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Multiv ariate Skew Distrib utions

Outline;

e Elliptical distributions

e Skewing the elliptical distributions
e Examples: Skew normal and ¢

® Regression models and posteriors
e MCMC: HowTO

e Numerical examples

e Discussion



Why consider skew distributions?

These _O_,O<_Q® alternatives to _/\_C_._”_/\ m.—._m..ﬁm M—Ams\ U_m.ﬁ—a__u C.ﬁ_osm
e transforming the data .
Outline:
e symmetric error distributions o
e Motivation
® non-parametric approaches
[

The distributions are . . o
e Skewing the elliptical distributions

e quite flexible and general
e Examples: Skew normal and ¢

e for modelling heavy tail and skewness . .
® Regression models and posteriors

e tractable and parametric
e MCMC: HowTO

e tools for robustness studies. .
e Numerical examples

Corresponding symmetric error . .
® Discussion

distributions are special cases.



Consider two densities:

Multivariate Normal:

CIO" 7 exp [~ 1(x — )"} (x — 0)]

Multivariate t:

_v+k

x—0]70 [x — 0]]

v

DO =

1+

c el

Notes:

e the const C does not involve the

location and scale parameters.

e the kernels are scalar functions of

x — 010 1[x - 0]

There are other distributions
e Laplace
e Pearson Type Il
e Pearson Type VIl

which belong to the same broad class

called

Elliptically Symmetric
Di stributions.

See Kelker (1970) and/or a text book

Fang, Kotz and Ng (1990) Symmetric

Multivariate and Related Distributions.



Notations and identities:

e g(u;

k,...) = anon-increasing

function, RT to RT.

O
Ok
Y

(x - 0T 1[x - 0]

— dimension

...=Additional parameters, like v=df

in the ¢ distribution.

o M) (u) = L(5) _ glush,..)

M %o Mlub?uﬁ.:v&ﬁ

{> Called the density generator

o f(x|6,9;g") =

1
Q729 [(x - )T (x —

H%\A

> is the multivariate density

)], xe

For multivariate normal:

o take g(u; k) = exp(—%),
)

mwa

o then g% (u) =
(2)

Nl?ﬁ\n:

For multivariate t:

e take

glusk,v)=[1+%]" 2 v >0,

e then A .IQ
(k) (y) — 1\ I
g\ (u) = us k,v
(u) Emizim ( )
Will use:

o pdf= f (x/0,9; g™™)
o cdf = I Ax_mvbwmgv



Partition X, @, €} into

(1) 1
Xy = X, 0 = 0%
AMV 7 2
um\s 0(2)
a— Q11 Qo
Qa1 (oo

010 = 00 40,05 ?@ |%Vv
Q1o = Qi1 — Q12955 Qo

Also define:

For conditional densities we need to define

for a > 0 the density generator:

k
(k1) () = (%) gla+ u; k)
a \aH 0% \a|H|
2 [, 2 gla+4rk)dr
It is slightly different than what we had
k
oM () = I'(3) g(u; k)
k o kE_4 )
T2 f\o T2 .QTJ \Av&ﬁ

The resultis: if X ~ \Ax_mubmbﬁav.

then

XO® ~ f (%1161, Qa2i gt )
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Examples of conditionals

Multiv ariate Skew Distrib utions

Normal:
M\Svgv = mqﬁv?& Outline:
since g(u, k) = exp(—%), i.e. a cancels e Motivation
In the ratio. e Elliptical distributions
t:

After some manipulation the conditional

e Examples: Skew normal and ¢
density of X(1|X(2) = x(2) will be: P

® Regression models and posteriors

thyvtks | 01.2, Ut ko 2 - e MCMC: HowTo

. . o .
e dimension = kq, Numerical examples

o df = v + ko. e Discussion
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Suppose

> 0
o= "] a=
0 0 I
and
€ (2m)
X = ~ f (x16,9;9™)
Z
Consider
Y = DZ + €, (1)
where D = diag(d1, ... ,0m)-

The multivariate class is developed by

considering the random variable

'Y|Z > 0]
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Theorem 1 Lety, =y — . Then the pdf
of Y|Z > 0 is given by

f @._Fmbé?vv =

2™ fy (y|p, & + D?%; g(™)
1

wA I -D(X+D*)~'D| 2

2\—1 . (m)
NUAMul_iNUV vx*_ovaQQAv\*vvv

where
T 2\ —1
q(y+) =y, (E+ D) 'y«
Looks complicated because the formula is

guite general!
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A new multivariate skew normal distribution:

: : L : _1
Multiv ariate Skew Distrib utions f(ylp, 2, D) = 2™|% + D?| 72
o\ — x
Qutline: Om |(B+D7)"2(y — p)
1
e Motivation ®,, | (I —D(X+ D*)~'D)"2
e Elliptical distributions D(Z + UMVLQ — )|,
e Skewing the elliptical distributions where
° ® ¢, = the pdf
® Regression models and posteriors o &, =the cdf
e MCMC: HowToO of the m dimensional standard normal
distribution.

e Numerical examples

. . Special cases:
® Discussion

e D = ( gives the standard MVN.

