
v1.0

Advanced Computational Methods in Engineering SESG 6025

 1

Computational Modelling
by Prof Simon J. Cox (sjc@soton.ac.uk)

1 Matlab

See the Matlab hand-out for notes on the use of Matlab. Other packages offering a high-

level „problem solving environment (PSE)‟ for computational modelling include Python

(open source), Mathematica (numerical and symbolic calculations), and Maple

(symbolic calculations). Spreadsheets such as Excel can also be useful for simple

calculations and visualization of results.

1.1 MATLAB and Python features

MATLAB and Python are versatile and interactive tools for performing numerical

calculations.

Can be used for

 testing algorithms

 running small programs

 interactive visualisation of data

Other features:

 Specialist toolboxes can be used to solve particular problems

 Numerical Computation

 Interaction visualization and presentation graphics

 High Level Programming Language based on vectors and matrices

 Specialist toolboxes written by experts

 Tools for interface building

 Integrated debugger, editor and performance profiler

 On-line electronic documentation

1.2 Availability of MATLAB/ Python

The Matlab User‟s guide, software, and thousands of pages of online documentation is

available in a student version. It is on iSolutions PC Clusters and the major University

High Performance Computing (HPC) facilities. Python is available as Open Source.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 2

1.2.1 Matlab Features

Key Features Additional Features Extras

Basic Mathematics (1.2)

Handling arrays (1.6) Complex Numbers (1.3)

“Help” (1.4)

Array operations (1.5)

Relational Operators (1.8)

Linear Algebra (1.9.2 – 1.9.5)

2D plotting (1.7) Linear Algebra (1.9.1) Special Matrices (1.10)

3D plotting (1.18)

Text Handling (1.11) Polynomials (1.14)

Programming (1.12 and 1.13) Curve fitting & interpolation

(1.15.1-1.15.6)

Numerical Analysis (1.15.7 –

1.15.10)

 Sparse Matrices &

Optimisation tips (1.17)

Data Analysis example (1.16)

1.3 Basic Features

 Mathematical calculations can be typed in as you would write them

 Variables are defined using „a = 3’

 Once a variable is defined, it can be used in mathematical expressions

 The commands who and whos display information about variables

1.4 Help

 Typing help <command> gives a summary of the command

 lookfor allows you to search for a keyword

 Under Windows, help can be accessed interactively and online

1.5 Array Operations

 Commas separate columns of a matrix : “,”

 Use a semicolon: “;” to start a new row

 To index individual array elements use

 e.g. x(1), x(3)

1.6 Colon Notation

The colon can be used in several ways

 To index an array:

x(start element: step : last)

e.g. x(1:2:5) returns elements x(1), x(3), x(5)

 To construct an array:

v1.0

Advanced Computational Methods in Engineering SESG 6025

 3

x=(first number : step : last)

e.g. x=(2:2:6)is the same as x=[2,4,6]

1.7 Array Mathematics

Array Manipulation

 Elementwise:

a.*b gives a1,1b1,1 and a1,2b1,2 etc.

 Conventional linear algebra (the dimensions of the matrices must be compatible)

a*b means use a1,1b1,1 + a1,2b2,1 + a1,3b3,1 etc.

1.8 2D Plotting

 plot(x1,y1,s1, x2,y2,s2, x3,y3,s3,...) places plots of the vectors (x1,y1)

with style s1 and (x2,y2) with style s2 etc. on the same axes.

 xlabel(‘text’)adds a label to the x axis.

 ylabel(‘text’) add a label to the y axis.

 grid on turns on a grid over the plot.

1.9 Other plots

 semilogy(x,y) and semilogx(x,y) gives axes marked in powers of 10.

 loglog(x,y) plots both axes with a logarithmic scale.

 MATLAB supports many common types of plot (see the booklet).

 fill(x,y,s) draws a fills a polygon with the colour r.

1.10 3D Plotting

 plot3(x1,y1,z1,s1, x2,y2,s2,z2, ..) plots the points defined by the triples

(x1,y1,z1) with style s1 and (x2,y2,z2) with style s2 etc. on the same axes.

 zlabel(‘text’)adds a label to the z axis.

 mesh(x,y,z) draws a wire frame grid for the surface defined by (x,y,z).

 surf(x,y,z) gives a shaded surface plot for the surface defined by (x,y,z).

1.11 3D plotting

 Change the shading using colormap(map)

 To examine a coloured map of a matrix, A, use imagesc(A)

 colorbar displays the colour coding for the matrix shading

1.12 Programming MATLAB

 MATLAB provides loops using

for k = 1:n

[instructions]

end

 MATLAB commands can be put together in a script (or text) file to group together a

set of instructions.

 MATLAB also provides tools to build user-friendly interfaces for programs.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 4

1.13 Practical Software Design

Practical software design for computational modelling requires a balance between the

time spent choosing the correct algorithm for a computation, performing the

computation and analysing the results. Matlab can be used for each of these.

Algorithm Computation Results

Matlab provides a high-

level and simple way to

design and check

algorithms

Matlab can be used to

check small test cases.

Consider translating/

compiling to C, C++ or

Fortran for larger cases.

The results from

computational simulations

can be analysed and post-

processed with Matlab.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 5

2 Linear Equations

2.1 Examples

2.1.1 Electrical Circuits

In the analysis of electrical circuits, the mesh-current method is often used to compute

the currents in a circuit [Etter, p512].

Figure 1 Circuit diagram

The voltage drops (or increases) across each element in a mesh are summed and set

equal to zero to form an equation for each mesh. The resulting set of simultaneous

equations is then solved for the currents within each loop. For Figure 1 the mesh

equations become

0402)(6

05)(6)(4

0)(4330

323

23212

211







iii

iiiii

iii

 (2.1)

Combining and rearranging these equations yields a system of simultaneous equations:

40860

06154

30047

321

321

321







iii

iii

iii

 (2.2)

This can be written in matrix form:

 bxA  (2.3)

thus

























































40

0

30

860

6154

047

3

2

1

i

i

i

 (2.4)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 6

2.1.2 Others

Systems of simultaneous equations occur in the solution of differential equations, such

as the heat equation which governs diffusion of heat in a material. An example of this is

the flow of heat in a Pentium Processor by conduction.

2.2 Norms and Notation

In this section we will solve the system of equations Ax = b, with A a real N  N matrix,

b is the known right hand side and x is a vector of N unknowns.

The equations

b

b

b

b

x

x

x

aaa

aaa

aaa

xA

NNNNNN

N

N














































































2

1

2

1

21

22221

11211

 (2.5)

only have a solution if the determinant of A  0. This can be checked in Matlab using

det(A). The solution can then be written

 bAx 1 . (2.6)

However finding the inverse of A is numerically unstable, expensive (in terms of

solution time) and usually unnecessary. We therefore use a variety of different methods

for solving systems of equations.

2.2.1 Norms

A norm is a single number which summarises the information in a matrix or vector.

There are several frequently used norms for vectors

 1-Norm Nxxxxx  3211
 (2.7)

2-Norm

22

3

2

2

2

12 Nxxxxx  (2.8)

 -Norm  Nxxxxx ,,,,Max 321 


. (2.9)

There are analogous definitions for matrices

1-Norm 




N

i

ik

Nk

aA
11

1
 Max =Maximum Absolute Column Sum (2.10)

2-Norm 

 


N

i

N

j

ijaA
1 1

2

2
 (2.11)

-Norm 





N

i

ki

Nk

aA
11

 Max =Maximum Absolute Row Sum. (2.12)

2.3 Ill-conditioning and Poor Scaling

The condition number of a matrix, (A) is defined as:

 1)( AAA = cond(A), (2.13)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 7

where any norm can be used. If this is large and you are solving the system Ax = b, a

small change in the vector b can result in a large change in the solution x. See section

1.9.2 of the Matlab hand-out for an example of this.

