MA676: Bayesian Methods - Exercise Sheet 2

1. Let X_1, X_2, \ldots, X_6 be a sequence of independent, identically distributed Bernoulli random variables with parameter θ , and suppose that $x_1 = x_2 = x_3 = x_4 = x_5 = 1$ and $x_6 = 0$.

Derive the posterior model probabilities for Model $0: \theta = \frac{1}{2}$ and Model $1: \theta > \frac{1}{2}$, assuming the following prior distributions:

- (a) $P(M_0) = 0.5$, $P(M_1) = 0.5$, $\pi_1(\theta) = 2$; $\theta \in (\frac{1}{2}, 1)$.
- (b) $P(M_0) = 0.8$, $P(M_1) = 0.2$, $\pi_1(\theta) = 8(1 \theta)$; $\theta \in (\frac{1}{2}, 1)$.
- (c) $P(M_0) = 0.2$, $P(M_1) = 0.8$, $\pi_1(\theta) = 48\left(\theta \frac{1}{2}\right)(1 \theta)$; $\theta \in \left(\frac{1}{2}, 1\right)$.
- 2. Suppose that:

$$M_0: X_1, X_2, \dots, X_n | \theta_0 \sim f_0(x | \theta_1) = \theta_0 (1 - \theta_0)^x, \quad x = 0, 1, \dots$$

$$M_1: X_1, X_2, \dots, X_n | \theta_1 \sim f_1(x|\theta_1) = e^{-\theta_1} \theta_1^x / x!, \quad x = 0, 1, \dots$$

Suppose that θ_0 and θ_1 are both unknown. Assume that $\pi_0(\theta_0)$ is the beta distribution with parameters α_0 and β_0 and $\pi_1(\theta_1)$ is the Gamma distribution with parameters α_1 and β_1 . Compute the (prior) predictive means under the two models. Obtain the Bayes factor. Hence study the dependence of the Bayes factor on prior data combinations. Calculate numerical values for n=2 and for two data sets $x_1=x_2=0$ and $x_1=x_2=2$ and two sets of prior parameters $\alpha_0=1,\beta_0=2,\ \alpha_1=2,\beta_1=1$ and $\alpha_0=30,\beta_0=60,\ \alpha_1=60,\beta_1=30$. Write a computer program (Splus preferable) to calculate the Bayes factor for given values of x_1,\ldots,x_n and the parameters.

3. Suppose that X_1, \ldots, X_n is a sample from the negative binomial distribution which has the probability mass function,

$$f(x|r,\theta) = {r+x-1 \choose x} \theta^r (1-\theta)^x, \quad x = 0, 1, \dots; \ 0 < \theta < 1,$$

where r > 0 is a known integer. Suppose also that a-priori θ has a beta (α, β) distribution with the pdf,

$$\pi(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}, \ 0 < \theta < 1.$$

- (a) Find the posterior distribution of θ .
- (b) Suppose further that r = 2, n = 1, and we observe that $x_1 = 1$. Of the two hypotheses $H_1: \theta \leq 0.5$ and $H_2: \theta > 0.5$, which has greater posterior probability under the uniform prior.
- (c) What is the Bayes factor in favor of H_2 ? Does it suggest strong evidence in favor of this hypothesis?

4. In an experiment to compare two measuring devices n_1 objects are measured with the first device, the mearsurements errors being recorded as x_1, \ldots, x_{n_1} , and n_2 objects are measured with the second device, the mearsurements errors being recorded as $x_{n_1+1}, \ldots, x_{n_1+n_2}$. It is assumed that measurement errors are normally distributed with zero mean. Two models are proposed.

The first model assumes that the measuring devices are identical and variance of both devices is ϕ (unknown). That is $x_1, \ldots, x_{n_1+n_2}$ is a sample of i.i.d. observations from $N(0, \phi)$.

The second model allows for a difference between the variances, with x_1, \ldots, x_{n_1} being a sample of i.i.d. observations from $N(0, \phi_1)$ and $x_{n_1+1}, \ldots, x_{n_1+n_2}$ from $N(0, \phi_2)$.

Assume that the prior distributions for ϕ , ϕ_1 and ϕ_2 are all inverse gamma distributions

$$\pi(\phi) = \frac{\beta^m}{\Gamma(m)} \frac{1}{\phi^{m+1}} \exp(-\beta/\phi), \qquad \phi > 0$$

with the same m and β for each case.

Obtain the Bayes factor for comparing the models.

5. Suppose that Y_1, \ldots, Y_n are independently distributed as $N(\beta x_i, \sigma^2)$ where σ^2 and x_i 's are known constants. Assume that β follows $N(0, \tau^2)$ a-priori. Find the Bayes factor where one model corresponds to $\beta = 0$ and the other model does not specify any particular value of β . Hence, show that the classical test statistic for testing $H_0: \beta = 0$ can be obtained as a function of the Bayes factor (in the limit as $\tau^2 \to \infty$).