Chapter 2

Priors, Predictions and Model Choice

2.1 Prior Distributions

2.1.1 Conjugate Priors

Suppose that we have a hierarchical model f(x|f): the likelihood; w(6|n) the prior. If w(6|x,n)
belongs to the same parametric family as 7(6|n), then we say that 7(6|n) is a conjugate prior for 6.

In these cases if we assume that 7 is known, the analysis becomes much easier. Natural conjugacies:

Likelihood Prior

Binomial Beta
Poisson Gamma
Normal Normal

Exponential Gamma

2.1.2 Locally Uniform Priors

What if one has no prior information with which to choose 7(6)? Although this is rare in practice,
this type situations can be overcome by the use of what are called non-informative (vague, diffuse,
flat) priors.

A basic property of a pdf is that it integrates to 1, i.e. [* m(#)df = 1. Sometimes we assume
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prior distributions which are constant over the whole real line. For example,
w(0) =k, k>0, —00 <0 < 0.

This pdf violates the above condition. This would be called an improper prior distribution. It is
alright to assume improper prior distributions only if the resulting posterior distribution is proper,
ie. [ m(f]x)dd < oco. Further, suppose that 7(f) = k only for values of § where the likelihood
function has appreciable value, and 7(f) = 0 otherwise. This 7(#) will then define a proper density
and no theoretical problem arises. Prior distributions like the above are called locally uniform

priors.

2.1.3 Non-informative priors

If a prior distribution 7(#) does not contain any information for 6, it is called a non-informative

prior. Most widely used non-informative priors are Jeffreys (1961) priors:
7(0) = VI1(0) (2.1)

where 1(0) is the Fisher information
92
110) = By | g3 tou £ 1)
Note that we obtain improper priors in most situation. We have to guarantee that the resulting
posterior is proper.

Why does Jeffreys prior (2.1) give a non-informative prior? The answer in brief is the following.
The above prior induces a one-to-one function ¢ = ¢(f) for which the prior pdf of ¢, 7(¢) o 1.
That is, for ¢ the induced prior is locally uniform or non-informative, hence the prior (2.1) for 6
(which is a one-to-one function of ¢) is also non-informative. It does not always suffice to take
m(0) o< 1 as the non-informative prior since ‘information’ is relative to the sampling experiment,
i.e. the likelihood function f(x 6).

There is a huge literature on prior selection. Box and Tiao (Section 1.3) would be a good start.
In our course we will assume (loosely) vague or flat priors, i.e., priors which are locally uniform.

© Example 2.1. For the binomial example show that

m(0) = {6(1 — )} "=.
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a
Q Example 2.2. Normal For N(0,0?) problem show that
1
m(o?) = Pt
a

2.2 Predictive Distributions

“What is the probability that the sun will rise tomorrow, given that it has risen without fail for the
last n days?” In order to answer questions like these we need to learn what are called predictive

distributions.

2.2.1 Posterior Predictive Distribution

Let Xi,...,X, be an iid. sample from the distribution f(z|@#). Let 7(f) be the prior dis-
tribution and 7(f|x) be the posterior distribution. We want the distribution (pdf or pmf) of
X,+1/X1,-..,X,. The given notation is to denote that Xi,..., X, have already been observed,
like the sun has risen for the last n days. We define the posterior predictive distribution to

be:

F@ntlots . 20) = /_oo F(@ns1]0) 7(0]31, . ) do. (2.2)

It is the density of a future observation given everything else, i.e., the ‘model’ and the observations.
(The model is really the function f(z|6).) Intuitively, if 6 is known then z,; will follow f(z41|6)
since it is from the same population as z1,... ,z, are. We do not know 6 but the posterior 7(8|x)
contains all that we know about 8. Therefore, the predictive distribution is obtained as an average
over 7(6|x). Hence the definition. We now derive some predictive distributions.

QO Example 2.3. We return to the sun example. Let

X; =1 if its sunny on the ¢th day,

=0 otherwise.

Note that X1 will be binary as well. We want P[X,,1; = 1|x =(1,1,...,1)]. Assume f(z;|0) =
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6% (1 — 0)' %, and X; are independent. Therefore, the likelihood is

Fx[0) = oxmi(1— o) =,
= ¢ ifx=(1,1,...,1).

Let us assume a uniform prior for 0, i.e. w() =1if 0 < § < 1. Now the posterior is:

"0 =

= (n+1)6".

Here f(X,+1 = 1|0) = 0. Finally we can evaluate the posterior predictive distribution using (2.2).

P(Xps1 =1|x) = [} 6(n+1)0"dd
= (n+1) [ 6"de

_  n+l
n+2°

Intuitively, this probability goes to 1 as n — oc. a
Exercises: The above example assumes that x1,... ,x, are all 1. Re-do this without assuming
the specific values.