Poor scaling is a different problem and is caused by the matrix elements varying over

perhaps several orders of magnitude. Numerical rounding errors cause a loss of

accuracy in the final solution. Techniques such as pivotting (which we discuss later)

help to reduce these errors.

2.4 Back and Forward Substitution

If a set of equations is upper triangular, we can find the solution easily by „back

substitution.‟



















































3

2

1

600

540

321

3

2

1

x

x

x

 (2.14)

4
1

2
3

8
2

1321

8
1

2
5

232

2
1

33

1132

4/)2(254

36







xxxx

xxx

xx

 (2.15)

Solution in Matlab follows using:

» a = [1,2,3;0,4,5;0,0,6];

» b=[1;2;3];

» a\b

ans =

 -0.2500

 -0.1250

 0.5000

If the equations are in lower triangular form:



















































3

2

1

654

032

001

3

2

1

x

x

x

 (2.16)

then solution proceeds from the top down („forward substitution‟)

2.5 Gaussian Elimination

To perform Gaussian elimination, we perform row and column operations to transform

the matrix into upper triangular form so that back substitution can be used. Consider



















































57

63

24

087

654

321

3

2

1

x

x

x

 (2.17)

It is usual to perform the working using the following abbreviated notation to store A

and b.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 8

















57

63

24

087

654

321

 (2.18)

The steps of the reduction are (i) get first column into upper triangular form.

R2 R2-4R1

R3 R3-7R1

 












































111

33

24

2160

630

321

24757

24463

24

3702780

3462450

321

 (2.19)

(ii) Get second column into upper triangular form (and so on for a larger matrix)

R3 R3-2R2

 












































45

33

24

900

630

321

)33(2111

33

24

)6(22100

630

321

 (2.20)

In Matlab the solution is given by

» a = [1,2,3;4,5,6;7,8,0];

» b=[24;63;57];

» a\b

ans =

 7.0000

 1.0000

 5.0000

For an NN matrix the work required for the elimination is O(N
3
)

2.5.1 Partial and Total Pivotting

In general we replace rows thus:

 ijj Row Row Row   , (2.21)

where  is as small as possible. We can ensure that  is as small as possible (and in

general it will be  1) by re-arranging the set of equations so that we are eliminating

using the largest „pivot‟ possible. Without pivotting Gaussian elimination is numerically

unstable, since subtracting two similar numbers can result in a loss of significant

figures. Choosing  as small as possible avoids this as far as possible. e.g. in the above

example


















57

63

24

087

654

321

largest

 (2.22)

We swap rows 3 and 1 and eliminate using the pivot 7.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 9

R1 R3

















24

63

57

321

654

087

 (2.23)

R2 R2-4/7R1

R3 R3-1/7R1









































7
6

7
3

7
6

7
3

7
1

7
4

7
1

7
1

7
4

7
4

15

30

57

30

60

087

5724

5763

57

03820

06850

087

 (2.24)

The largest element in the second column is now the
7

6 , so we swap the last two rows

before eliminating again.

R2 R3

















7
3

7
6

7
3

7
6

30

15

57

60

30

087

 (2.25)

R3 R3-1/2R2




































2
1

7
6

2
1

7
6

7
6

2
1

7
3

7
6

2
1

7
6

2
1

7
3

7
6

22

15

57

400

30

087

1530

15

57

360

30

087

 (2.26)

Once again backsubstitution yields the solution (7, 1, 5)
T
.

An even better result may be obtained using total pivotting, where instead of picking the

largest element in the column as the pivot, we select the largest element left in the rest

of the matrix:

  ij

Nji

aMax
,1

Pivot PivotA


 (2.27)

Then retaining the ith equation, eliminate the coefficient of xj. At each stage we are now

eliminating using the largest pivot possible (so  is always as small as possible). Total

pivotting is generally harder to code than partial pivotting, since it is necessary to take

account of the variable order as the elimination proceeds. If at any stage the largest

pivot remaining is 0, then the matrix is singular (i.e. its determinant is zero).

2.6 LU decomposition

When using Gaussian elimination the matrix, A, and the right hand side, b, are treated

together. If, as may be the case in the electrical circuit example, we would like to try a

number of different right hand sides, then each one is „just like the first‟ and we have to

repeat all of the steps for the full matrix from scratch. LU decomposition is a method of

performing a splitting of the matrix once and for all, which allows new right hand sides

to be employed with little additional effort. It is, in fact, identical to Gaussian

elimination with the operations re-ordered.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 10

UL

U

U

U

UUU

LLL

LL

L

aaa

aaa

aaa

A

NN

NN

N

NNNNN

NNNN

N

N







































































 00

0

0

00

,1

22

11211

1,1,

2221

11

21

22221

11211

























 (2.28)

By convention we set Lii =1 („Doolittle‟s methods‟) so L is unit lower triangular. Setting

Uii = 1 is known as Crout‟s method- and U is unit upper triangular. How does this help

to solve Ax = b? Once the factorization is performed we can write:

bLy

UxybLUx



 let ,
. (2.29)

The steps for the solution of the system are (i) find the factorization, (ii) find y by

forward substitution, (iii) solve Ux = y by back-substitution.

Consider solve the following equations:

























































1

7

2

7101

10101

642

3

2

1

x

x

x

 (2.30)

(i) Perform the factorization
























































7101

10101

642

00

0

1

01

001

33

)9(
23

)7(

22

)6(
13

)3(

12

)2(

11

)1(

32

)8(

31

)5(
21

)4(

U

UU

UUU

LL

L (2.31)

The order in which we determine the unknowns is marked and ensures that we only

have one unknown at each stage.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 11

37167

7)9(

18/)410(

10)8(

7610

10)7(

8410

10)6(

12

1)5(

12

1)4(

6)3(

4)2(

2)1(

2
1

33

3323321331

2
1

32

22321231

2
1

23

231321

2
1

22

221221

2
1

3131

1131

2
1

2121

1121

13

12

11































U

UULUL

L

ULUL

U

UUL

U

UUL

LL

UL

LL

UL

U

U

U

(2.32)

The factorisation is






































300

780

642

11

01

001

2
1

2
1UL (2.33)

(ii) Solve Ly = b to find y by forward substitution

b

y

y

y

Ly 


























































1

7

2

11

01

001

3

2

1

2
1

2
1 (2.34)

6)6(1)2(11

6)2(77

2

2
1

33212
1

2
1

2212
1

1







yyyy

yyy

y

 (2.35)

(iii) Solve Ux = y by back substitution

y

x

x

x

Ux 


























































6

6

2

300

780

642

3

2

1

 (2.36)

 

  32/)2(61422642

18/)2(76678

263

1321

232

33







xxxx

xxx

xx

 (2.37)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 12

Thus the solution is x = (3, 1, -2)
T
.

