A New Class of Multivariate Skew Distributions.

Sujit Sahu a

University of Southampton

http://www.maths.soton.ac.uk/staff/sahu/

Sheffield: March 2001.

Multivariate Skew Distributions

Outline:

- Motivation
- Elliptical distributions
- Skewing the elliptical distributions
- ullet Examples: Skew normal and t
- Regression models and posteriors
- MCMC: Howto
- Numerical examples
- Discussion

^a Joint work with Dipak Dey and M.D. Branco

Why consider skew distributions?

These provide alternatives to

- transforming the data
- symmetric error distributions
- non-parametric approaches

The distributions are

- quite flexible and general
- for modelling heavy tail and skewness
- tractable and parametric
- tools for robustness studies.

Corresponding symmetric error distributions are special cases.

Multivariate Skew Distributions

Outline:

- Motivation
- Elliptical distributions
- Skewing the elliptical distributions
- ullet Examples: Skew normal and t
- Regression models and posteriors
- MCMC: Howto
- Numerical examples
- Discussion

Consider two densities:

Multivariate Normal:

$$C |\Omega|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\theta})^T \Omega^{-1}(\mathbf{x} - \boldsymbol{\theta})\right]$$

Multivariate t:

$$\mathbf{C} \, |\Omega|^{-\frac{1}{2}} \left[1 + \frac{[\mathbf{x} - \boldsymbol{\theta}]^T \Omega^{-1} [\mathbf{x} - \boldsymbol{\theta}]}{\nu} \right]^{-\frac{\nu + \kappa}{2}}$$

Notes:

- the const C does not involve the location and scale parameters.
- the kernels are scalar functions of $[\mathbf{x} \boldsymbol{\theta}]^T \Omega^{-1} [\mathbf{x} \boldsymbol{\theta}].$

There are other distributions

- Laplace
- Pearson Type II
- Pearson Type VII

which belong to the same broad class called

Elliptically Symmetric Distributions.

See Kelker (1970) and/or a text book

Fang, Kotz and Ng (1990) Symmetric Multivariate and Related Distributions.

Notations and identities:

• g(u;k,...)=a non-increasing function, \mathbb{R}^+ to \mathbb{R}^+ .

$$\diamondsuit u = [\mathbf{x} - \boldsymbol{\theta}]^T \Omega^{-1} [\mathbf{x} - \boldsymbol{\theta}].$$

 $\diamondsuit \ k = {\sf dimension}$

 \diamondsuit ...=Additional parameters, like ν =df in the t distribution.

•
$$g^{(k)}(u) = \frac{\Gamma(\frac{k}{2})}{\pi^{\frac{k}{2}}} \frac{g(u;k,...)}{\int_0^\infty r^{\frac{k}{2}-1}g(r;k,...)dr}$$

 \diamondsuit Called the density generator

•
$$f\left(\mathbf{x}|\boldsymbol{\theta}, \Omega; g^{(k)}\right) = |\Omega|^{-\frac{1}{2}} g^{(k)} \left[(\mathbf{x} - \boldsymbol{\theta})^T \Omega^{-1} (\mathbf{x} - \boldsymbol{\theta}) \right], \mathbf{x} \in \mathbb{R}^k$$

is the multivariate density

For multivariate normal:

take
$$g(u;k) = \exp(-\frac{u}{2})$$
,

$$ullet$$
 then $g^{(k)}(u) = rac{\exp(-rac{u}{2})}{(2\pi)^{rac{k}{2}}}.$

For multivariate t:

take

$$g(u; k, \nu) = \left[1 + \frac{u}{\nu}\right]^{-\frac{\nu+k}{2}}, \nu > 0.,$$

then

$$g^{(k)}(u) = \frac{\Gamma(\frac{\nu+k}{2})}{\Gamma(\frac{\nu}{2})(\nu\pi)^{\frac{k}{2}}} g(u; k, \nu).$$

Will use:

