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Computational Modelling 
by Prof Simon J. Cox (sjc@soton.ac.uk) 

1 Matlab 

See the Matlab hand-out for notes on the use of Matlab. Other packages offering a high-

level „problem solving environment (PSE)‟ for computational modelling include Python 

(open source), Mathematica (numerical and symbolic calculations), and Maple 

(symbolic calculations). Spreadsheets such as Excel can also be useful for simple 

calculations and visualization of results. 

1.1 MATLAB and Python features 

MATLAB and Python are versatile and interactive tools for performing numerical 

calculations. 

Can be used for 

 testing algorithms 

 running small programs 

 interactive visualisation of data 

Other features: 

 Specialist toolboxes can be used to solve particular problems 

 Numerical Computation 

 Interaction visualization and presentation graphics 

 High Level Programming Language based on vectors and matrices 

 Specialist toolboxes written by experts 

 Tools for interface building 

 Integrated debugger, editor and performance profiler 

 On-line electronic documentation 

1.2 Availability of MATLAB/ Python 

The Matlab User‟s guide, software, and thousands of pages of online documentation is 

available in a student version. It is on iSolutions PC Clusters and the major University 

High Performance Computing (HPC) facilities. Python is available as Open Source. 
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1.2.1 Matlab Features 

Key Features Additional Features Extras 

Basic Mathematics (1.2) 

 

Handling arrays (1.6) Complex Numbers (1.3) 

“Help” (1.4) 

Array operations (1.5) 

Relational Operators (1.8) 

 

Linear Algebra (1.9.2 – 1.9.5) 

2D plotting (1.7) Linear Algebra (1.9.1) Special Matrices (1.10) 

3D plotting (1.18) 

 

Text Handling (1.11) Polynomials (1.14) 

Programming (1.12 and 1.13) Curve fitting & interpolation 

(1.15.1-1.15.6) 

Numerical Analysis (1.15.7 – 

1.15.10) 

 Sparse Matrices & 

Optimisation tips (1.17) 

Data Analysis example (1.16) 

 

1.3 Basic Features 

 Mathematical calculations can be typed in as you would write them 

 Variables are defined using „a = 3’ 

 Once a variable is defined, it can be used in mathematical expressions 

 The commands who and whos display information about variables 

1.4 Help 

 Typing help <command> gives a summary of the command 

 lookfor allows you to search for a keyword 

 Under Windows, help can be accessed interactively and online 

1.5 Array Operations 

 Commas separate columns of a matrix : “,” 

 Use a semicolon: “;” to start a new row 

 To index individual array elements use 

 e.g. x(1), x(3) 

1.6 Colon Notation 

The colon can be used in several ways 

 To index an array: 

x(start element: step : last) 

e.g. x(1:2:5) returns elements x(1), x(3), x(5) 

 To construct an array: 
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x=(first number : step : last) 

e.g. x=(2:2:6)is the same as x=[2,4,6] 

1.7 Array Mathematics 

Array Manipulation 

 Elementwise: 

a.*b gives a1,1b1,1 and a1,2b1,2 etc. 

 Conventional linear algebra (the dimensions of the matrices must be compatible) 

a*b means use a1,1b1,1 + a1,2b2,1 + a1,3b3,1 etc. 

1.8 2D Plotting 

 plot(x1,y1,s1, x2,y2,s2, x3,y3,s3,...) places plots of the vectors (x1,y1) 

with style s1 and (x2,y2) with style s2 etc. on the same axes. 

 xlabel(‘text’)adds a label to the x axis. 

 ylabel(‘text’) add a label to the y axis. 

 grid on turns on a grid over the plot. 

1.9 Other plots 

 semilogy(x,y) and semilogx(x,y) gives axes marked in powers of 10. 

 loglog(x,y) plots both axes with a logarithmic scale. 

 MATLAB supports many common types of plot (see the booklet). 

 fill(x,y,s) draws a fills a polygon with the colour r. 

1.10 3D Plotting 

 plot3(x1,y1,z1,s1, x2,y2,s2,z2, .. ) plots the points defined by the triples 

(x1,y1,z1) with style s1 and (x2,y2,z2) with style s2 etc. on the same axes. 

 zlabel(‘text’)adds a label to the z axis. 

 mesh(x,y,z) draws a wire frame grid for the surface defined by (x,y,z). 

 surf(x,y,z) gives a shaded surface plot for the surface defined by (x,y,z). 

1.11 3D plotting 

 Change the shading using colormap(map) 

 To examine a coloured map of a matrix, A, use imagesc(A) 

 colorbar displays the colour coding for the matrix shading 

1.12 Programming MATLAB 

 MATLAB provides loops using 

for k = 1:n 

[instructions] 

end 

 MATLAB commands can be put together in a script (or text) file to group together a 

set of instructions. 

 MATLAB also provides tools to build user-friendly interfaces for programs. 
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1.13 Practical Software Design 

Practical software design for computational modelling requires a balance between the 

time spent choosing the correct algorithm for a computation, performing the 

computation and analysing the results. Matlab can be used for each of these. 

 

Algorithm Computation Results 

Matlab provides a high-

level and simple way to 

design and check 

algorithms 

Matlab can be used to 

check small test cases. 

Consider translating/ 

compiling to C, C++ or 

Fortran for larger cases. 

The results from 

computational simulations 

can be analysed and post-

processed with Matlab. 

 



v1.0 

Advanced Computational Methods in Engineering SESG 6025 

 5 

2 Linear Equations 

2.1 Examples 

2.1.1 Electrical Circuits 

In the analysis of electrical circuits, the mesh-current method is often used to compute 

the currents in a circuit [Etter, p512]. 

 

Figure 1 Circuit diagram 

The voltage drops (or increases) across each element in a mesh are summed and set 

equal to zero to form an equation for each mesh. The resulting set of simultaneous 

equations is then solved for the currents within each loop. For Figure 1 the mesh 

equations become 

 

0402)(6

05)(6)(4

0)(4330

323

23212

211







iii

iiiii

iii

 ( 2.1) 

Combining and rearranging these equations yields a system of simultaneous equations: 
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This can be written in matrix form: 

 bxA   ( 2.3) 

thus 
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2.1.2 Others 

Systems of simultaneous equations occur in the solution of differential equations, such 

as the heat equation which governs diffusion of heat in a material. An example of this is 

the flow of heat in a Pentium Processor by conduction. 