It is possible to solve the equations as above using Matlab

» a = [2,4,6;1,10,10;1,10,7]

a =

 2 4 6

 1 10 10

 1 10 7

» b = [-2;-7;-1]

b =

 -2

 -7

 -1

» [l,u]=lu(a)

l =

 1.0000 0 0

 0.5000 1.0000 0

 0.5000 1.0000 1.0000

u =

 2 4 6

 0 8 7

 0 0 -3

» y=l\b

y =

 -2

 -6

 6

» x=u\y

x =

 3

 1

 -2

In general the LU factorisation is performed using partial pivotting to avoid numerical

rounding errors. Using [L, U, P] = lu(A) in Matlab returns a permutation matrix, p,

such that PA = LU. This takes account of the partial pivotting in the algorithm.

If the matrix A is symmetric, then we may write A = L L
T
. i.e. the upper triangular part

of the decomposition is just the transpose of the lower triangular part. In this case we

perform a „Cholesky decomposition‟, and we do not need to set the elements Lii (as we

would have with the methods of Crout or Doolittle.)

2.7 Sparse Systems and fill-in

If a matrix has a large number of zero entries then the matrix is said to be „sparse.‟ By

only storing the non-zero elements of the matrix you (i) save memory in the computer

(ii) save time by avoiding null operations (such as 0  x = 0). It is possible to retain the

v1.0

Advanced Computational Methods in Engineering SESG 6025

 13

sparsity of a matrix when performing operations such as Gaussian elimination or LU

decomposition. However, sometimes in the course of performing e.g. Gaussian

elimination a non-sparse matrix will be produced: this is known as „fill-in‟. Consider the

following matrix























100

0

103

0012

321











N

N

. (2.38)

This matrix fills in completely using Gaussian elimination. Interchange of the first and

last row yields a matrix which does not fill-in. More general techniques exist for re-

arranging sparse matrices to minimise fill-in.

3 Interpolation

(For further details see the Matlab hand-out section 1.15.)

So, you have some points from an experiment or by sampling a function by a

computational experiment. What next? How do you assign a value for the function at

the points you did not measure. For example, you measure the function at the points

[1.6, 2.2 , 3.3, 4.8] – what is the value of the function at 3.5? If this is between the range

of values you measured (i.e. 1.6 and 4.8), it is known as “interpolation”; if you are

trying to use those samples to estimate the value outside that range (at, say -10.4 or 7.3),

it is known as extrapolation. In this section we will concentrate on interpolation, and

although many of the same principles apply for extrapolation, it can be a far more

dangerous and risky procedure.

More generally we might be trying to approximate a complicated function by a simpler

one. We may also wish to represent a set of discrete points by a continuous function (or

set of continuous functions). This too is the realm of interpolation and curve-fitting.

Let us consider a few of the things you have to take into account. If I sample a function

at [1, 2, 3, 4], then is it meaningful to ask “What is the value at 3.5?” –if the sample

points represent discrete variables, like food eaten by n children in a family, then is

meaningful to ask “What if I had 2.5 children?” ?- and the answer is “Well, it might be

reasonable to ask this”. Other things to consider are in the following sections, but let us

now start with an example and we will consider MATLAB‟s built-in humps function,

which has interesting properties.

3.1.1 Curve Fitting: Least Squares

Given a discrete sample of points from some function, what kind of curve could we

draw which best represents the trends in the data. Naturally there are lots of possible

curves, an infinite number in fact, so which one can we choose? When we fit a curve,

we do not expect that the curve will pass through each of the data points.

One way to fit the curve is to minimize the sum of the squares of the discrepancies (or

“residuals”) between the data and the values predicted by the hypothetical function. We

v1.0

Advanced Computational Methods in Engineering SESG 6025

 14

adjust the parameters of the function to minimise this sum. This is known as least

squares fitting of data.

MATLAB provides polyfit(x, y, o) to perform a least squares fit of a polynomial

of order o to the data in x and y. The function polyval(p, x), evaluates the

polynomial defined by p at the set of points x.

Let us take 15 equally spaced points from the function humps, and consider

qualitatively the effect of plotting polynomials of various order through these points.

x = linspace(0,2,15);

y = humps(x);

plot(x,y,'ro')

title('Sample of Humps')

With just this sample of points, it is hard to know what sort of curve to fit. We could try

a second order polynomial as follows

order_2 = polyfit(x,y,2);

x_2 = linspace(0,2,100);

y_2 = polyval(order_2, x_2);

plot(x, y, 'ro', x_2, y_2, 'b:')

title('Quadratic (2nd) Order Interpolation of Humps')

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Sample of Humps

v1.0

Advanced Computational Methods in Engineering SESG 6025

 15

The fit does not look very impressive. Perhaps a higher order polynomial will do better:

order_6 = polyfit(x,y,6); x_6 = linspace(0,2,100);

y_6 = polyval(order_6, x_6);

plot(x, y, 'ro', x_6, y_6, 'b:')

title('6th Order Interpolation of Humps')

This fit looks more reasonable. Using polyval, we can evaluate the function at each of

the sample points, and determine the residual (the difference between the estimate given

by our function, and the actual function value).

y_s = polyval(order_6, x);

residual = y_s - y;

results = [x; y; y_s; residual; residual/std(residual)]'

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Quadratic (2nd) Order Interpolation of Humps

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
6th Order Interpolation of Humps

v1.0

Advanced Computational Methods in Engineering SESG 6025

 16

results =

 0 5.1765 -1.3549 -6.5314 -0.4710

 0.1429 24.4541 52.4369 27.9827 2.0177

 0.2857 94.3961 56.5751 -37.8210 -2.7271

 0.4286 35.5055 42.7865 7.2809 0.5250

 0.5714 12.7098 27.5492 14.8393 1.0700

 0.7143 12.9303 17.1772 4.2469 0.3062

 0.8571 21.0235 12.0047 -9.0187 -0.6503

 1.0000 16.0000 9.6716 -6.3284 -0.4563

 1.1429 5.4912 7.5085 2.0173 0.1455

 1.2857 0.3160 4.0234 3.7074 0.2673

 1.4286 -2.0900 -0.5119 1.5781 0.1138

 1.5714 -3.3478 -4.3748 -1.0270 -0.0741

 1.7143 -4.0802 -5.6036 -1.5235 -0.1099

 1.8571 -4.5434 -4.1103 0.4331 0.0312

 2.0000 -4.8552 -4.6910 0.1642 0.0118

The table above gives the x and y values, our estimate of the y value using a 6th order

polynomial, the residual and the normalized residual. A normalized residual of more

than 2 is surprising, so if the humps function were a set of experimental results, we

would be suspicious of the y values of 52.4369 and 56.5751, but we would probably not

reject them.

3.1.2 Interpolation I: Linear

Given a discrete sample of points from some function, how can we determine the

function value between those points. This is like curve fitting, but the curve must pass

through every data point.

The simplest type of interpolation is the linear interpolation used by MATLAB when

plotting a curve; the points are joined up by straight lines.

x = linspace(0, 2, 15);

y = humps(x);

plot(x, y,'r-', x, y, 'ro');

title('Linear Interpolation of Humps')

v1.0

Advanced Computational Methods in Engineering SESG 6025

 17

As the number of sample points increases and the distance between them decreases,

linear interpolation becomes more accurate. However, if we only have a fixed number

of samples, then we want to do the best job fitting the points we have.