15 16



e X =02l and D = §1 givesiid

marginals, with pdf

Moments and Skewness:

mgf is given by:

2 o Vit g 0 Yi — i

Vor+ 02 \Vo2+02) \ovoZ+ 482

e Which is the univariate version of My (t) = wSmﬁﬂtiﬁerwa\w@SAUs.
Azzalini’s skew normal distribution.

. S The mean and variance of skew normal
e Qur multivariate version is different
(p, X, D) are given by,

e we condition on the same number of

9 1/2
random variables EY)=p+|= )
.
e he conditions on exactly one random
: 2
variable. Ooﬁ%.v =>+(1—— D?.
Yy

e That is why we get iid skew marginals.
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Comparing with Azzalini’s:

Our version has pdf:

Fy) =27 d(y1)p(y2) 2(3y1) @ (dy2),

Azzalini and Dalla Valle (1996) version,

f(y) =2¢(y1)d(y2)® [6(y1 + y2)] -

Ours is much easier to analyse and think!

Use the skewness measure \mrw
introduced by Mardia (1970).

Ours:
Qﬁw = %A% — \m.vw
Theirs:

Rum = Hmﬁliw

%w
2(r—2)+m
o,w
202(m —2)+ 7

19

Skew normal densities:

Figure 1. Contour plots of bivariate skew nor-
mal distributions. Left panel for our pdf and right

panel for their pdf.
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With appropriate choices of the g:

generator function

f(ylp, 2, D,v) =
2" by, (y e, ¥ + D?)
1

HS:\._.S A tM.QMW@L v ’

(I-D(X+D*»™'D)"

DO

D(X + D*)ly.
e |ts a new distribution.

e Asexpected X = [ and D = ¢1 does

not produce iid marginals.
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Moments and Skewness:

Can obtain the mgf as an integral of mgfs of

scale mixture of skew normals.
because

Thorem: The proposed t distribution is a

scale mixture of skew normals.

1/2 T[(v = 1)/2]
[(v/2)

Cov(Y) = (S+D%) ————(-+-)(--+)7"

v

BY)=p+ ()

9,

Measure of skewness Mardia (1970) does

not have a closed form.

Consider the univariate version and

compare with other skew ¢ distributions.

22
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Figure 2: Plots of the density functions of skew

t distributions.
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lambda=15, nu=10

Other skewness ideas
First two from Chris Jones:
1. f(tla,b) = C(a,b)™?
y a+1/2
(a+b+t2)1/2
y b+1/2

(a+b+t2)1/2

1+

1—

where

C(a,b) = B(a,b)(a + b)t/?20+0-1

e When a = b, f is the standard

symmetric ¢ density with 2a df.
e a < b, f is negatively skewed.

e a > b, f is positively skewed.

24



2. We all know:

flz,y) = fylz) fx(z)

But define:

\.HA&“@V —

Then the X marginal of f7 will be g()
which we can choose to be skew modulo

support considerations.
e Preserves the conditional
e Y marginal will be different.

e Can have one skew marginal and

another symmetric marginal.

25

Let f and F' be the pdf and cdf of any

symmetric distribution on the real line.
3. Azzalini’s:
g9(x|A) = 2f (z) F(Az).
e Can replace F' by H where H is a cdf.
e ) controls skewness.
e Can extend to multivariate.

4. For example: Fernandez and Steel
For 7 > 0 define g(z|7) =

2T

@1z 2 0)+f(ra)l(x < 0)

e 7 = 1 corresponds to symmetric.

e 7 > 1 positively skew.

26



Univariate response:

Multiv ariate Skew Distrib utions

e General: u = Xf3.

Outline: e Example:

_ p
o =+ > " Bxis+ 0z + €.
e Motivation Yi M.TH Bjixij; i i

. o e Assume normal prior for 9.
e Elliptical distributions

® ¢, is the skew elliptical distribution with

scale qw.

e Skewing the elliptical distributions

e Examples: Skew normal and ¢
Multivariate response:

® [, — ;vmfmu

e MCMC: HowTo H
e X7 =Q ~ W,(2r,2K) : Wishart

e Numerical examples . .
e Assume suitable priors for other

e Discussion parameters.
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Multiv ariate Skew Distrib utions

We have two results for the posterior

distribution in the univariate case: Outline:
Theorem 2 Suppose that s and 7, are ® Motivation
proper distributions. Then the posterior is e Elliptical distributions

proper under the skew normal or skew ¢ . . L
e Skewing the elliptical distributions
model if n > p.

e Examples: Skew normal and ¢
Theorem 3 Suppose that 5 and 7, are

proper distributions. Then EZQMVNA_S ® Regression models and posteriors

exists under the skew normal or skew t

model if n — p > 2k.
e Numerical examples

e Discussion
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Use a hierarchical setup:

Y|Z =z~ El At + Dz, MUWQMMMWV

Examples:

e Normal: mean=p + Dz and

covariance matrix X2
e tcase: Y|Z =12z ~
t._.NHN
NSuN\I_IS At |_| @Nu ~\I_IS v °

Then specification for 2

e Normal: mean=0 and covariance matrix
1.

o tcase: Z ~ t,,, (0,1).

