.

Many of the three dimensional plots do not look their best in black and white. For this chapter

we particularly recommend that you play with MATLAB, examine the output, experiment

with different plots and explore the help system.

1.18.1 An extension of two dimensional plotting

plot3 is the three dimensional analogue of the plot command for two dimensions.

plot3(x1, y1, z1, s1, x2, y2, z2, s2, ..) plots each of the triples (x, y, z) with

the formatting style s. To give a label to the z axis, you use zlabel('text').

theta = linspace(0, 4*pi, 100);

plot3(cos(theta), sin(theta).*cos(theta),theta)

title('Eight Curve in three dimensions')

xlabel('X'), ylabel('Y'), zlabel('Z');

 95

-1
-0.5

0
0.5

1

-0.5

0

0.5
0

5

10

15

Eight Curve in three dimensions

XY

Z

There are also three dimensional analogues of fill, which becomes fill3, and text, in

which you specify a the (x, y, z) triple at which you want the text to appear. axis([xmin,

xmax, ymin, ymax, zmin, zmax]) scales the axes of a three dimensional plot. A

particularly useful command is rotate3d, which enables you to rotate a figure interactively

using the mouse to adjust the view point. This also works with 2D figures.

1.18.2 Mesh Plots

The mesh(X,Y,Z,C) function plots a wire grid plot of the function defined by the matrices X,

Y, and Z, using the colour defined in C. MATLAB provides the meshgrid function to set up

two matrices of x and y coordinates at which the function is evaluated. [X, Y] =

meshgrid[x, y] produces a matrix X, with rows which are a copy the vector x, and a matrix

Y, whose columns which are a copy of the vector y. If y is not specified, then x is copied

across the columns of Y. We then evaluate the function we wish to plot at the array of points

[X, Y].

[X,Y] = meshgrid(-2 : 1 : 2)

X =

 -2 -1 0 1 2

 -2 -1 0 1 2

 -2 -1 0 1 2

 -2 -1 0 1 2

 -2 -1 0 1 2

Y =

 -2 -2 -2 -2 -2

 -1 -1 -1 -1 -1

 0 0 0 0 0

 1 1 1 1 1

 2 2 2 2 2

Z = exp(-X.^2 - Y.^2)

Z =

 0.0003 0.0067 0.0183 0.0067 0.0003

 96

 0.0067 0.1353 0.3679 0.1353 0.0067

 0.0183 0.3679 1.0000 0.3679 0.0183

 0.0067 0.1353 0.3679 0.1353 0.0067

 0.0003 0.0067 0.0183 0.0067 0.0003

In practice, we use a much finer grid to give a smooth structure, since MATLAB uses linear

interpolation between adjacent points.

[X,Y] = meshgrid(-2 : 0.2 : 2);

Z = exp(-X.^2 - Y.^2);

mesh(X,Y,Z);

title('-x^2 - y^2')

-2
-1

0
1

2

-2

-1

0

1

2
0

0.2

0.4

0.6

0.8

1

-x^2 - y^2

If you do not specify a colour, C, MATLAB uses the height to scale the colormap (see 1.18.3).

You can also plot the contour map of a function analogously using contour(X, Y, Z, C).

contour(X, Y, Z)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 97

There are many more options for plotting contours and meshes, most of which are best

examined „on screen‟. These include:

 comet3 An animated plot (!)

 contour Contour plot.

 mesh Wire meshes.

 quiver Gradient plot of function.

 slice Volumetric slice plot.

 surf Shaded surface plot.

1.18.3 Colour Maps

The colormap (note the spelling) scales the active set of colours which are used by the current

figure. MATLAB provides various built-in colour maps to colour code data on plots.

colormap(cool(16)) uses a colour map of 16 shades of colour ranging from cyan to magenta

to represent values on a plot. Other MATLAB colour maps are:

 hsv Hue-saturation-value color map.

 gray Linear gray-scale color map.

 hot Black-red-yellow-white color map.

 cool Shades of cyan and magenta color map.

 bone Gray-scale with a tinge of blue color map.

 copper Linear copper-tone color map.

 pink Pastel shades of pink color map.

 prism Prism color map.

 jet A variant of HSV.

 flag Alternating red, white, blue, and black color map.

See help color and the other functions listed there for more details about using colour in

MATLAB plots.

1.18.4 Back to two dimensions

Sometimes it is desirable to represent three dimensional data using a two dimensional

structure: a contour plot is one way of doing this. MATLAB provides pcolor and imagesc to

allow you to colour a two dimensional grid proportional to the value of the function.

imagesc(Z) colours the cells of Z with their values, having scaled them to fill all colormap.

pcolor(Z) specifies the colours of the vertices of Z.

imagesc(magic(8))

colormap(gray(8))

 98

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1.18.5 A helpful suggestion

To discover more about MATLAB‟s three dimensional plotting power, we suggest you type

help plotxyz (or just help, and then ask for help on the directory name under which the

plotting commands have been installed) and explore.