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Linear Interpolation of Humps

v1.0

Advanced Computational Methods in Engineering SESG 6025

 18

3.1.3 Interpolation II: Polynomials

For n data points, a polynomial of order n-1 will pass through each data point.

order_14 = polyfit(x,y,14);

x_14 = linspace(0,2,100); y_14 = polyval(order_14, x_14);

plot(x, y, 'ro', x_14, y_14, 'b:')

title('14th Order Interpolation of Humps')

The curve fits through every data points, but it oscillates wildly- especially between the

first pair and last pair of points. There is no evidence in the data for this oscillatory

behaviour, and yet our attempt to plot a curve through all the points has produced it. If

we have more data points, we require an even higher order polynomial. The oscillatory

behaviour will be worse, and evaluating the polynomial may become very time-

consuming. Matlab even gives the following helpful error that there may be a problem

with what we are trying to do

Warning: Polynomial is badly conditioned. Add points with distinct X

 values, reduce the degree of the polynomial, or try centering

 and scaling as described in HELP POLYFIT.

3.1.4 Interpolation III: Splines

Fortunately, there is a rigorous way to draw a smooth curve between a set of points. The

basis of this method is to fit sections of curve between sets of points, using the „spline‟

method. Many cars are designed using splines to ensure „smoothness‟ of the chassis.

MATLAB provides the function interp1(x, y, xi, 'method') to perform various

types of interpolation between points x and y and return the interpolated value at the

points in xi:

 linear fits a straight line between pairs of points. This is the default if

no method is specified, and is the method used by MATLAB when joining

adjacent points on a plot.

 spline fits cubic splines between adjacent points.

0 0.5 1 1.5 2
-300

-250

-200

-150

-100

-50

0

50

100

150
14th Order Interpolation of Humps

v1.0

Advanced Computational Methods in Engineering SESG 6025

 19

 cubic fits cubic polynomials between sets of 4 points. The x points

must be uniformly spaced

In all cases, x must be monotonic (it must either increase or decrease over the range).

None of the values in xi can lie outside the range of the x values supplied- interp1 will

not perform extrapolation.

spline_x = linspace(0,2,100);

cubic_spline = interp1(x,y,spline_x,'spline');

plot(x, y, 'ro', spline_x, cubic_spline, 'b:')

title('Cubic Spline Interpolation of Humps')

We now have a smooth curve between the points.

cubic_x = linspace(0,2,100);

cubic = interp1(x,y,cubic_x,'cubic');

plot(x, y, 'ro', cubic_x, cubic, 'b:')

title('Cubic Interpolation of Humps')

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Cubic Spline Interpolation of Humps

v1.0

Advanced Computational Methods in Engineering SESG 6025

 20

In this case, the 'cubic' method provides the smoothest curve with the least oscillations

between points. In the next section, we reveal what the function looks like.

3.1.5 The Humps function

Here is a plot of the humps function.

fplot('humps',[0 2]);

title('A Plot of Humps')

The cubic interpolation reproduced a similar plot using only a sample of ten points

across the range. For more information about interpolation, see one of the numerical

analysis books in the bibliography.

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
Cubic Interpolation of Humps

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
A Plot of Humps

v1.0

Advanced Computational Methods in Engineering SESG 6025

 21

3.1.6 Interpolation III: Surface Splines

(This section includes some 3D plots, so you might like to look briefly at the Matlab

functions mesh and meshgrid first.)

Interpolating over a surface is an extension of interpolating between two data points. In

MATLAB we can use interp2(X, Y, Z, XI, ZI, 'method') to interpolate at the

points (XI, YI) the function whose value is Z at X, Y.

Two methods that can be used

 linear linear interpolation. This is the default if no method is specified.

 cubic cubic interpolation. The X and Y points must be uniformly

spaced.

In all cases, X and Y must be monotonic. None of the values in XI can lie outside the

range of the X or Y values supplied- interp2 will not perform extrapolation.

In this example, we use cubic interpolation to produce a smooth mesh from samples of

MATLAB‟s peaks function:

[X, Y] = meshgrid(-3:1:3);

Z = peaks(X, Y);

[XI, YI]= meshgrid(-3:0.5:3);

ZI_linear = interp2(X, Y, Z, XI, YI, 'linear');

ZI_cubic = interp2(X, Y, Z, XI, YI, 'cubic');

mesh(XI, YI, ZI_cubic+25);

hold on

mesh(X, Y, Z);

colormap([0,0,0]);

hold off

axis([-3, 3, -3, 3, -5, 25]);

title('Interpolation of the peaks function')

-2

0

2

-2

0

2

-5

0

5

10

15

20

25

Interpolation of the peaks function

v1.0

Advanced Computational Methods in Engineering SESG 6025

 22

The bottom part of the figure shows the coarse samples, and the top shows the

interpolated grid. We have displaced the interpolated grid upwards.

3.2 Lagrange Interpolation Polynomial

3.2.1 Linear interpolation

Let us first consider linear interpolation between two points. The Lagrange form of the

equation for a straight line passing through (x1, y1) and (x2, y2) is:

2

12

1
1

21

2

)(

)(

)(

)(
)(y

xx

xx
y

xx

xx
xp









 (3.39)

Where does this come from? Consider the normal formula “y = m x + c” for the

equation of a straight line shown in Figure 2.

Figure 2 Straight line passing through (x1, y1) and (x2, y2)

  11

12

12

)(

)(
)(yxx

xx

yy
xpy 




 (3.40)

Putting over the common denominator (x2 − x1)

 

)(

)(

)(

)(
)(

12

12
11

12

12

xx

xx
yxx

xx

yy
xpy









 . (3.41)

Collecting common terms in y2 and y1:

)(

)()(
)(

12

121112

xx

xxxxyxxy
xpy




 . (3.42)

Grouping terms in y1 and y2:

2

12

1
1

12

2

)(

)(

)(

)(
)(y

xx

xx
y

xx

xx
xp









 . (3.43)

Changing the sign of the y1 part yields:

2

12

1
1

21

2

)(

)(

)(

)(
)(y

xx

xx
y

xx

xx
xp









 (3.44)

which is the same as (3.39). Q.E.D. We can check the equation by noting that if x = x1,

then y=y1 and if x=x2, then y=y2 (this is not, of course, a proof!)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 23

3.2.2 Quadratic interpolation

The Lagrange form of the equation of the parabola passing through three points (x1, y1),

(x2, y2), and (x3, y3) is:

3

2313

21
2

3212

31
1

3121

32

))((

))((

))((

))((

))((

))((
)(y

xxxx

xxxx
y

xxxx

xxxx
y

xxxx

xxxx
xp














 (3.45)

Let us consider the quadratic passing through

 (x1, y1) = (-2, 4), (x2, y2) = (0, 2), and (x3, y3) = (2, 8). (3.46)

Using the formula above gives

8

)02))(2(2(

)0))(2((
2

)20))(2(0(

)2))(2((
4

)22)(02(

)2)(0(
)(
















xxxxxx
xp (3.47)

Simplifying yields

8

8

)2(
2

4

)2)(2(
4

8

)2(
)(












xxxxxx
xp (3.48)

 2)(2  xxxp (3.49)

Figure 3 Quadratic x
2

+ x + 2 passing through (-2, 4), (0, 2) and (2, 8). These control

points are marked with circles

We can check this in Matlab

x=[-2,0,2];

y=[4,2,8];

p=polyfit(x,y,2)

p =

 1.0000 1.0000 2.0000

These p coefficients are, respectively, the terms from x
2
, x, constant which yields the

polynomial 2)(2  xxxp .

3.2.3 General form

The general form for Lagrangian interpolation of an n
th

 order polynomial through (n+1)

points is

nn yLyLyLxp  2211)(, where (3.50)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 24

)())(()(

)())(()(
)(

111

111

nkkkkkk

nkk
k

xxxxxxxx

xxxxxxxx
xL














.