2.2 Norms and Notation 

In this section we will solve the system of equations Ax = b, with A a real N  N matrix, 

b is the known right hand side and x is a vector of N unknowns. 

The equations 
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 ( 2.5) 

only have a solution if the determinant of A  0. This can be checked in Matlab using 

det(A). The solution can then be written 

 bAx 1 . ( 2.6) 

However finding the inverse of A is numerically unstable, expensive (in terms of 

solution time) and usually unnecessary. We therefore use a variety of different methods 

for solving systems of equations. 

2.2.1 Norms 

A norm is a single number which summarises the information in a matrix or vector. 

There are several frequently used norms for vectors 

 1-Norm Nxxxxx  3211
 ( 2.7) 

 
2-Norm 

22

3

2

2

2

12 Nxxxxx   ( 2.8) 

 -Norm  Nxxxxx ,,,,Max 321 


. ( 2.9) 

There are analogous definitions for matrices 

 
1-Norm 




N

i

ik

Nk

aA
11

1
 Max =Maximum Absolute Column Sum ( 2.10) 

 
2-Norm 

 


N

i

N
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ijaA
1 1

2

2
 ( 2.11) 

 
-Norm 





N

i

ki

Nk

aA
11

 Max =Maximum Absolute Row Sum. ( 2.12) 

2.3 Ill-conditioning and Poor Scaling 

The condition number of a matrix, (A) is defined as: 

 1)(  AAA  = cond(A), ( 2.13) 
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where any norm can be used. If this is large and you are solving the system Ax = b, a 

small change in the vector b can result in a large change in the solution x. See section 

1.9.2 of the Matlab hand-out for an example of this. 

Poor scaling is a different problem and is caused by the matrix elements varying over 

perhaps several orders of magnitude. Numerical rounding errors cause a loss of 

accuracy in the final solution. Techniques such as pivotting (which we discuss later) 

help to reduce these errors. 

2.4 Back and Forward Substitution 

If a set of equations is upper triangular, we can find the solution easily by „back 

substitution.‟ 
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Solution in Matlab follows using: 

» a = [1,2,3;0,4,5;0,0,6]; 

» b=[1;2;3]; 

» a\b 

 

ans = 

   -0.2500 

   -0.1250 

    0.5000 

If the equations are in lower triangular form: 
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then solution proceeds from the top down („forward substitution‟) 

2.5 Gaussian Elimination 

To perform Gaussian elimination, we perform row and column operations to transform 

the matrix into upper triangular form so that back substitution can be used. Consider 
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It is usual to perform the working using the following abbreviated notation to store A 

and b. 
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The steps of the reduction are (i) get first column into upper triangular form. 

R2 R2-4R1 

R3 R3-7R1 
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 ( 2.19) 

(ii) Get second column into upper triangular form (and so on for a larger matrix) 

R3 R3-2R2 
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In Matlab the solution is given by 

» a = [1,2,3;4,5,6;7,8,0]; 

» b=[24;63;57]; 

» a\b 

 

ans = 

    7.0000 

    1.0000 

    5.0000 

For an NN matrix the work required for the elimination is O(N
3
) 

2.5.1 Partial and Total Pivotting 

In general we replace rows thus: 

 ijj  Row Row Row   , ( 2.21) 

where  is as small as possible. We can ensure that  is as small as possible (and in 

general it will be  1) by re-arranging the set of equations so that we are eliminating 

using the largest „pivot‟ possible. Without pivotting Gaussian elimination is numerically 

unstable, since subtracting two similar numbers can result in a loss of significant 

figures. Choosing  as small as possible avoids this as far as possible. e.g. in the above 

example 
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We swap rows 3 and 1 and eliminate using the pivot 7. 
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R1 R3 
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R2 R2-4/7R1 

R3 R3-1/7R1 
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The largest element in the second column is now the 
7

6 , so we swap the last two rows 

before eliminating again. 

R2 R3 
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R3 R3-1/2R2 
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 ( 2.26) 

Once again backsubstitution yields the solution (7, 1, 5)
T
. 

An even better result may be obtained using total pivotting, where instead of picking the 

largest element in the column as the pivot, we select the largest element left in the rest 

of the matrix: 

  ij

Nji

aMax
,1

Pivot PivotA


  ( 2.27) 

Then retaining the ith equation, eliminate the coefficient of xj. At each stage we are now 

eliminating using the largest pivot possible (so  is always as small as possible). Total 

pivotting is generally harder to code than partial pivotting, since it is necessary to take 

account of the variable order as the elimination proceeds. If at any stage the largest 

pivot remaining is 0, then the matrix is singular (i.e. its determinant is zero). 

2.6 LU decomposition 

When using Gaussian elimination the matrix, A, and the right hand side, b, are treated 

together. If, as may be the case in the electrical circuit example, we would like to try a 

number of different right hand sides, then each one is „just like the first‟ and we have to 

repeat all of the steps for the full matrix from scratch. LU decomposition is a method of 

performing a splitting of the matrix once and for all, which allows new right hand sides 

to be employed with little additional effort. It is, in fact, identical to Gaussian 

elimination with the operations re-ordered. 
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By convention we set Lii =1 („Doolittle‟s methods‟) so L is unit lower triangular. Setting 

Uii = 1 is known as Crout‟s method- and U is unit upper triangular. How does this help 

to solve Ax = b? Once the factorization is performed we can write: 

 

bLy

UxybLUx



 let  ,
. ( 2.29) 

The steps for the solution of the system are (i) find the factorization, (ii) find y by 

forward substitution, (iii) solve Ux = y by back-substitution. 

Consider solve the following equations: 
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(i) Perform the factorization 
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The order in which we determine the unknowns is marked and ensures that we only 

have one unknown at each stage. 
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The factorisation is 
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(ii) Solve Ly = b to find y by forward substitution 

 

b

y

y

y

Ly 


























































1

7

2

11

01

001

3

2

1

2
1

2
1  ( 2.34) 
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(iii) Solve Ux = y by back substitution 

 

y

x
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 ( 2.36) 
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Thus the solution is x = (3, 1, -2)
T
. 