• pdf =
$$f(\mathbf{x}|\boldsymbol{\theta}, \Omega; g^{(k)})$$

odf =
$$F\left(\mathbf{x}|\boldsymbol{\theta},\Omega;g^{(k)}\right)$$

Partition $\mathbf{X}, oldsymbol{ heta}, \Omega$ into

$$\mathbf{X}_{k} = \begin{pmatrix} \mathbf{X}_{k_{1}}^{(1)} \\ \mathbf{X}_{k_{2}}^{(2)} \end{pmatrix}, \boldsymbol{\theta} = \begin{pmatrix} \boldsymbol{\theta}^{(1)} \\ \mathbf{X}^{(2)} \end{pmatrix},$$

$$\Omega = \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix}$$

$$m{ heta}_{1.2} = m{ heta}^{(1)} + \Omega_{12}\Omega_{22}^{-1} \left(\mathbf{x}^{(2)} - m{ heta}^{(2)}
ight)$$
 $m{ heta}_{11.2} = \Omega_{11} - \Omega_{12}\Omega_{22}^{-1}\Omega_{21}$

Also define:

$$q(\mathbf{x}^{(2)}) = \left(\mathbf{x}^{(2)} - \boldsymbol{\theta}^{(2)}\right)^T \Omega_{22}^{-1} \left(\mathbf{x}^{(2)} - \boldsymbol{\theta}^{(2)}\right)$$

For conditional densities we need to define for a > 0 the density generator:

$$g_a^{(k_1)}(u) = \frac{\Gamma(\frac{k_1}{2})}{\pi^{\frac{k_1}{2}}} \frac{g(a+u;k)}{\int_0^\infty r^{\frac{k_1}{2}-1} g(a+r;k) dr}$$

It is slightly different than what we had

$$g^{(k)}(u) = rac{\Gamma(rac{k}{2})}{\pi^{rac{k}{2}}} rac{g(u;k)}{\int_0^\infty r^{rac{k}{2}-1} g(r;k) dr}.$$

The result is: if $\mathbf{X} \sim f(\mathbf{x}|\boldsymbol{\theta}, \Omega; g^{(k)})$,

ther

$$\mathbf{X}^{(1)}|\mathbf{x}^{(2)} \sim f\left(\mathbf{x}_1|\boldsymbol{\theta}_{1.2}, \Omega_{11.2}; g_{q(\mathbf{x}^{(2)})}^{(k_1)}\right).$$

Examples of conditionals

Normal:

$$g_a^{(k_1)}(u) = g^{(k_1)}(u)$$

since $g(u,k)=\exp(-\frac{u}{2})$, i.e. a cancels in the ratio

in the ratio.

t:

After some manipulation the conditional density of $\mathbf{X}^{(1)}|\mathbf{X}^{(2)}=\mathbf{x}^{(2)}$ will be:

$$t_{k_1, \nu + k_2} \left(oldsymbol{ heta}_{1.2}, rac{
u + q(\mathbf{x}^{(2)})}{
u + k_2} \, \Omega_{11.2}
ight).$$

- dimension = k_1 ,
- ullet df $=
 u + k_2$.

Multivariate Skew Distributions

Outline:

- Motivation
- Elliptical distributions
- Skewing the elliptical distributions
- Examples: Skew normal and t
- Regression models and posteriors
- MCMC: Howto
- Numerical examples
- Discussion

Suppose

$$oldsymbol{ heta} = \left(egin{array}{c} oldsymbol{\mu} \\ oldsymbol{0} \end{array}
ight), \;\; \Omega = \left(egin{array}{cc} \Sigma & 0 \\ 0 & I \end{array}
ight)$$

and

$$\mathbf{X} = \left(egin{array}{c} oldsymbol{\epsilon} \ \mathbf{Z} \end{array}
ight) \sim f\left(\mathbf{x} | oldsymbol{ heta}, \Omega; g^{(2m)}
ight),$$

Consider

$$\mathbf{Y} = D\mathbf{Z} + \boldsymbol{\epsilon},\tag{1}$$

where $D = \operatorname{diag}(\delta_1, \dots, \delta_m)$.