We note that Lk(xk)=1 and Lk(x)=0 when x=xj for j ≠ k.

Whilst there is nothing wrong with using this formula directly to compute the

interpolating polynomial, there is a more computationally efficient way to set up the

calculation, which we will now describe.

3.3 Newton Interpolation Polynomial and Divided Differences

Newton‟s form of the equation for a straight line passing through (x1, y1) and (x2, y2) is:

)()(121 xxaaxp  . (3.51)

For a parabola passing through three points (x1, y1), (x2, y2), and (x3, y3) it is:

))(()()(213121 xxxxaxxaaxp  . (3.52)

The general Newton form of an n
th

 order polynomial through (n+1) points is:

)()())(()()(11213121  nn xxxxaxxxxaxxaaxp  . (3.53)

This is just a different way of writing the polynomial that fits between two points. Let

us reconsider the previous example of interpolating between

 (x1, y1) = (-2, 4), (x2, y2) = (0, 2), and (x3, y3) = (2, 8). (3.54)

We have

)0))(2(())2(()(321  xxaxaaxp . (3.55)

At x = -2, y = p(x) = 4 so:

 411  ya , (3.56)

And

1

)2(0

42

12

12
2 











xx

yy
a , (3.57)

and

1
)2(2

)2(0

42

02

28

03

12

12

23

23

3 
























xx

xx

yy

xx

yy

a .
(3.58)

Thus we have

 2)2()2(4)(2  xxxxxxp (3.59)

As in the previous section. There is another way to calculate this, by noting how the

working in (3.58) builds on values calculated in (3.57)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 25

xi yi

ii

ii
i

xx

yy
d










1

1

ii

ii
i

xx

dd
dd










2

1

-2 □4

)2(0

42

12

12










xx

yy
= □-1

0 2

)2(2

)1(3

13

12










xx

dd
=□1

3

02

28

23

23 









xx

yy

2 8

Reading the boxed numbers gives a1 = 4, a2 = -1 and a3 = 1, as above.

There is a related methods called “Neville‟s Algorithm” which uses a similar divided

difference table to efficiently compute the value of the polynomial at a given point.

3.4 Splines

3.4.1 Linear Splines

As illustrated in 3.1.3 interpolating an (n-1)
th

 order polynomial to fit through n data

points leads to oscillations in the fitting function that are generally not representative of

the underlying function. Splines are a way of fitting a line between successive groups of

points so that we have a function that interpolates “smoothly” between the data values.

Let us consider first fitting a straight line between each of the pairs of points in turn.

Recall equation (3.39)

2

12

1
1

21

2

)(

)(

)(

)(
)(y

xx

xx
y

xx

xx
xp









 (3.60)

Consider that we have four points to interpolate between: (x1, y1), (x2, y2), (x3, y3), and

(x4, y4). This defines three intervals on the x-axis where we will fit three straight lines

using (3.39)



















































434

34

3
3

43

4

323

23

2
2

32

3

212

12

1
1

21

2

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

xxxy
xx

xx
y

xx

xx

xxxy
xx

xx
y

xx

xx

xxxy
xx

xx
y

xx

xx

xp . (3.61)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 26

If we have these points as (0,0), (1,1), (2,4) and (3,3). This yields the following

equations for the straight lines



















































3263
)23(

)2(
4

)32(

)3(

21234
)12(

)1(
1

)21(

)2(

101
)01(

)0(
0

)10(

)1(

)(

xx
xx

xx
xx

xx
xx

xp . (3.62)

We also can use Matlab to perform the interpolation.

x=[0 , 1, 2, 3];

y=[0, 1, 4, 3];

spline_linear_x = linspace(0,3,100);

linear_spline = interp1(x,y,spline_linear_x,'linear');

plot(x, y, 'ro', spline_linear_x, linear_spline, 'b:')

title('Linear spline interpolation of Data')

grid on

Figure 4 Piecewise Linear Interpolation between 4 points. Within each interval we just

join the points up with a straight line and the equation of the line is given by the

Lagrange form for linear interpolation.

Whilst we have achieved the aim of fitting a line between the data points and avoided

the oscillatory nature of using a polynomial to achieve this, the result is not “smooth” in

the sense that the derivative of the function has a discontinuity at the fixed interpolation

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4
Linear spline interpolation of Data

v1.0

Advanced Computational Methods in Engineering SESG 6025

 27

points (and its second derivative is undefined). We now turn out attention to addressing

this.

3.4.2 Cubic Splines

It is possible to construct a smooth curve between data points such that the resulting

curve has continuous first and second derivatives across the whole interval. The

continuity of the first derivative means that the result graph does not have “sharp

corners” and continuity of the second derivative means that, effectively, a radius of

curvature is defined at each point.

Suppose we have n points (x1, y1), (x2, y2), …, (xn,yn) in an interval [a, b] such that a = x1

< x2 < … < xn = b. We do not require that the spacing between these points is even, so it

is convenient to define hi = xi+1 – xi. We are looking for a spline function



























nnn

iii

xxxxP

xxxxP

xxxxP

xS

11

1

211

)(

)(

)(

)(, (3.63)

that is a piecewise cubic with continuous derivatives up to order 2. For i = 1, 2, …, n-1

we can write:

)()(

6

)(

6

)(
)(1

33

1
1 iiii

i

i
i

i

i
ii xxcxxb

h

xx
a

h

xx
axP 





 


 . (3.64)

This leads to n-2 equations for the n unknowns a0, …., an-1:

)2,,.1(

636

1

1

12
1

11
1 








 







 ni

h

yy

h

yy
a

h
a

hh
a

h

i

ii

i

ii
i

i
i

ii
i

i  . (3.65)

(For a proof of this, see one of the references at the end). It is easy to verify that this

goes through each point and has continuous derivatives up to order 2 at each point.

As we know from our work on linear equations above, we require n equations in n

unknowns to solve this system. The undetermined part of the above equations is what

we do at the end points of the interpolating spline. Some choices can be made as per the

following table.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 28

Choice Meaning Name (in Matlab)

nxxxxxS  ,0)(1 Set the second derivative to

be zero at the end points

“Natural”

)()(

)()(

)()(

1

1

1

n

n

n

xSxS

xSxS

xSxS







Make the function and its

first and second derivatives

equal at the end points

“Periodic”









)(

)(1

nxS

xS

Set fixed values for the first

derivative of  and 

“Clamped” or

“Complete”









)(

)(1

nxS

xS

Set fixed values for the

second derivative of  and 

“Second”

Illustrations of these endpoints using Matlab “splinetool”

Figure 5 Natural End conditions

v1.0

Advanced Computational Methods in Engineering SESG 6025

 29

Figure 6 Periodic End conditions

Figure 7 Clamped End conditions

v1.0

Advanced Computational Methods in Engineering SESG 6025

 30

Figure 8 “Second” End conditions

Let us now consider the Natural Spline formulation in which the 2
nd

 derivatives at the

endpoints are set to zero so the values of bi and ci (i=1,… n-1) are expressed in terms of

the ai coefficients as follows:

6
,

6

11 ii

i

i

i

ii

i

i

i

ha

h

y
c

ha

h

y
b  

. (3.66)

This leads to a triadiagonal set of equations for the coefficients, which can then be used

to give each of the piecewise cubic splines. We can also show the interpolation in

Matlab.

x=[-2,-1,0,1,2];

y=[4,-1,2,1,8];

spline_x = linspace(-2,2,100);

cubic_spline = interp1(x,y,spline_x,'spline');

plot(x, y, 'ro', spline_x, cubic_spline, 'b:')

title('Cubic Spline Interpolation of Data')

grid on

v1.0

Advanced Computational Methods in Engineering SESG 6025

 31

With the curve fitting toolbox installed, we can also use splinetool([-2,-

1,0,1,2],[4,-1,2,1,8]) to explore this interactively and examine different endpoint

conditions.