It is possible to solve the equations as above using Matlab 

» a = [2,4,6;1,10,10;1,10,7] 

a = 

     2     4     6 

     1    10    10 

     1    10     7 

 

» b = [-2;-7;-1] 

b = 

    -2 

    -7 

    -1 

 

» [l,u]=lu(a) 

l = 

    1.0000         0         0 

    0.5000    1.0000         0 

    0.5000    1.0000    1.0000 

u = 

     2     4     6 

     0     8     7 

     0     0    -3 

 

» y=l\b 

y = 

    -2 

    -6 

     6 

» x=u\y 

x = 

     3 

     1 

    -2 

In general the LU factorisation is performed using partial pivotting to avoid numerical 

rounding errors. Using [L, U, P] = lu(A) in Matlab returns a permutation matrix, p, 

such that PA = LU. This takes account of the partial pivotting in the algorithm. 

If the matrix A is symmetric, then we may write A = L L
T
. i.e. the upper triangular part 

of the decomposition is just the transpose of the lower triangular part. In this case we 

perform a „Cholesky decomposition‟, and we do not need to set the elements Lii (as we 

would have with the methods of Crout or Doolittle.) 

2.7 Sparse Systems and fill-in 

If a matrix has a large number of zero entries then the matrix is said to be „sparse.‟ By 

only storing the non-zero elements of the matrix you (i) save memory in the computer 

(ii) save time by avoiding null operations (such as 0  x = 0). It is possible to retain the 
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sparsity of a matrix when performing operations such as Gaussian elimination or LU 

decomposition. However, sometimes in the course of performing e.g. Gaussian 

elimination a non-sparse matrix will be produced: this is known as „fill-in‟. Consider the 

following matrix 

 























100

0

103

0012

321











N

N

. ( 2.38) 

This matrix fills in completely using Gaussian elimination. Interchange of the first and 

last row yields a matrix which does not fill-in. More general techniques exist for re-

arranging sparse matrices to minimise fill-in. 

 

3 Interpolation 

(For further details see the Matlab hand-out section 1.15.) 

So, you have some points from an experiment or by sampling a function by a 

computational experiment. What next? How do you assign a value for the function at 

the points you did not measure. For example, you measure the function at the points 

[1.6, 2.2 , 3.3, 4.8] – what is the value of the function at 3.5? If this is between the range 

of values you measured (i.e. 1.6 and 4.8), it is known as “interpolation”; if you are 

trying to use those samples to estimate the value outside that range (at, say -10.4 or 7.3), 

it is known as extrapolation. In this section we will concentrate on interpolation, and 

although many of the same principles apply for extrapolation, it can be a far more 

dangerous and risky procedure. 

More generally we might be trying to approximate a complicated function by a simpler 

one. We may also wish to represent a set of discrete points by a continuous function (or 

set of continuous functions). This too is the realm of interpolation and curve-fitting. 

Let us consider a few of the things you have to take into account. If I sample a function 

at [1, 2, 3, 4], then is it meaningful to ask “What is the value at 3.5?” –if the sample 

points represent discrete variables, like food eaten by n children in a family, then is 

meaningful to ask “What if I had 2.5 children?” ?- and the answer is “Well, it might be 

reasonable to ask this”. Other things to consider are in the following sections, but let us 

now start with an example and we will consider MATLAB‟s built-in humps function, 

which has interesting properties. 

3.1.1 Curve Fitting: Least Squares 

Given a discrete sample of points from some function, what kind of curve could we 

draw which best represents the trends in the data. Naturally there are lots of possible 

curves, an infinite number in fact, so which one can we choose? When we fit a curve, 

we do not expect that the curve will pass through each of the data points. 

One way to fit the curve is to minimize the sum of the squares of the discrepancies (or 

“residuals”) between the data and the values predicted by the hypothetical function. We 
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adjust the parameters of the function to minimise this sum. This is known as least 

squares fitting of data. 

MATLAB provides polyfit(x, y, o) to perform a least squares fit of a polynomial 

of order o to the data in x and y. The function polyval(p, x), evaluates the 

polynomial defined by p at the set of points x. 

Let us take 15 equally spaced points from the function humps, and consider 

qualitatively the effect of plotting polynomials of various order through these points. 

x = linspace(0,2,15); 

y = humps(x); 

plot(x,y,'ro') 

title('Sample of Humps')   

 

With just this sample of points, it is hard to know what sort of curve to fit. We could try 

a second order polynomial as follows 

order_2 = polyfit(x,y,2); 

x_2 = linspace(0,2,100); 

y_2 = polyval(order_2, x_2);   

plot(x, y, 'ro', x_2, y_2, 'b:') 

title('Quadratic (2nd) Order Interpolation of Humps')   
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The fit does not look very impressive. Perhaps a higher order polynomial will do better: 

order_6 = polyfit(x,y,6); x_6 = linspace(0,2,100); 

y_6 = polyval(order_6, x_6);   

plot(x, y, 'ro', x_6, y_6, 'b:') 

title('6th Order Interpolation of Humps')   

   

This fit looks more reasonable. Using polyval, we can evaluate the function at each of 

the sample points, and determine the residual (the difference between the estimate given 

by our function, and the actual function value). 

y_s = polyval(order_6, x); 

residual = y_s - y; 

results = [x; y; y_s; residual; residual/std(residual)]'   
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results = 

         0    5.1765   -1.3549   -6.5314   -0.4710 

    0.1429   24.4541   52.4369   27.9827    2.0177 

    0.2857   94.3961   56.5751  -37.8210   -2.7271 

    0.4286   35.5055   42.7865    7.2809    0.5250 

    0.5714   12.7098   27.5492   14.8393    1.0700 

    0.7143   12.9303   17.1772    4.2469    0.3062 

    0.8571   21.0235   12.0047   -9.0187   -0.6503 

    1.0000   16.0000    9.6716   -6.3284   -0.4563 

    1.1429    5.4912    7.5085    2.0173    0.1455 

    1.2857    0.3160    4.0234    3.7074    0.2673 

    1.4286   -2.0900   -0.5119    1.5781    0.1138 

    1.5714   -3.3478   -4.3748   -1.0270   -0.0741 

    1.7143   -4.0802   -5.6036   -1.5235   -0.1099 

    1.8571   -4.5434   -4.1103    0.4331    0.0312 

    2.0000   -4.8552   -4.6910    0.1642    0.0118   

The table above gives the x and y values, our estimate of the y value using a 6th order 

polynomial, the residual and the normalized residual. A normalized residual of more 

than 2 is surprising, so if the humps function were a set of experimental results, we 

would be suspicious of the y values of 52.4369 and 56.5751, but we would probably not 

reject them. 

