

SESG6025: Lab 5 - Integration

Aims: This lab introduces some further features of Matlab/ Python and discusses Monte Carlo integration.

Objectives: Perform some numerical integration using Matlab/ Python

1) Before attempting the questions, read the Matlab/ Python help on:

exp, trapz, quad, function, for, rand, mean, std, abs

2) Plot the function e
x
 using 10 equally spaced points between 0 and 4. Show circles for the points and join

up the points with a straight line.

3) Using the trapezium rule find the integral of the function e
x
 using 10 points over the range 0 to 4.

4) The exact answer is given by:

04
4

0

4

0

eeee xx  = exp(4) – exp(0)

Evaluate the integral as in (2) using N = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 200 equally spaced points

over the range and plot the absolute percentage value of the error = %100


exact

trapeziumexact

I

II
 as a function

of the number of points used, N.

5) Evaluate the integral in (4) using the ‘quad’ function and a tolerance of 1e-3.

6) Repeat (4) using the function ‘humps’ and the limits 0 to 4. The exact answer is given by

I_exact = 10*atan(37)+5*atan(31/2)-24+10*atan(3)+5*atan(9/2);

(If you want to show this, then use ‘type’ to find out what function ‘humps’ represents, and the look at the

help for ‘int’ to perform the symbolic integration)

7) Evaluate the integral in (6) using the ‘quad’ function and a tolerance of 1e-3.

8) Monte Carlo integration. It is possible to estimate an integral using the following formula:

 )(
)(

)()(d)(
2

iii

b

ax

xfxf
N

ab
xfabxxfI 


 



,

where the xi are chosen randomly between a and b, N is the number of sample points, and:

)(ixf = mean(f) and  )(
2

ii xfxf  = std(f).

Using for xi 10000 random numbers in the range 0 to 4, estimate the integral calculated in (4) and give the

one standard deviation error bound for it (this is just the the  part).

(Hint: To scale random numbers in the range 0 to 1 to be in the range a to b, you should use (b -

a)*rand(N,1) + a, where b > a and N is the number of points to generate.)

Why might you ever want to use this method? For multi-dimensional integrals in d dimensions, the error for

the trapezium rule falls off as N
(-2/d)

, where N is the number of points used/ function evaluations made.

However, the N
(-1/2)

 dependence of the error for the Monte Carlo integration is independent of the number of

dimensions; hence for large d, the Monte Carlo method is actually more accurate for a given number of

function evaluations. For Simpson’s rule the error goes as N
(-4/d)

 in d dimensions. By using quasi-random

sequences it is possible to arrange for the error to drop of as N
(-1)

 independent of d.

Please ask if you need help.

Prof Simon Cox, sjc@soton.ac.uk. Building 25/2037 Phone Ext 23116.