4 Numerical Integration

The purpose of numerical integration (or „quadrature‟) is to find the area under a graph.

 Make any possible analytic progress . Even a complicated analytic result is likely to

be quicker and more accurate to evaluate than using a numerical method

 Certain integrals have been well studied (for example it may be possible to represent

the integrand as a series and then integrate term by term). In this case it may be

easier to control the accuracy using this alternative method.

]0Re,0[)(

)exp(
1

22













uuuKdx
ux

xx

ux

 (4.67)

The integral above can be written in terms of a Bessel function (K1), which can be

evaluated using standard techniques.

 For the remainder of integrals it is necessary to use numerical integration. The

strategy will be to evaluate the function to be integrated at a number of sample

points and find the area enclosed between these points and the axis.

See section 1.15.9 of the Matlab hand-out for some examples of numerical integration

using Matlab.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1

0

1

2

3

4

5

6

7

8
Cubic Spline Interpolation of Data

v1.0

Advanced Computational Methods in Engineering SESG 6025

 32

4.1 Trapezium Rule

This is the simplest method and consists of joining up each of our sample points with a

straight line (like linear interpolation). The area under the curve becomes the sum of the

areas under the resulting trapezia.

Figure 9 Trapezium Rule

Let y0 … yn be the function values at each of the sample points.









 )()(
2

1
d)(13210 nn

b

a

yyyyyyhxxf  (4.68)

Numerical Example. Consider the following integral

xx

x

d)exp(

4x

0






 (4.69)

 yi = exp(xi) Weight yi  weight

x0 = 0 y0 = 1.00000 0.5 0.50000

x1 = 0.5 y1 = 1.64872 1 1.64872

x2 = 1 y2 = 2.71828 1 2.71828

x3 = 1.5 y3 = 4.48169 1 4.48169

x4 = 2 y4 = 7.38906 1 7.38906

x5 = 2.5 y5 = 12.18249 1 12.18249

x6 = 3 y6 = 20.08554 1 20.08554

x7 = 3.5 y7 = 33.11545 1 33.11545

x8 = 4 y8 = 54.59815 0.5 27.29908

 Sum 109.42031

0 1 2 3 4 5

h

v1.0

Advanced Computational Methods in Engineering SESG 6025

 33

 h 0.50000

 Result = h  sum 54.71015

The final result is 54.71015 (5dp). This compares well to the exact answer of exp(4) –

exp(0) = 53.59815.

4.1.1 Notes on the trapezium Rule

1) In the general case the error is of the form (constant)h
2
. Thus if the number of

points is doubled then the error decreases by a factor of 4.

2) The trapezium rule overestimates when the function is convex upwards and

underestimates when it is concave downwards. When the function has an equal

number of maxima and minima then the trapezium rule will give a better result.

(a)

(b)

Figure 10 Trapezium Rule (a) overestimate when function is convex upwards (b)

underestimate when function is convex downwards

3) It can be shown that :

 )()()(

12
 rule trapeziumd)(3

2

hObfaf
h

xxf

b

a

 (4.70)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 34

This „endpoint‟ correction, which is calculated using the derivatives of the function

evaluated at the endpoints can be used to provide a more accurate estimate of the

integral when these derivatives are available. In the above case we have

)exp()()exp()(xxfxxf  (4.71)

So the endpoint correction is

   54.59815)00000.1(

12

5.0
)()(

12

22

bfaf
h

 -1.11663 (4.72)

Applying this correction gives a result of 54.71015 - 1.11663 = 53.59352 for the

integral (which is even closer to the exact answer of 53.59815).

There are circumstances when the endpoint correction vanishes (a) when)()(bfaf 

= 0 or (b) simply)()(bfaf  - such as for a periodic function. However, if)(af  or

)(bf  is large then the result from the trapezium rule will be poor.

4.2 Simpson’s Rule

In the trapezium rule we perform linear interpolation between each of the sample points.

By fitting a curve through sets of points (as in the spline interpolation) we can increase

the accuracy of the method. Simpson‟s rule fits a parabola through sets of three

consecutive sample points.

 )(2)(4)(

3
d)(24215310   nnn

b

a

yyyyyyyyy
h

xxf  (4.73)

This can also be remembered as “
3

h
(first + last + 4 sum of odds + 2 sum of evens)”.

For Simpson‟s rule doubling the number of sample points decreases the error by a factor

of 16.

We now repeat the integral computed previously using the trapezium rule. In this case

the weighting of the points in the calculation changes.

xx

x

d)exp(

4x

0






 (4.74)

 yi = exp(xi) Weight yi  weight

x0 = 0 y0 = 1.00000 1 1.00000

x1 = 0.5 y1 = 1.64872 4 6.59489

x2 = 1 y2 = 2.71828 2 5.43656

x3 = 1.5 y3 = 4.48169 4 17.92676

x4 = 2 y4 = 7.38906 2 14.77811

x5 = 2.5 y5 = 12.18249 4 48.72998

x6 = 3 y6 = 20.08554 2 40.17107

x7 = 3.5 y7 = 33.11545 4 132.46181

v1.0

Advanced Computational Methods in Engineering SESG 6025

 35

x8 = 4 y8 = 54.59815 1 54.59815

 Sum 321.69732

 h 0.16667

 Result = h  sum 53.61622

The final answer is thus 53.61622, which is more accurate than the result given by the

trapezium rule using the same sample points.

The end correction for Simpson‟s Rule is:

 )()(

180

4

byay
h

 (4.75)

Substituting in the values

  = (0.5
4
) / 180  (1 – 54.5982) = -0.0186105, (4.76)

which gives a final result for the integral of 53.59761. This agrees to 4 figures of

accuracy with the exact answer (=53.59815)!

4.3 Recursive Quadrature

How many points should be used in the integration? Clearly it is hard to know this in

advance! However, it is possible to add points to the integration without wasting the

effort of the previous function evaluations.

The explicit formulae for the integral using 1, 2, 4, and 8 strips are

)1()()(

)()()()()()0()8(

)1()()()()0()4(

)1()()0()2(

)1()0()1(

16
1

8
7

8
1

4
3

8
1

8
5

8
1

2
1

8
1

8
3

8
1

4
1

8
1

8
1

8
1

16
1

8
1

4
3

4
1

2
1

4
1

4
1

4
1

8
1

4
1

2
1

2
1

4
1

2
1

2
1

fff

ffffffI

fffffI

fffI

ffI











 (4.77)

By judiciously regrouping the terms it is possible to determine the value of the integral

I(2n) using only function evaluations not already computed in finding I(n):

)()()(

)()()()()1()0()8(

)()()()1()0()4(

)()1()0()2(

)1()0()1(

8
7

8
1

8
5

8
1

8
3

8
1

8
1

8
1

4
3

8
1

4
1

8
1

2
1

8
1

16
1

16
1

4
3

4
1

4
1

4
1

2
1

4
1

8
1

8
1

2
1

2
1

4
1

4
1

2
1

2
1

fff

ffffffI

fffffI

fffI

ffI











 (4.78)

This leads to

v1.0

Advanced Computational Methods in Engineering SESG 6025

 36

 
 
 )()()()()4()8(

)()()2()4(

)()1()2(

)1()0()1(

8
7

8
5

8
3

8
1

8
1

2
1

4
3

4
1

4
1

2
1

2
1

2
1

2
1

2
1

2
1

ffffII

ffII

fII

ffI









 (4.79)

Over a more general interval [a, b] this yields the formula:





n

i

hiafhnInI
1

2
1))12(()()2(, (4.80)

where h = (b – a) / (2n).