3.1.2 Interpolation I: Linear  

Given a discrete sample of points from some function, how can we determine the 

function value between those points. This is like curve fitting, but the curve must pass 

through every data point. 

The simplest type of interpolation is the linear interpolation used by MATLAB when 

plotting a curve; the points are joined up by straight lines. 

x = linspace(0, 2, 15); 

y = humps(x); 

plot(x, y,'r-', x, y, 'ro'); 

title('Linear Interpolation of Humps')   
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As the number of sample points increases and the distance between them decreases, 

linear interpolation becomes more accurate. However, if we only have a fixed number 

of samples, then we want to do the best job fitting the points we have. 
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3.1.3 Interpolation II: Polynomials 

For n data points, a polynomial of order n-1 will pass through each data point. 

order_14 = polyfit(x,y,14); 

x_14 = linspace(0,2,100); y_14 = polyval(order_14, x_14);   

plot(x, y, 'ro', x_14, y_14, 'b:') 

title('14th Order Interpolation of Humps')   

   

The curve fits through every data points, but it oscillates wildly- especially between the 

first pair and last pair of points. There is no evidence in the data for this oscillatory 

behaviour, and yet our attempt to plot a curve through all the points has produced it. If 

we have more data points, we require an even higher order polynomial. The oscillatory 

behaviour will be worse, and evaluating the polynomial may become very time-

consuming. Matlab even gives the following helpful error that there may be a problem 

with what we are trying to do 

Warning: Polynomial is badly conditioned. Add points with distinct X 

         values, reduce the degree of the polynomial, or try centering 

         and scaling as described in HELP POLYFIT. 

3.1.4 Interpolation III: Splines 

Fortunately, there is a rigorous way to draw a smooth curve between a set of points. The 

basis of this method is to fit sections of curve between sets of points, using the „spline‟ 

method. Many cars are designed using splines to ensure „smoothness‟ of the chassis. 

MATLAB provides the function interp1(x, y, xi, 'method') to perform various 

types of interpolation between points x and y and return the interpolated value at the 

points in xi: 

 linear fits a straight line between pairs of points. This is the default if 

no method is specified, and is the method used by MATLAB when joining 

adjacent points on a plot. 

 spline fits cubic splines between adjacent points. 
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 cubic fits cubic polynomials between sets of 4 points. The x points 

must be uniformly spaced 

In all cases, x must be monotonic (it must either increase or decrease over the range). 

None of the values in xi can lie outside the range of the x values supplied- interp1 will 

not perform extrapolation. 

spline_x = linspace(0,2,100); 

cubic_spline = interp1(x,y,spline_x,'spline'); 

plot(x, y, 'ro', spline_x, cubic_spline, 'b:') 

title('Cubic Spline Interpolation of Humps')   

   

We now have a smooth curve between the points. 

cubic_x = linspace(0,2,100); 

cubic = interp1(x,y,cubic_x,'cubic'); 

plot(x, y, 'ro', cubic_x, cubic, 'b:') 

title('Cubic Interpolation of Humps')   
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In this case, the 'cubic' method provides the smoothest curve with the least oscillations 

between points. In the next section, we reveal what the function looks like. 

3.1.5 The Humps function 

Here is a plot of the humps function. 

fplot('humps',[0 2]); 

title('A Plot of Humps')   

   

The cubic interpolation reproduced a similar plot using only a sample of ten points 

across the range. For more information about interpolation, see one of the numerical 

analysis books in the bibliography. 
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3.1.6 Interpolation III: Surface Splines 

(This section includes some 3D plots, so you might like to look briefly at the Matlab 

functions mesh and meshgrid first.) 

Interpolating over a surface is an extension of interpolating between two data points. In 

MATLAB we can use interp2(X, Y, Z, XI, ZI, 'method') to interpolate at the 

points (XI, YI) the function whose value is Z at X, Y.  

Two methods that can be used 

 linear linear interpolation. This is the default if no method is specified. 

 cubic cubic interpolation. The X and Y points must be uniformly 

spaced. 

In all cases, X and Y must be monotonic. None of the values in XI can lie outside the 

range of the X or Y values supplied- interp2 will not perform extrapolation. 

In this example, we use cubic interpolation to produce a smooth mesh from samples of 

MATLAB‟s peaks function: 

[X, Y] = meshgrid(-3:1:3); 

Z = peaks(X, Y); 

[XI, YI]= meshgrid(-3:0.5:3); 

ZI_linear = interp2(X, Y, Z, XI, YI, 'linear'); 

ZI_cubic = interp2(X, Y, Z, XI, YI, 'cubic'); 

mesh(XI, YI, ZI_cubic+25); 

hold on 

mesh(X, Y, Z); 

colormap([0,0,0]); 

hold off 

axis([-3, 3, -3, 3, -5, 25]); 

title('Interpolation of the peaks function')   
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The bottom part of the figure shows the coarse samples, and the top shows the 

interpolated grid. We have displaced the interpolated grid upwards. 

3.2 Lagrange Interpolation Polynomial 

3.2.1 Linear interpolation 

Let us first consider linear interpolation between two points. The Lagrange form of the 

equation for a straight line passing through (x1, y1) and (x2, y2) is: 
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Where does this come from? Consider the normal formula “y = m x + c” for the 

equation of a straight line shown in Figure 2. 

 

Figure 2 Straight line passing through (x1, y1) and (x2, y2) 
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Putting over the common denominator (x2 − x1) 
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Collecting common terms in y2 and y1: 
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Grouping terms in y1 and y2: 
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Changing the sign of the y1 part yields: 
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which is the same as ( 3.39). Q.E.D. We can check the equation by noting that if x = x1, 

then y=y1 and if x=x2, then y=y2 (this is not, of course, a proof!) 
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3.2.2 Quadratic interpolation 

The Lagrange form of the equation of the parabola passing through three points (x1, y1), 

(x2, y2), and (x3, y3) is: 
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Let us consider the quadratic passing through 

 (x1, y1) = (-2, 4), (x2, y2) = (0, 2), and (x3, y3) = (2, 8). ( 3.46) 

Using the formula above gives 
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Simplifying yields 
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 2)( 2  xxxp  ( 3.49) 

 

Figure 3 Quadratic x
2 

+ x + 2 passing through (-2, 4), (0, 2) and (2, 8). These control 

points are marked with circles 

We can check this in Matlab 

x=[-2,0,2]; 

y=[4,2,8]; 

p=polyfit(x,y,2) 

p = 

    1.0000    1.0000    2.0000 

These p coefficients are, respectively, the terms from x
2
, x, constant which yields the 

polynomial 2)( 2  xxxp . 