Q Example 2.4. We return to the normal example. Suppose Xi,...,X, ~ N(0,0?%), n(0) ~
N(p,72) for known p and 72. We had

nZ/o? + /72 1 )

m(0x) = N ( nfo?2+1/72 "njo? +1/72

Satisfy yourself that X, 1|x follows the normal distribution with

nz/o? + p/7? ) 9 1
mean — W and variance o + W
O
2.2.2 Prior Predictive Distribution
We sometimes need to define what is called the prior predictive distribution defined as
f@= [ f(aloyn(o) as. (23)

Note that it is simply the normalising constant in 7(6|z). It is also called the marginal distribution

of the data. And it is of the same form as the posterior predictive distribution (2.2). The prior
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predictive distribution is obtained by replacing the posterior w(0|z1,... ,z,) by the prior 7(#) in
(2.2).

With n samples, we define the (joint) prior predictive distribution of z1,... ,z, as

ﬂwafﬁwmw@w. (2.4)

Q Example 2.5. For the normal-normal example, the prior predictive distribution is,
n
769 = [ T[Nl 0% N s ).
i=1

For this distribution show that E(X;) = p and V(X;) = 72 + o2 Are X; & X, marginally
independent? No, they have covariance 72. (Derive it!)
You may find the following useful:

Result For any two random variable with finite variances:

E(X) = EE(X|Y), Var(X)= EVar(X|Y) + Var(E(X|Y)).

2.3 Model Choice

2.3.1 Bayes Factors

Suppose that we have to choose between two hypotheses Hy and H; corresponding to assumptions
of alternative models My and M; for data x. The likelihoods are denoted by f;(x|6;) and the priors
by mi(-),s = 0,1 in the following discussion. In many cases, the competing models have a common
set of parameters, but this is not necessary; hence the notations f;, w; and 6;. Recall that the prior

predictive distribution (2.4) for model ¢ is,

meg:/ﬂmmm@m@
Bayes factor is defined as:

Boi(x) = 1x| Mo) (2.5)

f (x| My)
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Note that the Bayes factor is the ratio of the marginal likelihoods under two different models.
Hence, intuitively By;(x) > 1 implies that M is more relatively plausible in the light of x. (Some
authors use 3 as some sort of cut-off point.)

Q Example 2.6. Geometric versus Poisson Suppose that:
Mo : X1, X2,... , Xnlbo ~ fo(z|00) = 0o(1 — 6p)*, z=0,1,....

M : X1, Xo, ..., Xnl01 ~ f1(2]0)) = e 6%/, z=0,1,....

Further, assume that 6y and 6; are known. How should we decide between the two models based
ON T1,Z2,... ,%pT

Since the parameters are known under the models, we do not need to assume any prior distri-
butions for them. Consequently,

£ (x[Mo) = 65 (1 — 60)™"

and

n
fx|My) = e ™07/ T ] .
=1

Now the Bayes factor is just the ratio of the above two. To illustrate, let 6y = 1/3 and 6; = 2 (then
the two distributions have same mean). Now if n = 2 and z; = z2 = 0 then By;(x) = 6.1, however
if n =2 and z1 = z9 = 2 then By;(x) = 0.3. O
Why it is called a factor? Let P(M;) denote the prior probability for model i. Let us now
calculate the posterior probability of M; given the data using the Bayes theorem.
P(Mi|x) = 1P(Mi)f(x|Mz') _
> =0 P(M;) f (x| M;)

So the posterior odds ratio of the two models is given by

P(My|x) _ P(Mo) o f (x| My)

P(Mi|x)  P(My) = f(x[M)

Now in words,
posterior odds ratio = prior odds ratio x the Bayes factor

That is why it is called a factor! Seen in this light we can define

posterior odds ratio

Bayes factor =
v prior odds ratio
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Intuitively, the Bayes factor provides a measure of whether the data x have increased or decreased
the odds on M) relative to M;. Thus By;(x) > 1 signifies that Mj is more relatively plausible in
the light of x.

Remark: We do not need to know the prior probabilities P(M;),7 = 0,1 to calculate the Bayes
factor. Those are needed if we wished to calculate the posterior probability P(M;|x). If two models

are equally likely a-priori, then Bayes factor is equal to the posterior odds ratio.

2.3.2 Hypothesis Testing

Suppose that we wish to test
Hy:0 € 0pversus Hy : 0 € O5.

Let f(x|0) denote the likelihood of x given . Special forms:

By1(x) = ;E:}zg; (simple versus simple test)

(4 . .
B (x) = % (simple versus composite test)

0 0)do
By (x) = % (composite versus composite test)
©,

QO Example 2.7. Taste-test In an experiment to determine whether an individual possesses
discriminating powers, she has to identify correctly which of the two brands she is provided with,
over a series of trials.