The multivariate class is developed by considering the random variable

$$[\mathbf{Y}|\mathbf{Z}>0]$$

Theorem 1 Let $\mathbf{y}_* = \mathbf{y} - \boldsymbol{\mu}$. Then the pdf of $\mathbf{Y}|\mathbf{Z}>0$ is given by

$$f\left(\mathbf{y}|oldsymbol{\mu},\Sigma,D;g^{(m)}
ight)=$$

$$2^{m} f_{\mathbf{Y}} \left(\mathbf{y} | \boldsymbol{\mu}, \Sigma + D^{2}; g^{(m)}\right)$$
 $F\left(\left[I - D(\Sigma + D^{2})^{-1}D\right]^{-\frac{1}{2}}$
 $D(\Sigma + D^{2})^{-1}\mathbf{y}_{*} | \mathbf{0}, I; g_{q(\mathbf{y}_{*})}^{(m)}\right),$

where

$$q(\mathbf{y}_*) = \mathbf{y}_*^T (\Sigma + D^2)^{-1} \mathbf{y}_*.$$

Looks complicated because the formula is quite general!

Multivariate Skew Distributions

Outline:

- Motivation
- Elliptical distributions
- Skewing the elliptical distributions
- Examples: Skew normal and t
- Regression models and posteriors
- MCMC: Howto
- Numerical examples
- Discussion

A new multivariate skew normal distribution:

$$f(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, D) = 2^{m} |\boldsymbol{\Sigma} + D^{2}|^{-\frac{1}{2}}$$

$$\phi_{m} \left[(\boldsymbol{\Sigma} + D^{2})^{-\frac{1}{2}} (\mathbf{y} - \boldsymbol{\mu}) \right]$$

$$\Phi_{m} \left[(I - D(\boldsymbol{\Sigma} + D^{2})^{-1}D)^{-\frac{1}{2}}$$

$$D(\boldsymbol{\Sigma} + D^{2})^{-1} (\mathbf{y} - \boldsymbol{\mu}) \right],$$

where

- ϕ_m = the pdf
- Φ_m = the cdf

of the m dimensional standard normal distribution.

Special cases:

• D=0 gives the standard MVN.

ullet $\Sigma=\sigma^2I$ and $D=\delta I$ gives iid marginals, with pdf

$$\frac{2}{\sqrt{\sigma^2 + \delta^2}} \phi \left(\frac{y_i - \mu_i}{\sqrt{\sigma^2 + \delta^2}} \right) \Phi \left(\frac{\delta}{\sigma} \frac{y_i - \mu_i}{\sqrt{\sigma^2 + \delta^2}} \right)$$

- Which is the univariate version of Azzalini's skew normal distribution.
- Our multivariate version is different
- we condition on the same number of random variables
- he conditions on exactly one random variable.
- That is why we get iid skew marginals.

Moments and Skewness:

mgf is given by:

$$M_{\mathbf{Y}}(\mathbf{t}) = 2^m e^{\mathbf{t}^T \boldsymbol{\mu} + \mathbf{t}^T (\Sigma + D^2)\mathbf{t}/2} \Phi_m(D\mathbf{t}).$$

The mean and variance of skew normal $(oldsymbol{\mu}, \Sigma, D)$ are given by,

$$E(\mathbf{Y}) = \boldsymbol{\mu} + \left(\frac{2}{\pi}\right)^{1/2} \boldsymbol{\delta},$$

$$\mathrm{Cov}(\mathbf{Y}) = \Sigma + \left(1 - \frac{2}{\pi}\right) D^2.$$

Comparing with Azzalini's:

Our version has pdf:

$$f(\mathbf{y}) = 2^2 \phi(y_1)\phi(y_2)\Phi(\delta y_1)\Phi(\delta y_2),$$

Azzalini and Dalla Valle (1996) version,

$$f(\mathbf{y}) = 2 \phi(y_1) \phi(y_2) \Phi \left[\delta(y_1 + y_2) \right].$$

Ours is much easier to analyse and think!

