MA676: Bayesian Methods - Additional Exercises 2

1. Suppose that, X_1, \ldots, X_n , a random sample of size n is taken from a Poisson distribution for which the value of the mean θ is unknown, and that the prior distribution of θ is a gamma distribution, with density given by

$$\pi(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\beta \theta}, \quad \theta > 0.$$

Show that the Bayes estimator of θ under squared error loss will be a weighted average having the form $a_n \bar{X}_n + (1 - a_n)\mu$ where μ is the prior mean of θ , and show that $a_n \to 1$ as $n \to \infty$.

2. A Bayes estimator is required for θ under the loss function

$$L(a, \theta) = e^{c(a-\theta)} - c(a-\theta) - 1,$$

where c is a positive constant. As the constant c varies, the loss function varies from very asymmetric to almost symmetric. This is called the LINEX (LINear-EXponential) loss.

By minimising the expected loss, show that the Bayes estimator is

$$\hat{\theta} = \frac{-1}{c} \log E \left(e^{-c \theta} | \mathbf{x} \right),$$

where the expectation is under the posterior distribution $\pi(\theta|\mathbf{x})$.

Suppose that X_1, \ldots, X_n is a random sample from the normal distribution $N(\theta, \sigma^2)$ where σ^2 is known. A priori θ follows the normal distribution with mean μ and variance τ^2 where both μ and τ^2 are known. Find the Bayes estimators of θ under the above loss function and under the squared error loss. Compare the two estimators. **Hint:** Recall the definition and the expression for the moment generating function of a normal distribution.

3. Suppose that X_1, \ldots, X_n is a sample from the negative binomial distribution which has the probability mass function,

$$f(x|r,\theta) = {r+x-1 \choose x} \theta^r (1-\theta)^x, \quad x = 0, 1, \dots; \ 0 < \theta < 1,$$

where r > 0 is a known integer. Suppose also that a-priori θ has a beta(α , β) distribution with the pdf,

$$\pi(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}, \ 0 < \theta < 1.$$

Find the posterior distribution of θ and the Bayes estimator under squared and absolute error loss, assume that r=2 and x=5.

4. Prove that the expected square and absolute error loss is minimised by the posterior mean and median, respectively without differentiation.