3.2.3 General form 

The general form for Lagrangian interpolation of an n
th

 order polynomial through (n+1) 

points is 

  
nn yLyLyLxp  2211)( , where ( 3.50) 
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We note that Lk(xk)=1 and Lk(x)=0 when x=xj for j ≠ k. 

Whilst there is nothing wrong with using this formula directly to compute the 

interpolating polynomial, there is a more computationally efficient way to set up the 

calculation, which we will now describe. 

3.3 Newton Interpolation Polynomial and Divided Differences 

Newton‟s form of the equation for a straight line passing through (x1, y1) and (x2, y2) is: 

 )()( 121 xxaaxp  . ( 3.51) 

For a parabola passing through three points (x1, y1), (x2, y2), and (x3, y3) it is: 

 ))(()()( 213121 xxxxaxxaaxp  . ( 3.52) 

The general Newton form of an n
th

 order polynomial through (n+1) points is: 

 )()())(()()( 11213121  nn xxxxaxxxxaxxaaxp  . ( 3.53) 

This is just a different way of writing the polynomial that fits between two points. Let 

us reconsider the previous example of interpolating between  

 (x1, y1) = (-2, 4), (x2, y2) = (0, 2), and (x3, y3) = (2, 8). ( 3.54) 

We have 

 )0))(2(())2(()( 321  xxaxaaxp . ( 3.55) 

At x = -2, y = p(x) = 4 so: 
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Thus we have 

 2)2()2(4)( 2  xxxxxxp  ( 3.59) 

As in the previous section. There is another way to calculate this, by noting how the 

working in ( 3.58) builds on values calculated in ( 3.57) 
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Reading the boxed numbers gives a1 = 4, a2 = -1 and a3 = 1, as above. 

There is a related methods called “Neville‟s Algorithm” which uses a similar divided 

difference table to efficiently compute the value of the polynomial at a given point. 

3.4 Splines 

3.4.1 Linear Splines 

As illustrated in  3.1.3 interpolating an (n-1)
th

 order polynomial to fit through n data 

points leads to oscillations in the fitting function that are generally not representative of 

the underlying function. Splines are a way of fitting a line between successive groups of 

points so that we have a function that interpolates “smoothly” between the data values. 

Let us consider first fitting a straight line between each of the pairs of points in turn. 

Recall equation ( 3.39) 

 
2

12

1
1

21

2

)(

)(

)(

)(
)( y

xx

xx
y

xx

xx
xp









  ( 3.60) 

Consider that we have four points to interpolate between: (x1, y1), (x2, y2), (x3, y3), and  

(x4, y4). This defines three intervals on the x-axis where we will fit three straight lines 

using ( 3.39)  
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If we have these points as (0,0), (1,1), (2,4) and (3,3). This yields the following 

equations for the straight lines 
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We also can use Matlab to perform the interpolation. 

x=[0 , 1, 2, 3]; 

y=[0, 1, 4, 3]; 

spline_linear_x = linspace(0,3,100); 

linear_spline = interp1(x,y,spline_linear_x,'linear'); 

plot(x, y, 'ro', spline_linear_x, linear_spline, 'b:') 

title('Linear spline interpolation of Data') 

grid on   

 

Figure 4 Piecewise Linear Interpolation between 4 points. Within each interval we just 

join the points up with a straight line and the equation of the line is given by the 

Lagrange form for linear interpolation. 

Whilst we have achieved the aim of fitting a line between the data points and avoided 

the oscillatory nature of using a polynomial to achieve this, the result is not “smooth” in 

the sense that the derivative of the function has a discontinuity at the fixed interpolation 
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points (and its second derivative is undefined). We now turn out attention to addressing 

this. 

3.4.2 Cubic Splines 

It is possible to construct a smooth curve between data points such that the resulting 

curve has continuous first and second derivatives across the whole interval. The 

continuity of the first derivative means that the result graph does not have “sharp 

corners” and continuity of the second derivative means that, effectively, a radius of 

curvature is defined at each point. 

Suppose we have n points (x1, y1), (x2, y2), …, (xn,yn) in an interval [a, b] such that a = x1 

< x2 < … < xn = b. We do not require that the spacing between these points is even, so it 

is convenient to define hi = xi+1 – xi. We are looking for a spline function 
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that is a piecewise cubic with continuous derivatives up to order 2. For i = 1, 2, …, n-1 

we can write: 

 
)()(

6

)(

6

)(
)( 1

33

1
1 iiii

i

i
i

i

i
ii xxcxxb

h

xx
a

h

xx
axP 





 


 . ( 3.64) 

This leads to n-2 equations for the n unknowns a0, …., an-1: 
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(For a proof of this, see one of the references at the end). It is easy to verify that this 

goes through each point and has continuous derivatives up to order 2 at each point. 