Let @ denote the probability of her choosing the correct brand in any trial and X; be the
Bernoulli r.v. taking the value 1 for correct guess in the ith trial. Suppose that in first 6 trials the
results are 1, 1, 1, 1, 1, 0.

We wish to test that the tester does not have any discriminatory power against the alternative

that she does. So our problem is:

1 1
H0:0:§versusH1:9>§.

It is a simple versus composite case and we have ©g = 3 and ©1 = (3,1). Let us assume uniform
prior on # under the alternative. So the prior 71(0) = 2 if % < 0 < 1. Recall that we had 6 Bernoulli

trials with the results, 1, 1, 1, 1, 1, 0. Now the Bayes factor is
16

1

Bpi1(x) = 2 = .

0 () [165(1—9)2d0  2.86
2

This suggests that she does appear to have some discriminatory power but not a lot. O
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2.3.3 P-value

This is often incorrectly interpreted as the probability that Hy is true is smaller than the p-value.
We have seen how to find such probability under the Bayesian setup.
Q Example 2.8. Return to the taste test Suppose the problem is to test Hy: 6 = % against
H:0> % Here two cases arise.

Case 1: Suppose that n, the number of trials, is fixed in advance, that is binomial sampling

distribution.

p-value = P(X =5 or something more extreme |0 = )
= P(X=50r X=60=3)
= 7x (4)°=0.109.

Case 2: Suppose that the sampling design is to continue the trials until first zero (geometric

sampling).
p-value = P(X =5 or something more extreme |f = )
= P(X =5,6,7,...106 =1)
= )"+ )+
= 0.031.
Despite exactly the same sequence of events being observed, different inferences are made! O

2.3.4 Likelihood Principle

Consider two experiments yielding, respectively data x and y with model representation involving

the same parameter 8 € © and proportional likelihoods:

f(x|0) = g(x,y)f(¥]0)-

The likelihood principle says that the experiments produce same conclusion about 4. It is a trivial
consequence of the Bayes theorem if we assume the same prior for 8. However, the frequentist
procedure typically violates the principle, since long run behavior under hypothetical repetitions
depends on the entire distribution {f(x|@),x € X)} where X is the sample space and not only on
the likelihood. The pure likelihood approach, i.e., the attempt to produce inferences solely based

on the likelihood function breaks down immediately when there are nuisance parameters.
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2.4 Multi-parameter Situation

2.4.1 Basic Methods

In most realistic applications of statistical models, there are more than one unknown parameters.

In principle, everything proceeds as before, except

01

where p is the number of parameters. We still start with
m(0|x) x f(x]0) x 7(0).

How do we summarise 7(@|x)? We use multi-variate statistical tools you are already familiar with.

For example we can obtain the marginal posterior distribution of 8; as

(61]%) :/---/ﬂ(0|x) dB>d0s . .. d6),

So we can calculate features of the above distribution, for example F(6;|x) and Var(6;|x). Also for
example we can study correlations between #; and 65.

Q Example 2.9. Suppose that X7, Xo,... , X, are i.i.d. N(0,0?) and 7(u,0?) = ;1; Obtain the
joint and the marginal posterior distributions of x and o2.

QO Example 2.10. Pump Failure Data The data set given below relates to 10 power plant
pumps. The number of failures, y;, follows a Poisson distribution with mean \; = 0;t; where 6; is
the failure rate for pump i,4 = 1,...,10 and ¢; is the length of operation time of the pump (in
1000s of hours). A conjugate gamma prior distribution with density %08 'e=#% /T'() is adopted
for each 6;, where @ = 1.802 and 8 = 0.1.

Obtain the marginal posterior distribution of 6.

Pump 1 2 3 4 5 6 7 8 9 10

t; 94.3 157 629 126 524 314 1.05 105 21 10.5
Y; ) 1 5 14 3 19 1 1 4 22
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2.4.2 Nuisance Parameters

Suppose we partition @ = (v,7n) and we are interested in 4. How do we proceed? Review classical

methods. We are given L(,n;x). If we are lucky, there exists a sufficient statistics T such that
X|T ~ f(x]7,T)

then base inference on the distribution of T. This is called conditional inference. Otherwise, plug
in maximum likelihood estimate 7)(«y) of n in L(vy,n;x). This is the ‘profile likelihood’ technique.

In a third scenario, if we are able to work out the integral,

/L('Y,n;X)dn = L(~;x), say

then use L(-;x) to make inference. This is the ‘marginal likelihood’ technique.

From a Bayesian viewpoint, we have 7(y,n|x). We use,

r(ylx) = / w(y, nlx)da.

This will be routinely done by numerical methods to be developed in the next chapter.



