MAG676: Bayesian Methods — Exercise Sheet 1

1. Suppose that X1,..., X, is a random sample from the distribution with pdf

0z~ fo<z<1
0) = ’
F(xl0) { 0 otherwise.

Suppose also that the value of the parameter 6 is unknown (6 > 0) and that the prior
distribution of # is a gamma distribution with parameters o and 8 (@« > 0 and 5 > 0).
Determine the posterior distribution of # and hence obtain the Bayes estimator of # under a
squared error loss function.

Solution:

Likelihood: f(x|6) = 6™ (z1 - - x,)?

FATe _ ﬁ a—1_-—p6
Prior: 7(0) = I‘(a)e e

7T(9|X) o Qrta—lo—pB0+03 logz;
en—}-a—le—ﬁ(ﬁ—zlogzi)
Hence 0|x ~ Gamma(n + «, 5 — Y log z;).

Therefore the Bayes estimator under squared error loss is

2. A Bayes estimator is required for # under the loss function
L(a,0) = e —¢(a—0) -1,

where ¢ is a positive constant. As the constant ¢ varies, the loss function varies from very
asymmetric to almost symmetric. This is called the LINEX (LINear-EXponential) loss.

By minimising the expected loss, show that the Bayes estimator is
0 —1 —cb
9:—logE(e \x),
c

where the expectation is under the posterior distribution 7 (6|x).

Suppose that Xi,..., X, is a random sample from the normal distribution N (#, o?) where
02 is known. A priori 0 follows the normal distribution with mean p and variance 72 where
both p and 72 are known. Find the Bayes estimators of § under the above loss function and



under the squared error loss. Compare the two estimators. Hint: Recall the definition and
the expression for the moment generating function of a normal distribution.

Solution:
(a)
We first find the expected loss.

E[L(a,0)] = [7 L(a,0)n(0]x)d0
[ {ee= —¢(a — 0) — 1} n(0]x)do
[ ela=0)r(9]x)dd — c(a — 0)7(0]x)dO — 1

o0

= ¢“E [e¥x] —c{a— E(6x)} —1
g(a), say
It is easy to see that
g'(a) = ce“E[e"®x] —c and

g"(a) = 2e“E[e"Vx].
Hence
g'(a) =0
= ce“Ele?x]-c = 0
= e“F [efca|x] =1
= ca+logE[e™x] = 0
== a = —1llogE[e |x].

Therefore the Bayes estimator is

6= —% log E [e_°0|x] .

(b)
From notes we have,
7/ ~2 2 1
PTIRE N  W cine S SR
n/o?+1/72 njo?+1/72
Note that
E [e_ca|x] = the moment generating function function of N (), p?) evaluated at t = —c.

However, we know that

Mx(t) = E(etX) = ettt P/2 if X ~ N(u,0?).

Hence -
E [e—cﬁ|x] —  eM-0)t+pic?/2
— e—)\c+p202/2



Therefore,
log & [e‘ca|x] = —Xc+ p°c?/2,

and the Bayes estimator is

nZjo? + p/r? 3 c
njo?+1/72  2(n/o? +1/712)

6=X—pc/2=

()
The Bayes estimator under squared error loss is

nzjo? + p/?

0= njo?+1/72°

Here we see that & < 6 since ¢ > 0.

. A random variable X has a gamma distribution gamma(m, 8) with pdf

pm 1
Show that if Y = 1/X then Y has p.d.f.

o

f(y) T(m) g+t

exp(=B/y)  y>0.

This is the inverse gamma distribution.

A particular measuring device has normally distributed error with mean zero and unknown

variance o2

obtained.

. In an experiment to estimate o2, n independent evaluations of this error are

If the prior distribution for o2 is inverse gamma with parameters 8 and m, show that the

posterior distribution is also inverse gamma, with parameters 8* and m*, and derive expres-

sions for $* and m*. Show that the predictive distribution for the error, X,,11, of a further

observation made by this device has p.d.f.

*

w2, 0\ "
f(.’l:n_|_1) X (1 + Qnﬁt ) ) Tn+1 € IR.

Solution:

(a)

Here y =1/ = z = 1/y = r(y), say.



Therefore, g_;; = —y% and the pdf of Y is

fly) = flr(y)|&

dy
= s exp(—f/y) b,

m

Ty gt exp(=B/y), y > 0.

(b)
We have X;1,... X, wd N(0,0?). Therefore,

fxlo®) = II

= Vot
1 2—2 ?15”?
(Qﬂ.)n/2(a2)n/2€ 7

Prior for o2 is gm )
2 I —,8/02
(%) ) (02)m+le .