Use the skewness measure $eta_{1,2}$

introduced by Mardia (1970).

Ours:

$$\beta_{1,2} = 4(4-\pi)^2 \left\{ \frac{\delta^2}{\delta^2(\pi-2) + \pi} \right\}^3$$

Theirs:

$$\beta'_{1,2} = 16(4-\pi)^2 \left\{ \frac{\delta^2}{2\delta^2(\pi-2) + \pi} \right\}^3$$

Skew normal densities:

Figure 1: Contour plots of bivariate skew normal distributions. Left panel for our pdf and right panel for their pdf.

With appropriate choices of the g: generator function

$$f(\mathbf{y}|\boldsymbol{\mu}, \Sigma, D, \nu) =$$

$$2^{m} t_{m,\nu}(\mathbf{y}|\boldsymbol{\mu}, \Sigma + D^{2})$$

$$T_{m,\nu+m} \left[\left(\frac{\nu + q(\mathbf{y}_{*})}{\nu + m} \right)^{-\frac{1}{2}} \right]$$

$$\left(I - D(\Sigma + D^{2})^{-1} D \right)^{-\frac{1}{2}}$$

$$D(\Sigma + D^{2})^{-1} \mathbf{y}_{*}.$$

- Its a new distribution.
- ullet As expected $\Sigma=I$ and $D=\delta I$ does not produce iid marginals.

Moments and Skewness:

Can obtain the mgf as an integral of mgfs of scale mixture of skew normals.

because

Thorem: The proposed *t* distribution is a scale mixture of skew normals.

$$E(\mathbf{Y}) = \boldsymbol{\mu} + \left(\frac{\nu}{\pi}\right)^{1/2} \frac{\Gamma[(\nu-1)/2]}{\Gamma(\nu/2)} \boldsymbol{\delta},$$

$$\mathrm{Cov}(\mathbf{Y}) = (\Sigma + D^2) \frac{\nu}{\nu - 2} - (\cdots) (\cdots)^T.$$

Measure of skewness Mardia (1970) does not have a closed form.

Consider the univariate version and compare with other skew t distributions.

Figure 2: Plots of the density functions of skew *t* distributions.

Other skewness ideas

First two from Chris Jones:

1.
$$f(t|a,b) = C(a,b)^{-1}$$

$$\left(1 + \frac{t}{(a+b+t^2)^{1/2}}\right)^{a+1/2}$$

$$\left(1 - \frac{t}{(a+b+t^2)^{1/2}}\right)^{b+1/2}$$

where

$$C(a,b) = B(a,b)(a+b)^{1/2}2^{a+b-1}$$

- When $a=b,\,f$ is the standard symmetric t density with 2a df.
- ullet a < b, f is negatively skewed.
- a>b, f is positively skewed.

2. We all know:

$$f(x,y) = f(y|x)f_X(x)$$

But define:

$$f_1(x,y) = \frac{g(x)f(x,y)}{f_X(x)}$$

Then the X marginal of f_1 will be g(x) which we can choose to be skew modulo support considerations.

- Preserves the conditional
- ullet Y marginal will be different.
- Can have one skew marginal and another symmetric marginal.

Let f and F be the pdf and cdf of any symmetric distribution on the real line.

3. Azzalini's:

$$g(x|\lambda) = 2f(x)F(\lambda x).$$

- ullet Can replace F by H where H is a cdf.
- λ controls skewness.
- Can extend to multivariate.
- 4. For example: Fernandez and Steel

For
$$\tau > 0$$
 define $g(x|\tau) =$

$$\frac{2\tau}{1+\tau} \bigg\{ f(x)I(x \ge 0) + f(\tau x)I(x < 0) \bigg\}.$$

- \bullet au=1 corresponds to symmetric.
- au > 1 positively skew.