As we know from our work on linear equations above, we require n equations in n 

unknowns to solve this system. The undetermined part of the above equations is what 

we do at the end points of the interpolating spline. Some choices can be made as per the 

following table. 
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Choice Meaning Name (in Matlab) 

nxxxxxS  ,0)( 1  Set the second derivative to 

be zero at the end points 

“Natural” 

)()(

)()(

)()(

1

1

1

n

n

n

xSxS

xSxS

xSxS







 

Make the function and its 

first and second derivatives 

equal at the end points 

“Periodic” 









)(

)( 1

nxS

xS
 

Set fixed values for the first 

derivative of  and  

“Clamped” or 

“Complete” 









)(

)( 1

nxS

xS

 

Set fixed values for the 

second derivative of  and  

“Second” 

 

Illustrations of these endpoints using Matlab “splinetool” 

 

Figure 5 Natural End conditions 
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Figure 6 Periodic End conditions 

 

 

Figure 7 Clamped End conditions 
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Figure 8 “Second” End conditions 

Let us now consider the Natural Spline formulation in which the 2
nd

 derivatives at the 

endpoints are set to zero so the values of bi and ci (i=1,… n-1) are expressed in terms of 

the ai coefficients as follows: 

 

6
,

6

11 ii

i

i

i

ii

i

i

i

ha

h

y
c

ha

h

y
b  

. ( 3.66) 

This leads to a triadiagonal set of equations for the coefficients, which can then be used 

to give each of the piecewise cubic splines. We can also show the interpolation in 

Matlab. 

x=[-2,-1,0,1,2]; 

y=[4,-1,2,1,8]; 

spline_x = linspace(-2,2,100); 

cubic_spline = interp1(x,y,spline_x,'spline'); 

plot(x, y, 'ro', spline_x, cubic_spline, 'b:') 

title('Cubic Spline Interpolation of Data') 

grid on 



v1.0 

Advanced Computational Methods in Engineering SESG 6025 

 31 

   

With the curve fitting toolbox installed, we can also use splinetool([-2,-

1,0,1,2],[4,-1,2,1,8]) to explore this interactively and examine different endpoint 

conditions. 

 

4 Numerical Integration 

The purpose of numerical integration (or „quadrature‟) is to find the area under a graph. 

 Make any possible analytic progress . Even a complicated analytic result is likely to 

be quicker and more accurate to evaluate than using a numerical method 

 Certain integrals have been well studied (for example it may be possible to represent 

the integrand as a series and then integrate term by term). In this case it may be 

easier to control the accuracy using this alternative method. 
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The integral above can be written in terms of a Bessel function (K1), which can be 

evaluated using standard techniques. 

 For the remainder of integrals it is necessary to use numerical integration. The 

strategy will be to evaluate the function to be integrated at a number of sample 

points and find the area enclosed between these points and the axis. 

See section 1.15.9 of the Matlab hand-out for some examples of numerical integration 

using Matlab. 
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4.1 Trapezium Rule 

This is the simplest method and consists of joining up each of our sample points with a 

straight line (like linear interpolation). The area under the curve becomes the sum of the 

areas under the resulting trapezia. 

 

Figure 9 Trapezium Rule 

Let y0 … yn be the function values at each of the sample points. 
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Numerical Example. Consider the following integral 
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 ( 4.69) 

 

 yi = exp(xi) Weight yi  weight 

x0 = 0 y0 = 1.00000 0.5 0.50000 

x1 = 0.5 y1 = 1.64872 1 1.64872 

x2 = 1 y2 = 2.71828 1 2.71828 

x3 = 1.5 y3 = 4.48169 1 4.48169 

x4 = 2 y4 = 7.38906 1 7.38906 

x5 = 2.5 y5 = 12.18249 1 12.18249 

x6 = 3 y6 = 20.08554 1 20.08554 

x7 = 3.5 y7 = 33.11545 1 33.11545 

x8 = 4 y8 = 54.59815 0.5 27.29908 

    

  Sum 109.42031 

0 1 2 3 4 5

h 
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  h 0.50000 

  Result = h  sum 54.71015 

 

The final result is 54.71015 (5dp). This compares well to the exact answer of exp(4) – 

exp(0) = 53.59815. 

4.1.1 Notes on the trapezium Rule 

1) In the general case the error is of the form (constant)h
2
. Thus if the number of 

points is doubled then the error decreases by a factor of 4. 

2) The trapezium rule overestimates when the function is convex upwards and 

underestimates when it is concave downwards. When the function has an equal 

number of maxima and minima then the trapezium rule will give a better result. 

 

(a) 

 

(b) 

Figure 10 Trapezium Rule (a) overestimate when function is convex upwards (b) 

underestimate when function is convex downwards 

3) It can be shown that : 
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This „endpoint‟ correction, which is calculated using the derivatives of the function 

evaluated at the endpoints can be used to provide a more accurate estimate of the 

integral when these derivatives are available. In the above case we have 

 )exp()()exp()( xxfxxf   ( 4.71) 

So the endpoint correction is 

 
   54.59815)00000.1(

12

5.0
)()(

12

22

bfaf
h

 -1.11663 ( 4.72) 

Applying this correction gives a result of 54.71015 - 1.11663 = 53.59352 for the 

integral (which is even closer to the exact answer of 53.59815). 

There are circumstances when the endpoint correction vanishes (a) when )()( bfaf   

= 0 or (b) simply )()( bfaf   - such as for a periodic function. However, if )(af   or 

)(bf   is large then the result from the trapezium rule will be poor. 

4.2 Simpson’s Rule 

In the trapezium rule we perform linear interpolation between each of the sample points. 

By fitting a curve through sets of points (as in the spline interpolation) we can increase 

the accuracy of the method. Simpson‟s rule fits a parabola through sets of three 

consecutive sample points. 

 
 )(2)(4)(

3
d)( 24215310   nnn

b

a

yyyyyyyyy
h

xxf   ( 4.73) 

This can also be remembered as “
3

h
(first + last + 4 sum of odds + 2 sum of evens)”. 

For Simpson‟s rule doubling the number of sample points decreases the error by a factor 

of 16. 

We now repeat the integral computed previously using the trapezium rule. In this case 

the weighting of the points in the calculation changes. 
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 ( 4.74) 

 

 yi = exp(xi) Weight yi  weight 

x0 = 0 y0 = 1.00000 1 1.00000 

x1 = 0.5 y1 = 1.64872 4 6.59489 

x2 = 1 y2 = 2.71828 2 5.43656 

x3 = 1.5 y3 = 4.48169 4 17.92676 

x4 = 2 y4 = 7.38906 2 14.77811 

x5 = 2.5 y5 = 12.18249 4 48.72998 

x6 = 3 y6 = 20.08554 2 40.17107 

x7 = 3.5 y7 = 33.11545 4 132.46181 
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x8 = 4 y8 = 54.59815 1 54.59815 

    

  Sum 321.69732 

  h 0.16667 

  Result = h  sum 53.61622 

 

The final answer is thus 53.61622, which is more accurate than the result given by the 

trapezium rule using the same sample points. 