Figure 11 Recursive Trapezium Rule. At each level we add the points marked, doubling

the number of strips used in the integration at each step and re-using the work

performed previously.

4.4 Adaptive Quadrature

Adaptive quadrature methods take into account the behaviour of the integrand by

subdividing the interval of integration into sections so that numerical integration on the

sub-intervals will provide results of sufficient precision. If, for example, the function

you wish to integrate is smooth in one region of the interval of interest, but oscillatory

in another, then it is necessary to use more strips in the oscillatory part. This is known

as „adaptive quadrature.‟

4.5 Monte Carlo Methods

It is possible to estimate an integral using the following formula:

 )(

)(
)()(d)(

2

iii

b

ax

xfxf
N

ab
xfabxxfI 


 



, (4.81)

where the xi are chosen randomly between a and b, N is the number of sample points,

and:

)(ixf = mean(f) and  )(
2

ii xfxf  = std(f).

To scale random numbers in the range 0 to 1 to be in the range a to b, you can use (b -

a)*rand(N,1) + a in Matlab, where b > a and N is the number of points to generate.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 37

Why might you ever want to use this method? For multi-dimensional integrals in d

dimensions, the error for the trapezium rule falls off as N
(-2/d)

, where N is the number of

points used/ function evaluations made. However, the N
(-1/2)

 dependence of the error for

the Monte Carlo integration is independent of the number of dimensions; hence for

large d, the Monte Carlo method is actually more accurate than the trapezium rule for a

given number of function evaluations. For Simpson‟s rule the error goes as N
(-4/d)

 in d

dimensions. By using quasi-random sequences (such as Sobol sequences) it is possible

to arrange for the error to drop off as N
(-1)

 independent of d.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 38

5 Non-Linear Equations

5.1 Introduction

Consider comparing two algorithms which have time complexities O(N
2
) and O(N log

N) respectively. Although for large enough N it will be better to use the O(N log N)

method, the O(N
2
) method may be faster for small N. Which is the fastest algorithm for

a given N?

Figure 12 Comparison between two algorithms with different time complexities.

The graph in Figure 12 shows that in this particular case it is better to use the O(N
2
)

method for N less than about 540. The approach in the figure is to use a graphical

solution method. Can we do any better? Unfortunately, there is no closed form solution

to f(N log N) = g(N
2
) which does not involve a numerical calculation: in this section we

will consider various numerical approaches to allow us to solve equations of the form F

= 0, where F is some function. We can re-arrange the above problem into this form by

writing F = f(N log N) - g(N
2
) = 0.

5.2 Bracketing a root

Suppose that a function f(x) is continuous and we have found two values a and b such

that f(a).f(b) <0. Then by the intermediate value theorem (from calculus), we know that

there is at least one root in the interval [a, b]. The condition simply means that the

function changes sign on the interval.

Figure 13 Sign change indicates at least one root in the region

5.3 Incremental Search

This is the most primitive way to identify a root.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 39

(i) Identify a region containing a root by proceeding from left to right over the

search region checking the sign of the function. This has performed the

bracketing in the previous section.

(ii) Divide the interval into smaller regions and repeat until the value of the root is

found to sufficient accuracy.

Figure 14 Incremental Search

This is very inefficient! However in the next sections we will see that the „respectable‟

methods for finding zeros are just variations on this theme. The only difference is that as

the sophistication of the method increases, we use more information about the function

to select the next guess at the root and we try to increase the speed at which we

converge to the root.

5.4 Bisection

In this case we proceed thus:

(i) Bracket the root between xlower and xupper.

(ii) Construct a new point midway between these two:

2

upperlower

new

xx
x


 (5.82)

(iii) Replace whichever of xlower and xupper is such that f(xlower) or f(xupper) has the same

sign as f(xnew).

(iv) Repeat until bored.

This method is bound to succeed. If the interval contains more than one root, then

bisection will find one of them. It will also converge on a singularity- so beware! How

fast does it converge on the root? If after n iterations the interval has width n then

2
1

n

n


 

. (5.83)

So to converge to a tolerance of  we require



 0

2logn (5.84)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 40

steps, where 0 is the width of the initial interval. When a method converges as a factor

less than 1 times the previous uncertainty to the first power then the method is said to

converge linearly: this is the case for the bisection method. This means that extra

significant digits are won linearly with computational effort. Superlinear convergence

occurs when we can write

 m

nn)()constant(1  
, (5.85)

with m>1.

5.5 Secant Method and Method of False Position

The secant method and the method of false position („regula falsi‟) take account of the

function value to determine where to choose the next guess at the root. In both methods,

we assume that the function is approximately linear in the region of interest and the next

improvement is taken as the point where the approximating line crosses the axis. After

each iteration one of the previous boundary points is discarded in favour of the latest

estimate of the root.

5.5.1 Method of false position

In this case we require that the root always remains bracketed, so that we retain the prior

estimate for which the function value has opposite sign from the function value at the

current best estimate of the root.

Mathematically, if a and b were the previous brackets then we interpolate between (a,

f(a)) and (b, f(b)) and construct a new point, xnew, where this line crosses the x-axis:

)()(

)()(

afbf

afbbfa
xnew




 . (5.86)

We then replace a or b with xnew such that f(xnew)f(a or b) < 0.

Figure 15 Method of False Position

The construction of the new point follows as follows. The equation of the line joining

(a, f(a)) and (b, f(b)) is

  
 ab

ax
afbfafy




)]()([)(. (5.87)

This line crosses the x-axis at y = 0:

v1.0

Advanced Computational Methods in Engineering SESG 6025

 41

 

 
 

 
 

   
 

 
QED.

)()(

)()(

)()(

)()()(

)()(
)(

)()()(0

afbf

afbbfa
x

afbf

abafafbfa
x

a
afbf

ab
afx

ab

ax
afbfaf

new





















 (5.88)

The method of false position converges linearly in general, but sometimes converges

superlinearly. Exact determination of its order is hard.

5.5.2 Secant method

The price for demanding that we always bracket the root is slower convergence. In the

secant method we just interpolate between the latest two points found. However, since

the root may not remain bracketed this method may not be stable and local behaviour of

the function may send it towards infinity.

Given two guesses for the root, xn and xn-1, then a better guess at the root is:

)()(

)()(

1

11

1











nn

nnnn

n
xfxf

xfxxfx
x (5.89)

Figure 16 Secant Method

The secant method converges superlinear (for sufficiently smooth functions).

 618.1

1 constantlim nn
n

 


 (5.90)

The number appearing in this fraction is the „golden ratio‟, which was known to the

ancient Pythagoreans.

5.5.3 Problems

The following function proves particularly troublesome to the false position (and

secant) methods.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 42

Figure 17 The method of false position (and the secant method) take many iterations to

converge to the true root. The numbering shows the iterations of the method of false

position.