1.19 About the front cover

On the front cover of this booklet, we have produced a plot which shows both the contours

and mesh for the peaks function, using meshc, which is from the help for mesh in the

MATLAB User‟s Guide.

[X, Y] = meshgrid(-3:0.25:3);

Z = peaks(X, Y);

meshc(X, Y, Z);

axis([-3, 3, -3, 3, -10, 5])

- 2

0

2

- 2

0

2

- 1 0

- 5

0

5

 99

Appendix A MATLAB Summary

A.1 Arithmetic Operators: + - * / \ ^ '

Purpose These perform matrix and array arithmetic.

Synopsis

A+B

A-B

A*B A.*B

A/B A./B

A^B A.^B

A' A.'

Description MATLAB has two different types of arithmetic operations. Matrix arithmetic

operations are defined by the rules of linear algebra. Array arithmetic operations are carried

out element-by-element. The period or decimal point character (.) distinguishes the array

operations from the matrix operations. However, since the matrix and array operations are the

same for addition and subtraction, the character pairs .+ and .- are not used. The matrix

arithmetic operations are also used for pure scalars (which can be thought of as 1 by 1

matrices).

+ Addition. A+B adds A and B. A and B must have the same dimensions, unless one is

a scalar. A scalar can be added to a matrix of any dimension.

- Subtraction. A-B subtracts B from A. A and B must have the same dimensions,

unless one is a scalar. A scalar can be subtracted from a matrix of any dimension.

* Matrix multiplication. A*B is the linear algebraic product of the matrices A and B.

The number of columns of A must equal the number of rows of B, unless one of

them is a scalar. A scalar can multiply a matrix of any dimension.

.* Array multiplication. A.*B is the element-by-element product of the arrays A and

B. A and B must have the same dimension, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is roughly the same

as inv(A)*B, except it is computed in a different way. If A is an n by n matrix and

B is a column vector with n components, or a matrix with several such columns,

then X=A\B is the solution to the equation AX = B computed by Gaussian

elimination. A warning message prints if A is badly scaled or nearly singular.

If A is an m by n matrix with m ~= n and B is a column vector with m components,

or a matrix with several such columns, then X=A\B is the solution in the least

squares sense to the under- or over-determined system of equations AX = B. The

effective rank, k, of A, is determined from the QR decomposition with pivoting. A

solution X is computed which has at most k nonzero components per column. If k

< n, this is usually not be the same solution as pinv(A)*B, which is the least

squares solution with the smallest residual norm, ║AX - B║.

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A and B

must have the same dimensions, unless one of them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as B*inv(A). More

precisely, B/A = (A'\B')'. See \.

 100

./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A and B

must have the same dimensions, unless one of them is a scalar.

^ Matrix power. A^p is A to the power p, if p is a scalar. If p is an integer, the

power is computed by repeated multiplication. If the integer is negative, A is

inverted first. For other values of p, the calculation involves eigenvalues and

eigenvectors, such that if [V,D] = eig(A), then A^p = V*D.^p/V.

If a is a scalar and P is a matrix, x^P is x raised to the matrix power P using

eigenvalues and eigenvectors.

X^P, where X and P are both matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j)to the power B(i,j. A and

B must have the same dimensions, unless one of them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For complex matrices,

this involves the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex matrices, this does

not involve conjugation.

A.2 Relational Operators: < > == ~=

Purpose Relational operators

Synopsis

A < B

A > B

A <= B

A >= B

A == B

A ~= B

Description The relational operators are <, , >, , ==, ~=, and ~=. Relational operators

perform element-by-element comparisons between two matrices. They return a matrix of the

same size, with elements set to 1 where the relation is true, and elements set to 0 where it is

not.

The operators <, , >, and use only the real part of their operands for the comparison. The

operators == and ~= test real and imaginary parts.

The relational operators have precedence midway between the logical operators (except ~) and

the arithmetic operators.

To test if two strings are equivalent, use strcmp, which allows vectors of dissimilar length to

be compared.

Examples If one of the operands is a scalar and the other a matrix, the scalar expands to the

size of the matrix. For example, the two pairs of statements:

X = 5; X >= [1, 2, 3; 4, 5, 6; 7, 8, 10]

ans =

 1 1 1

 1 1 0

 0 0 0

 101

X = 5*ones(3,3); X >= [1, 2, 3; 4, 5, 6; 7, 8, 10]

ans =

 1 1 1

 1 1 0

 0 0 0

produce the same result.

A.3 Logical Operators: & | ~

Purpose Logical operators

Synopsis

A & B

A | B

~A

Description The symbols &, |, and ~ are the logical operators AND, OR, and NOT. They

work element-wise on matrices, with 0 representing FALSE and anything nonzero

representing TRUE. A & B does a logical AND, A | B does a logical OR, and ~A

complements the elements of A. The function xor(A,B) implements the exclusive OR

operation.