The end correction for Simpson‟s Rule is: 
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Substituting in the values 

  = (0.5
4
) / 180   (1 – 54.5982) = -0.0186105, ( 4.76) 

which gives a final result for the integral of  53.59761. This agrees to 4 figures of 

accuracy with the exact answer (=53.59815)! 

4.3 Recursive Quadrature 

How many points should be used in the integration? Clearly it is hard to know this in 

advance! However, it is possible to add points to the integration without wasting the 

effort of the previous function evaluations. 

The explicit formulae for the integral using 1, 2, 4, and 8 strips are 
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 ( 4.77) 

By judiciously regrouping the terms it is possible to determine the value of the integral 

I(2n) using only function evaluations not already computed in finding I(n): 
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 ( 4.78) 

This leads to  
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 ( 4.79) 

Over a more general interval [a, b] this yields the formula: 
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where h = (b – a) / (2n). 

 

Figure 11 Recursive Trapezium Rule. At each level we add the points marked, doubling 

the number of strips used in the integration at each step and re-using the work 

performed previously. 

4.4 Adaptive Quadrature 

Adaptive quadrature methods take into account the behaviour of the integrand by 

subdividing the interval of integration into sections so that numerical integration on the 

sub-intervals will provide results of sufficient precision. If, for example, the function 

you wish to integrate is smooth in one region of the interval of interest, but oscillatory 

in another, then it is necessary to use more strips in the oscillatory part. This is known 

as „adaptive quadrature.‟ 

4.5 Monte Carlo Methods 

It is possible to estimate an integral using the following formula: 
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, ( 4.81) 

where the xi are chosen randomly between a and b, N is the number of sample points, 

and: 

)( ixf  = mean(f) and   )(
2

ii xfxf   = std(f). 

To scale random numbers in the range 0 to 1 to be in the range a to b, you can use (b - 

a)*rand(N,1) + a in Matlab, where b > a and N is the number of points to generate. 
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Why might you ever want to use this method? For multi-dimensional integrals in d 

dimensions, the error for the trapezium rule falls off as N
(-2/d)

, where N is the number of 

points used/ function evaluations made. However, the N
(-1/2)

 dependence of the error for 

the Monte Carlo integration is independent of the number of dimensions; hence for 

large d, the Monte Carlo method is actually more accurate than the trapezium rule for a 

given number of function evaluations. For Simpson‟s rule the error goes as N
(-4/d)

 in d 

dimensions. By using quasi-random sequences (such as Sobol sequences) it is possible 

to arrange for the error to drop off as N
(-1) 

 independent of d. 
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5 Non-Linear Equations 

5.1 Introduction 

Consider comparing two algorithms which have time complexities O(N
2
) and O(N log 

N) respectively. Although for large enough N it will be better to use the O(N log N) 

method, the O(N
2
) method may be faster for small N. Which is the fastest algorithm for 

a given N?  

 

Figure 12 Comparison between two algorithms with different time complexities.  

The graph in Figure 12 shows that in this particular case it is better to use the O(N
2
) 

method for N less than about 540. The approach in the figure is to use a graphical 

solution method. Can we do any better? Unfortunately, there is no closed form solution 

to f(N log N) = g(N
2
) which does not involve a numerical calculation: in this section we 

will consider various numerical approaches to allow us to solve equations of the form F 

= 0, where  F is some function. We can re-arrange the above problem into this form by 

writing F = f(N log N) - g(N
2
) = 0. 

5.2 Bracketing a root 

Suppose that a function f(x) is continuous and we have found two values a and b such 

that f(a).f(b) <0. Then by the intermediate value theorem (from calculus), we know that 

there is at least one root in the interval [a, b]. The condition simply means that the 

function changes sign on the interval. 

 

Figure 13 Sign change indicates at least one root in the region 

5.3 Incremental Search 

This is the most primitive way to identify a root. 
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(i) Identify a region containing a root by proceeding from left to right over the 

search region checking the sign of the function. This has performed the 

bracketing in the previous section. 

(ii) Divide the interval into smaller regions and repeat until the value of the root is 

found to sufficient accuracy. 

 

Figure 14 Incremental Search 

This is very inefficient! However in the next sections we will see that the „respectable‟ 

methods for finding zeros are just variations on this theme. The only difference is that as 

the sophistication of the method increases, we use more information about the function 

to select the next guess at the root and we try to increase the speed at which we 

converge to the root. 

5.4 Bisection 

In this case we proceed thus: 

(i) Bracket the root between xlower and xupper. 

(ii) Construct a new point midway between these two: 
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xx
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
  ( 5.82) 

(iii) Replace whichever of xlower and xupper is such that f(xlower) or f(xupper) has the same 

sign as f(xnew). 

(iv) Repeat until bored. 

This method is bound to succeed. If the interval contains more than one root, then 

bisection will find one of them. It will also converge on a singularity- so beware! How 

fast does it converge on the root? If after n iterations the interval has width n then 
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. ( 5.83) 

So to converge to a tolerance of  we require 
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2logn  ( 5.84) 
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steps, where 0 is the width of the initial interval. When a method converges as a factor 

less than 1 times the previous uncertainty to the first power then the method is said to 

converge linearly: this is the case for the bisection method. This means that extra 

significant digits are won linearly with computational effort. Superlinear convergence 

occurs when we can write 

 m

nn )()constant(1  
, ( 5.85) 

with m>1. 

5.5 Secant Method and Method of False Position 

The secant method and the method of false position („regula falsi‟) take account of the 

function value to determine where to choose the next guess at the root. In both methods, 

we assume that the function is approximately linear in the region of interest and the next 

improvement is taken as the point where the approximating line crosses the axis. After 

each iteration one of the previous boundary points is discarded in favour of the latest 

estimate of the root. 

5.5.1 Method of false position 

In this case we require that the root always remains bracketed, so that we retain the prior 

estimate for which the function value has opposite sign from the function value at the 

current best estimate of the root. 

Mathematically, if a and b were the previous brackets then we interpolate between (a, 

f(a)) and (b, f(b)) and construct a new point, xnew, where this line crosses the x-axis: 

 

)()(

)()(

afbf

afbbfa
xnew




 . ( 5.86) 

We then replace a or b with xnew such that f(xnew)f(a or b) < 0. 