Multivariate Skew Distributions

Outline:

- Motivation
- Elliptical distributions
- Skewing the elliptical distributions
- ullet Examples: Skew normal and t
- Regression models and posteriors
- MCMC: Howto
- Numerical examples
- Discussion

Univariate response:

- General: $\mu = X\beta$.
- Example:

$$y_i = \alpha + \sum_{j=1}^p \beta_j x_{ij} + \delta z_i + \epsilon_i.$$

- Assume normal prior for δ .
- ϵ_i is the skew elliptical distribution with scale σ^2 .

Multivariate response:

$$\bullet \ \mu_i = X_i \beta,$$

$$ullet \ \Sigma^{-1} = Q \sim W_m(2r,2\kappa)$$
 : Wishart

Assume suitable priors for other parameters.

We have two results for the posterior distribution in the univariate case:

Theorem 2 Suppose that π_{δ} and π_{ν} are proper distributions. Then the posterior is proper under the skew normal or skew t model if n>p.

Theorem 3 Suppose that π_δ and π_ν are proper distributions. Then $E[(\sigma^2)^k|\mathbf{y}]$ exists under the skew normal or skew t model if n-p>2k.

Multivariate Skew Distributions

Outline:

- Motivation
- Elliptical distributions
- Skewing the elliptical distributions
- ullet Examples: Skew normal and t
- Regression models and posteriors
- MCMC: Howto
- Numerical examples
- Discussion

Use a hierarchical setup:

$$\mathbf{Y}|\mathbf{Z}=\mathbf{z}\sim El\left(oldsymbol{\mu}+D\mathbf{z},\Sigma;g_{q(z)}^{(m)}
ight)$$

Examples:

- Normal: mean= $m{\mu} + D\mathbf{z}$ and covariance matrix Σ
- t case: $\mathbf{Y}|\mathbf{Z} = \mathbf{z} \sim$ $t_{m,\nu+m} \left(\boldsymbol{\mu} + D\mathbf{z}, \frac{\nu + \mathbf{z}^T \mathbf{z}}{\nu + m} \Sigma \right).$

Then specification for Z:

- Normal: mean=0 and covariance matrix
- t case: $\mathbf{Z} \sim t_{m,\nu}\left(0,I\right)$.

Can obtain BUGS code for univariate

response from my homepage.

For multivariate skew t errors:

$$egin{array}{lll} \mathbf{Y}_i | \cdots & \sim & N_m \left(X_i^T oldsymbol{eta} + D \mathbf{z}_i, rac{\Sigma}{w_i}
ight) \ \mathbf{Z}_i & \sim & N_m (\mathbf{0}, I) I(\mathbf{z} > \mathbf{0}) \end{array}$$

$$eta \qquad \sim \quad N_p(eta_0, \Lambda)$$
 $Q = \Sigma^{-1} \quad \sim \quad W_m(2r, 2\kappa)$

$$oldsymbol{\delta} \sim N_m(\mathbf{0}, \Gamma)$$
 $w_i \sim \Gamma(\nu/2, \nu/2)$
 $\nu \sim \Gamma(1, 0.1) I(\nu > 3),$

 Z_i and $oldsymbol{\delta}$ needs bit of work.

$$\mathbf{Z}_i | \cdots \sim N_m(A_i^{-1}\mathbf{a}_i, A_i^{-1})I(\mathbf{z}_i > \mathbf{0})$$

 $\boldsymbol{\delta} | \cdots \sim N_m(B^{-1}\mathbf{b}, B^{-1})$

where

$$A_i = I + w_i DQD$$
, $\mathbf{a}_i = w_i DQ(\mathbf{y}_i - X_i^T \boldsymbol{\beta})$.

Multivariate Skew Distributions

Outline:

- Motivation
- Elliptical distributions
- Skewing the elliptical distributions
- Examples: Skew normal and t
- Regression models and posteriors
- MCMC: Howto
- Numerical examples
- Discussion

Interview data:

For 335 applicants:

- interview scores
- gender
- locality

Objective is to see if local female candidates score better.