Can obtain BUGS code for univariate

response from my homepage.

31

For multivariate skew t errors:

Y-~ Zsﬁkw?rw?emv
Z; ~ Np(0,1)I(z > 0)

B ~  Np(Bo,A)

Q=1 ~ W,(2r2k)

) ~ Np(0,T)

w; ~ T(v/2,v/2)

v ~ D(1,0.0)I(v > 3),

Z; and 0 needs bit of work.
Zi|--+ ~ Np(A7'a;, A HI(z; > 0)
6|--- ~ N,(B 'b,B™1)

where

Aj = I+w;DQD, a; = w;DQ(y;—X, ).

32



Multiv ariate Skew Distrib utions

Outline;

e Motivation

e Elliptical distributions
e Skewing the elliptical distributions
e Examples: Skew normal and ¢

® Regression models and posteriors

e MCMC: HowTO

e Discussion
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Interview data:

For 335 applicants:
® interview scores
e gender
e |ocality

Objective is to see if local female

candidates score better.

Regression model has four parameters:
® intercept = «
e (31 for gender (male=1).
e /35 for locality (local=1).

e (33 for interaction.

34



Summary plots: Histogram Summary plots: Boxplot

150

35 40
35 40

100
30
30

1
T

-_7 5

= RS
o ||IIII.-.-
10 15 20 25 30 35 40

female male not-local local
interview scores
Figure 3: Histogram of interview scores. Figure 4: Box plot of interview scores.
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a P P2 B3 0 v o
N 359 -39 0.3 2.4 35.1
0.7 0.9 0.8 1.2 2.7
S-N 317 -24 1.9 1.0 3.1 33.7
1.0 1.0 0.9 1.2 0.8 2.9
t 374 -36 004 20 3.6 16.1
0.6 0.9 0.7 1.1 0.6 2.1
St 359 -31 0.1 1.7 09 3.3 16.7
0.6 0.9 0.6 1.1 0.2 0.3 1.9

Table 1: Parameter estimates for the interview

data example.

The standard deviations (not

standard errors) are given in the second row.
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Skew-t t Skew-N  Normal

Skew-{ 1 5.2 7.1 12.3
t — 1 1.80 7.0

Skew-N — — 1 5.2

Normal — — — 1

Table 2: The log of the Bayes factors using
the Laplace-bridge method. Each entry in
the table is the log of the Bayes factor in fa-
vor of the model in the row compared to the

model in the column.
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o 15} ) v o

Normal 28.41 0.86 19.1
A small data example:
(0.66) (0.14) (6.2)
Have x =% of body fatness, y = skin
Skew-N  27.91 0.86 1.1 17.7
thickness and density for 24 women.
(1.05) (0.14) (1.81) (6.6)
Experiment with: t 2835  0.87 143 166
e informative: prior variance 1, (0.66) (0.13) (8.8) (6.1)

: : : : Skew-t  27.84 0.87 1.0 14.9 15.1
e non-informative: prior variance 100,

(29) (0.13) (L7) (105) (6.4)

for the regression co-efficient.
Table 3: Parameter estimates. Prior variances of

« and (3 are 1 each.
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o 15} ) % o

Normal  28.68 0.86 19.4
(0.86) (0.14) (6.3)
Skew-N  26.64 0.85 2.70 12.3
(3.02) (0.14) (3.9 (8.2)

t 28.58 0.87 14.6 16.9
(0.87) (0.13) (10.6) (6.4)

Skew-t  26.89 0.86 2.21 15.0 11.0
(29 (0.14) @.7) (109 (7.2

Table 4: Parameter estimates. Prior variances of

« and /3 are 100 each.
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density
0.15 0.20

0.10

0.05

0.0

Figure 5: Posterior density of, d, the skewness
parameter. Solid line is for the skewed normal
distribution and dotted line is for the skewed -
distribution. Prior variances of v and 3 are 1

each.
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Figure 6: Posterior density of, d, the skewness Non-academic scores

parameter. Solid line is for the skewed normal . o
Figure 7: Scatter plot of the bivariate data used

distribution and dotted line is for the skewed ¢- . .
in model fitting.
distribution. Prior variances of o and (3 are 100

each.
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Multivariate illustration: interview data
e Non-academic score
® interview score

No co-variates considered. Trying to

estimate the means.

Normal Skew Normal t Skew-t

-1776.0 -1671.7 -1722.5 -1631.8

Table 5: Marginal likelihood for the bivariate

example.

Skew t model seems to be the best.
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Example: Strength of glass fibre. Data from
Smith and Naylor (1987).

15

—— Standard t

1.0

0.5

0.0

0.5 1.0 15 2.0

Figure 8: Histogram of the data and densities of
the fitted skew ¢ distributions for the glass fibre

data.
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Did not talk!

Distribution theory, e.g. Nevertheless _

marginal and conditional distributions e Transform the distribution rather than

: : : : the data!
transformations and inter-relationships,

e Allows robust inference.
What happens to the Bayes

estimators? e All do-able because of MCMC.
predictive distributions? e BUGS can do our univariate models.
And so on...
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