MA322: Advanced Statistical Methods — Work Sheet 2

1. Suppose that X7, Xo,..., are Bernoulli trials with success probability 6. Let ¢ denote the
observed number of successes in n such trials. Assume the beta prior distribution with
parameters o and 8. Show that
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Solution:
We know that the posterior of € is the beta distribution:
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2. Suppose that the number of defects on a roll of magnetic recording tape has a Poisson dis-
tribution for which the mean # is unknown and that the prior distribution of 8 is a gamma
distribution with parameters a = 3 and 8 = 1. When five rolls of this tape are selected at
random and inspected, the number of defects found on the rolls are 2, 2, 6, 0, and 3. Let ¢
denote the sum of the observations. Show that
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Write a S-Plus function to calculate the probability. Obtain the answers for £ = 0,1 and 2.

Solution: The posterior here is the gamma, distribution with parameters t + « and n + S.
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3. Suppose Xi,...,X, is a random sample from the distribution with pdf f(z|f) = fe
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Suppose the prior for  is given by m(0) = SeP? for some known § > 0. Let ¢ denote the
sum of the observations. Show that

(t+p)"
(Tnyr + 1+ S+

Suppose that n = 5,¢ = 1.36, 8 = 1. Calculate the probability Pr(X, 1 < alt).
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Solution: The posterior here is the gamma distribution with parameters n 4+ 1 and ¢ + .

Now
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using the relation
I'(a+1) =al(a).

Now

n+1
Pr(Xup <alt) = [{(n+1) G mmmdenn

(n+ 1)+ ™ [ (@nr1 +t+ ) "D dpyyy

o, (n+2)+1

— (1) pyrt [t TR
(

+1 1 1
t+6)" {(t+ﬂ)n+1 ~ (att1 BT
O

. Suppose that X1,..., X, is a random sample from N (6, 0?) population where 02 = 100. Let
the observed value of X be 118.7 where n = 10. Assume the prior distribution N(100,225)
for 6. Obtain the posterior predictive distribution of X, 1 and hence obtain the best 95%
predictive interval for X, ;.

Solution: Here the posterior distribution of é|z1,...,z, is the normal distribution with
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The predictive distribution is also normal with
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Substiuting all the numbers we have that the predictive distribution is normal with

mean = 117.9 and Variance = 109.6.

Therfore, the 95% predictive interval is (117.9 £+ 1.964/109.6) which is (97.38, 138.42).