Regression model has four parameters:

- intercept = α
- β_1 for gender (male=1).
- β_2 for locality (local=1).
- ullet eta_3 for interaction.

Summary plots: Histogram

Figure 3: Histogram of interview scores.

Summary plots: Boxplot

Figure 4: Box plot of interview scores.

o-t 35.9		0.6	t 37.4	1.0	S-N 31.7	0.7	N 35.9	α
0.9	: 3.1	0.9	-3.6	1.0	-2.4	0.9	-3.9	eta_1
0.6	0.1	0.7	0.04	0.9	1.9	0.8	0.3	eta_2
<u>-</u>	1.7	<u>-</u>	2.0	1.2	1.0	1.2	2.4	eta_3
0.2	0.9			0.8	<u>ω</u>			δ
0.3	ယ ယ	0.6	3.6					ν
1.9	16.7	2.1	16.1	2.9	33.7	2.7	35.1	σ^2

Table 1: Parameter estimates for the interview data example. The standard deviations (not standard errors) are given in the second row.

Normal	Skew-N	t	Skew- t		
I	I	I	<u> </u>	Skew-t	
I	I	_	5.2	t	
I	_	1.80	7.1	Skew-N	
7	5.2	7.0	12.3	Normal	

Table 2: The log of the Bayes factors using the Laplace-bridge method. Each entry in the table is the log of the Bayes factor in favor of the model in the row compared to the model in the column.

A small data example:

Have x=% of body fatness, y= skin

thickness and density for 24 women.

Experiment with:

informative: prior variance 1,

non-informative: prior variance 100,

for the regression co-efficient.

	Skew- t		t		Skew-N		Normal	
(2.9)	27.84	(0.66)	28.35	(1.05)	27.91	(0.66)	28.41	α
(0.13)	0.87	(0.13)	0.87	(0.14)	0.86	(0.14)	0.86	β
(1.7)	1.0			(1.81)	<u>-</u>			δ
(10.5)	14.9	(8.8)	14.3					ν
(6.4)	15.1	(6.1)	16.6	(6.6)	17.7	(6.2)	19.1	σ^2

Table 3: Parameter estimates. Prior variances of α and β are 1 each.

	Skew- t		t		Skew-N		Normal	
(2.9)	26.89	(0.87)	28.58	(3.02)	26.64	(0.86)	28.68	α
(0.14)	0.86	(0.13)	0.87	(0.14)	0.85	(0.14)	0.86	β
(3.7)	2.21			(3.9)	2.70			δ
(10.9)	15.0	(10.6)	14.6					ν
(7.2)	11.0	(6.4)	16.9	(8.2)	12.3	(6.3)	19.4	σ^2

Table 4: Parameter estimates. Prior variances of α and β are 100 each.

Figure 5: Posterior density of, δ , the skewness parameter. Solid line is for the skewed normal distribution and dotted line is for the skewed t-distribution. Prior variances of α and β are 1 each.

Figure 6: Posterior density of, δ , the skewness parameter. Solid line is for the skewed normal distribution and dotted line is for the skewed t-distribution. Prior variances of α and β are 100 each.

Figure 7: Scatter plot of the bivariate data used in model fitting.

43

Multivariate illustration: interview data

- Non-academic score
- interview score

No co-variates considered. Trying to estimate the means.

-1631.8	-1722.5	-1671.7	-1776.0
Skew- t	t	Skew Normal	Normal

Table 5: Marginal likelihood for the bivariate example.

Skew t model seems to be the best.

Example: Strength of glass fibre. Data from Smith and Naylor (1987).

Figure 8: Histogram of the data and densities of the fitted skew t distributions for the glass fibre data.

Did not talk!

- Distribution theory, e.g.
- marginal and conditional distributions
- transformations and inter-relationships,
- What happens to the Bayes estimators?
- predictive distributions?
- And so on...

Nevertheless

- Transform the distribution rather than the data!
- Allows robust inference.
- All do-able because of MCMC.
- BUGS can do our univariate models.