5.6 Newton-Raphson Method

By using the derivative of the function, it is possible to obtain quadratic convergence to

the zero, once we are sufficiently close to it. The Newton-Raphson formula consists

geometrically of extending the tangent line at a current point xi until it equals zero, and

then setting the next guess, xi+1 to the abscissa of that zero-crossing.

The iteration scheme is

)(

)(
1

n

n

nn
xf

xf
xx


 . (5.91)

It is easy to remember that the function appears on the top line, since at the root f(xn) =

0, so the correction to the approximation to the root disappears. This is also a warning

that if f’(xn), the value of the first derivative, is close (or equal) to zero then there will be

numerical problems- in fact the convergence of Newton‟s method is only linear near to

multiple roots.

We stop the iterations when

 (i) )(nxf , or

(ii)  nn xx 1
(5.92)

We may also specify a maximum number of iterations allowed and return a „method not

converged error‟ if this number is exceeded. It is possible to derive the following

formula for the evolution of the error as the iterations progress:

)(2

)(2

1
xf

xf
nn




  (5.93)

Near to a root the number of significant figures approximately doubles with each step.

v1.0

Advanced Computational Methods in Engineering SESG 6025

 43

Figure 18 Newton-Raphson Iterations

5.7 Hybrid Methods

Is there a way to combine the superlinear convergence of e.g. the secant method with

the sureness of bisection? Yes. We keep track of whether the superlinear method is

converging the way it is supposed to and, if it is not, then we can interperse some

bisection steps to guarantee at least linear convergence. Such a method is the Van

Wijngaarden-Dekker-Brent method, developed in the 1960s. See Press et al Chapter 9

for more details. There are also ways to combine the superlinear convergence of

Newton‟s method (if the derivative can be evaluated) with the bisection method.

5.8 Multidimensional Methods

Newton‟s method for systems of non-linear equations follows from the method for a

single equation. Consider the following pair of equations:









0),(

0),(

212

211

xxf

xxf
 (5.94)

Suppose that (x1, x2) is an approximate solution. We will now compute corrections h1

and h2 such that (x1 + h1, x2 + h2) is a better solution. We can expand the above

equations using Taylor‟s theorem to give:

































2

2
2

1

2
121222112

2

1
2

1

1
121122111

),(),(

),(),(

x

f
h

x

f
hxxfhxhxf

x

f
h

x

f
hxxfhxhxf

 (5.95)

The partial derivatives in (5.95) are evaluated at (x1, x2). Equation (5.95) represents a

pair of linear equations for determining h1 and h2:

v1.0

Advanced Computational Methods in Engineering SESG 6025

 44


























































),(

),(

212

211

2

1

2

2

1

2

2

1

1

1

xxf

xxf

h

h

x

f

x

f

x

f

x

f

, (5.96)

where the matrix is known as the Jacobian, J:

 FhJ  (5.97)

The values of h1 and h2 are found by solving (5.97) as a system of equations. Hence

Newton‟s method for two non-linear equations in 2 variables is:































)(

2

)(

1

)(

2

)(

1

)1(

2

)1(

1

n

n

n

n

n

n

h

h

x

x

x

x
 (5.98)

The algorithm for performing Newton‟s method for systems is as follows

1) Set n = 0. Pick an initial guess),()0(

2

)0(

1 xx . Set  = 110
-6

.

2) Calculate F and J at the point),()(

2

)(

1

nn xx .

3) Solve the system of equations J.h = -F to find the value of h1 and h2.

4) Set 





























)(

2

)(

1

)(

2

)(

1

)1(

2

)1(

1

n

n

n

n

n

n

h

h

x

x

x

x
.

5) If 
2

h then stop, otherwise set n = n + 1 and repeat from (2)

It is usual to specify some maximum number of iterations after which the method

outputs a „not converged‟ error to avoid an infinite loop in the algorithm.

Example. This example follows the steps in the algorithm above:









0113),(

092),(
2

2

2

1212

2

2

3

1211

xxxxf

xxxxf
 (5.99)

1) Initial Guess:),()0(

2

)0(

1 xx =(2, 3)

2) F = 























12

17

11332

9322
22

23

 and 

























































184

1212

62

43

21

2

2

1

2

2

1

2

2

1

1

1

xx

xx

x

f

x

f

x

f

x

f

J

3) Solve the system of equations J.h = -F:






























 12

17

184

1212

2

1

h

h
 (note that the right hand side is –F)

v1.0

Advanced Computational Methods in Engineering SESG 6025

 45

3661.0
12

1217

171212

3080.0

1722

17

17

220

1212

12

17

184

1212

12

17

184

1212

2
1

21

2

3
2

2

3
2

2

1

3
17

2

1

3
12

3
12

2

1










































































































h
h

hh

h

h

h

h

h

h

h

h

4) Set 

























)0(

2

)0(

1

)0(

2

)0(

1

)1(

2

)1(

1

h

h

x

x

x

x









































6919.2

6338.1

3080.0

3661.0

3

2
)1(

2

)1(

1

x

x

So an improved guess is (1.386, 2.197) (4 significant figures of accuracy).

5) We could then repeat again.

Here are the results for the next iteration of the loop for you to check:













55802.1

31795.3
F , 












1818.1377273.2

78788.876601.5
J , 






















181158.0

299332.0
)2(

2

)2(

1

h

h

so 

















01581.2

08703.1
)2(

2

)2(

1

x

x

v1.0

Advanced Computational Methods in Engineering SESG 6025

 46

x = [2;3]

F = [x(1)^3 + 2* x(2)^2 - 9; x(1)^2 - 3*x(2)^2 + 11]

J = [3*x(1)^2, 4*x(2); 2*x(1), -6*x(2)]

h = J\(-F)

for i=1:10

x =x+h

F = [x(1)^3 + 2* x(2)^2 - 9; x(1)^2 - 3*x(2)^2 + 11]

J = [3*x(1)^2, 4*x(2); 2*x(1), -6*x(2)]

h = J\(-F)

end

Figure 19 A simple Matlab code for 10 iterations of multidimensional Newton‟s method

example

The solution to the system is (1, 2). Starting sufficiently close to the solution yields

rapid convergence to the solution follows from starting sufficiently close to the solution

yields

6 References

Whilst there is no single book which covers all of the material for the course, you

should find much of it in either of the first two books.

Burden, RL and Faires, JD (2005) “Numerical Analysis.” Brooks/Cole ISBN

0534404995.

Fausett L (2007) “Applied Numerical Analysis: Using Matlab” Pearson Education.

ISBN 0132397285.

Press, WH, Teukolsky, SA, Vetterling, WT, and Flannery BP (1992, 1996, 2007, and

later) “Numerical Recipes in C” , “Numerical Recipes in Fortran”, “Numerical Recipes

3
rd

 Edition”. These books contain both the code and algorithms. See also www.nr.com

for more details and you can also read these books online there too.

For more detailed mathematics and proofs of equations see

Stoer J and Bulirsch R (2010) “Introduction to Numerical Analysis” Springer. ISBN

144193006X

http://www.nr.com/

v1.0

Advanced Computational Methods in Engineering SESG 6025

 47

Past Exam paper Questions

These are the past questions from some past papers in the Uni repository which are

relevant/ representative of the type of exam questions for this year.

2001: cm204 A1, B2, B3

2000: cm204 2, 3, 4, 5(a), 5(b)

1999: cm204 A1, B1(a i),

1999: cm310 2,3,4(a),5

1998: cm310 1,2,5