 

Figure 15 Method of False Position 

The construction of the new point follows as follows. The equation of the line joining 

(a, f(a)) and (b, f(b)) is 

  
 ab

ax
afbfafy




 )]()([)( . ( 5.87) 

This line crosses the x-axis at y = 0: 
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 ( 5.88) 

The method of false position converges linearly in general, but sometimes converges 

superlinearly. Exact determination of its order is hard. 

5.5.2 Secant method 

The price for demanding that we always bracket the root is slower convergence. In the 

secant method we just interpolate between the latest two points found. However, since 

the root may not remain bracketed this method may not be stable and local behaviour of 

the function may send it towards infinity. 

Given two guesses for the root, xn and xn-1, then a better guess at the root is: 

 

)()(

)()(

1

11

1











nn

nnnn

n
xfxf

xfxxfx
x  ( 5.89) 

 

Figure 16 Secant Method 

The secant method converges superlinear (for sufficiently smooth functions). 

 618.1

1 constantlim nn
n

 


 ( 5.90) 

The number appearing in this fraction is the „golden ratio‟, which was known to the 

ancient Pythagoreans. 

5.5.3 Problems 

The following function proves particularly troublesome to the false position (and 

secant) methods. 
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Figure 17 The method of false position (and the secant method) take many iterations to 

converge to the true root. The numbering shows the iterations of the method of false 

position. 

5.6 Newton-Raphson Method 

By using the derivative of the function, it is possible to obtain quadratic convergence to 

the zero, once we are sufficiently close to it. The Newton-Raphson formula consists 

geometrically of extending the tangent line at a current point xi until it equals zero, and 

then setting the next guess, xi+1 to the abscissa of that zero-crossing. 

The iteration scheme is 

 

)(

)(
1

n

n

nn
xf

xf
xx


 . ( 5.91) 

It is easy to remember that the function appears on the top line, since at the root f(xn) = 

0, so the correction to the approximation to the root disappears. This is also a warning 

that if f’(xn), the value of the first derivative, is close (or equal) to zero then there will be 

numerical problems- in fact the convergence of Newton‟s method is only linear near to 

multiple roots. 

We stop the iterations when 

 (i) )( nxf , or 

(ii)  nn xx 1  
( 5.92) 

We may also specify a maximum number of iterations allowed and return a „method not 

converged error‟ if this number is exceeded. It is possible to derive the following 

formula for the evolution of the error as the iterations progress: 

 

)(2

)(2

1
xf

xf
nn




   ( 5.93) 

Near to a root the number of significant figures approximately doubles with each step. 
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Figure 18 Newton-Raphson Iterations 

5.7 Hybrid Methods 

Is there a way to combine the superlinear convergence of e.g. the secant method with 

the sureness of bisection? Yes. We keep track of whether the superlinear method is 

converging the way it is supposed to and, if it is not, then we can interperse some 

bisection steps to guarantee at least linear convergence. Such a method is the Van 

Wijngaarden-Dekker-Brent method, developed in the 1960s. See Press et al Chapter 9 

for more details. There are also ways to combine the superlinear convergence of 

Newton‟s method (if the derivative can be evaluated) with the bisection method. 

5.8 Multidimensional Methods 

Newton‟s method for systems of non-linear equations follows from the method for a 

single equation. Consider the following pair of equations: 
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212

211

xxf

xxf
 ( 5.94) 

Suppose that (x1, x2) is an approximate solution. We will now compute corrections h1 

and h2 such that (x1 + h1,  x2 + h2) is a better solution. We can expand the above 

equations using Taylor‟s theorem to give: 
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 ( 5.95) 

The partial derivatives in ( 5.95) are evaluated at (x1, x2). Equation ( 5.95) represents a 

pair of linear equations for determining h1 and h2: 
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, ( 5.96) 

where the matrix is known as the Jacobian, J: 

 FhJ   ( 5.97) 

The values of h1 and h2 are found by solving ( 5.97) as a system of equations. Hence 

Newton‟s method for two non-linear equations in 2 variables is: 
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The algorithm for performing Newton‟s method for systems is as follows 

1) Set n = 0. Pick an initial guess ),( )0(

2

)0(

1 xx . Set  = 110
-6

. 

2) Calculate F and J at the point ),( )(

2

)(

1

nn xx . 

3) Solve the system of equations J.h = -F to find the value of h1 and h2. 

4) Set 
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5) If 
2

h  then stop, otherwise set n = n + 1 and repeat from (2) 

It is usual to specify some maximum number of iterations after which the method 

outputs a „not converged‟ error to avoid an infinite loop in the algorithm. 

Example. This example follows the steps in the algorithm above: 
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1) Initial Guess: ),( )0(

2

)0(

1 xx =(2, 3) 

2) F = 
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3) Solve the system of equations J.h = -F:  
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 (note that the right hand side is –F) 
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4) Set 

























)0(

2

)0(

1

)0(

2

)0(

1

)1(

2

)1(

1

h

h

x

x

x

x
 









































6919.2

6338.1

3080.0

3661.0

3

2
)1(

2

)1(

1

x

x
 

So an improved guess is (1.386, 2.197) (4 significant figures of accuracy). 

5) We could then repeat again. 

Here are the results for the next iteration of the loop for you to check: 
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x = [2;3] 

F = [x(1)^3 + 2* x(2)^2 - 9; x(1)^2 - 3*x(2)^2 + 11] 

J = [3*x(1)^2, 4*x(2); 2*x(1), -6*x(2)] 

h = J\(-F) 

for i=1:10 

x =x+h 

F = [x(1)^3 + 2* x(2)^2 - 9; x(1)^2 - 3*x(2)^2 + 11] 

J = [3*x(1)^2, 4*x(2); 2*x(1), -6*x(2)] 

h = J\(-F) 

end 

Figure 19 A simple Matlab code for 10 iterations of multidimensional Newton‟s method 

example 

The solution to the system is (1, 2). Starting sufficiently close to the solution yields  

rapid convergence to the solution follows from starting sufficiently close to the solution 

yields  
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Past Exam paper Questions 

These are the past questions from some past papers in the Uni repository which are 

relevant/ representative of the type of exam questions for this year. 

 

2001: cm204 A1, B2, B3 

2000: cm204 2, 3, 4, 5(a), 5(b) 

1999: cm204 A1, B1(a i), 

1999: cm310 2,3,4(a),5 

1998: cm310 1,2,5 

 