The logical operators & and | have the lowest precedence, with arithmetic operators and

relational operators being higher. The logical operator ~ has the same precedence as the

arithmetic operators.

The precedence for the logical operators with respect to each other is:

1) NOT has the highest precedence.

2) AND and OR have equal precedence, and are evaluated from left to right.

Examples Here are two scalar expressions that illustrate precedence relationships for

arithmetic, relational, and logical operators:

a = 1 & 0 + 3, b = 3 > 4 & 1

They are equivalent to:

a = 1 & (0 + 3), b = (3 > 4) & 1

a =

 1

b =

 0

Here are two examples that illustrate the precedence of the logical operators to each other

c = 1 | 0 & 0, d = 0 & 0 | 1

Inputs AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

 102

c =

 0

d =

 1

A.4 Special Characters: [] () = ' . , ; % !

Purpose Special characters

Synopsis [] () = ' . , ; % !

Description

[] Brackets are used to form vectors and matrices.

[6.9 9.64 sqrt(-1)] is a vector with three elements separated by blanks.

[6.9, 9.64, i] is the same thing.

[1 + j 2-j 3] and [1 +j 2 -j 3] are not the same. The first has three elements,

the second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends the first row.

Vectors and matrices can be used inside brackets. [A B; C] is allowed if the

number of rows of A equals the number of rows of B and the number of columns of A

plus the number of columns of B equals the number of columns of C. This rule

generalises to allow fairly complicated constructions.

A = [] stores an empty matrix in A.

() Parentheses are used to indicate precedence in arithmetic expressions in the usual

way. They are used to enclose arguments of functions in the usual way. They are

also used to enclose subscripts of vectors and matrices in a manner somewhat more

general than usual. If X and V are vectors, then X(V) is [X(V(1)), X(V(2)), ..,

X(V(n))]. The components of V are rounded to nearest integers and used as

subscripts. An error occurs if any such subscript is less than 1 or greater than the

dimension of X. Some examples are

X(3) is the third element of X.

X([1 2 3]) is the first three elements of X.

X([sqrt(2) sqrt(3) 2*atan(1)]) also returns the first three elements of X.

If X has n components, X(n:-1:1) reverses them. The same indirect subscripting

works in matrices. If V has m components and W has n components, then A(V,W) is

the m by n matrix formed from the elements of A whose subscripts are the elements

of V and K. For example:

A([1,5],:) = A([5,1],:) interchanges rows 1 and 5 of A.

= Used in assignment statements. == is the relational EQUALS operator. See 0.

' Matrix transpose. X' is the complex conjugate transpose of X. X.' is the non-

conjugate transpose.

Quote. 'any text' is a vector whose components are the ASCII codes for the

characters. A quote within the text is indicated by two quotes.

 103

. Decimal point. 314/100, 3.14 and .314e1 are all the same.

Element-by-element operations are obtained using .*, .^, ./, or .\.

Three or more points at the end of a line indicate continuation.

, Comma. Used to separate matrix subscripts and function arguments. Used to

separate statements in multi-statement lines. For multi-statement lines, the comma

can be replaced by a semicolon to suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an expression or

statement to suppress printing or separate statements.

% Percent. The percent symbol denotes a comment; it indicates a logical end of line.

Any following text is ignored.

! Exclamation point. Indicates that the rest of the input line is a command to the

operating system.

A.5 Colon :

Purpose Create vectors, matrix subscripting, and for iterations.

Description The colon is one of the most useful operators in MATLAB. It can create

vectors, subscript matrices, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

 j:k is the same as [j ,j+1 , . ., k]

 j:k is empty if j>k

 j:i:k is the same as [j ,j+i , j+2i, . ., k]

 j:i:k is empty if i>0 and j>k or if i<0 and j<k

Below are the definitions that govern the use of the colon to pick out selected rows, columns,

and elements of vectors and matrices:

 A(:,j is the j-th column of A

 A(i,:) is the i-th row of A

 A(:,:) is the same as A

 A(:,j:k) is the A(j), A(:,j+1) , .. , A(k)

 A(:) is all the elements of A, regarded as a single column. On the left side of

an assignment statement, A(:) fills A, preserving its shape from before.

Examples Using the colon with integers:

D = 1:4

D =

 1 2 3 4

Using two colons to create a vector with arbitrary real increments between the elements,

E = 0:.1:.5

E =

 0 0.1000 0.2000 0.3000 0.4000 0.5000

 104

A.6 Order of Precedence for Operators

The following table gives the order of precedence for arithmetic, logical and relational

operators. Those at the top of the table take the highest precedence

^ .^ ' .'

* / \ .* ./ .\

+ - ~ +(number) -(number)

: > < >= <= == ~=

| &