Therefore, the posterior density is:

m(o?|x) o

26 20

82
W o D 1(2)1m+1e ﬂ/a’

2(,3+ i 1) o2 > 0.

(o2 )n/2+m+16 v

Clearly this is the density of the inverse gamma distribution with parameters m* =n/2+m
and B* = B+ 5 >0 z?

(c) We proceed as follows for the posterior predictive distribution.

f@nilx) = [25 f(@n1|0)m (9|x)d9
1 *ym* _ o
= fooo 1/27T026 227 (19() ) (0-2_)m 1€ Br/o? dU
1 1 S (B*+57241)
fo \/2#02( 2)m*+%+le 2nitdo?.

X

Now the integrand looks like the inverse gamma density with m = m* -|— and B = B*+ 3 :vn 11
fanlx) o 5
I‘(m*—|—%)
(ﬂ*+2$n+1)m*+% 1
o (B*+gapyg) ™ T2

m*—%
o (1+ 2”/;51) .

a

. Assume Y7,Y5,...,Y, are independent observations which have the normal distribution with
mean (z; and variance o2, where the z;s and ¢ are known constants, and 3 is an unknown
parameter which has a normal prior distribution with mean Sy and variance 72, where Sy
and 72 are known constants.



(a) Derive the posterior distribution of 5.

(b) Show that the mean of the posterior distribution is a weighted average of the prior mean
Bo, and the maximum likelihood estimator of .

(c) Find the limit of the posterior distribution as 72 — oo, and discuss the result.

(d) How would you predict a future observation from the population N(8z,1,0?%), where

ZTp+1 18 known?

Solution:
We have Y1,..., ”d N(Bz;i,0?).
Therefore,
= — Lo (yi—Bz)?
flyr,-.sunlB) = H?:l \/2;7@ 5.7 Wi—Bxi)
X e 20 221 1(yl ,3.’[1) .
Prior is
m(B) = L ¢~ 277 (BP0’

V2772

Therefore, posterior is:

7T(ﬂ'}’) X 6_20—% Z?fl(yi_ﬁl‘i)2—27—%(6_ﬁo)2
{ P (yi— ﬂw¢)2+7_i2(/3,ﬂ0)2}

e’%M, say.
Now
M = Zyz _Qﬁzyizi+’822I?+ﬁ21 ,Bﬁo
— ,82 22121 ) 28 Z wl_{_ +Zyl+ﬁa
g
) B >y ﬂ
- (4)-wg
2 2 2
where )
0? = ——— and B = (Z:yzxZ -I-—).
POL o? 72
o2 72
Clearly,
,3|yNN(ﬁ1,O'%)
(b)
Define




which is the maximum likelihood estimate of 5. We have

B = (;ly(wzyzurﬂo)

Zm +%
QZyzmrf'o’ Bo
T2 Em2+o-2
2223;9%+Ez ﬂO

2_1_2 2

_ wiBtwafo

wi1+w2

where

wy =72 and wy =

]
8
S

()
2

As 72 — 00, 07 — That is

a?
Yl

2

:8|y ~ N Ba EU-TZZ
ie. fBly ~ N B, var(8 ))

\/

Hence inference for 8 using the posterior will be same as that based on the maximum likelihood
estimate.

(c) We want o
FWnaaly) = / f (g s118)7(Bly)dP

Although this can be derived from the first principles, we take a different approach to solve
this.

We use two results on conditional expectation:

E(X)=EE(X|Y), var(X)= Evar(X|Y)+ varE(X]|Y).

We take X =Y, ;1 and Y = 8. We also have Y,,11|8 ~ N(Bzn11,02%) and Bly ~ N(B1,0?).
Now
E(Yni1ly) = E(Bzpt1) = brzpta-
var(Yoialy) = Elvar(Y1|8)] +var[E(Vop1|8)]
= Elo?] + var[Bzni1]
= o+ 07
Also we can write

Yorly = 2np1Bly + €



where Bly follows N(B1,02) and e follows N(0,02) independently. Hence Y, 1|y follows a
normal distribution. Therefore,

Yoiily ~ N(Bizns1,0° + 25 107).

a

. Let Y1,Y5,...,Y, be a sequence of independent, identically distributed random variables with
probability density function

e ™M,y >0
A) = ’
Tl {0, otherwise

where ) is an unknown, positive parameter with a gamma(m, ) prior distribution (see above).
(a) Show that the posterior distribution of A given Y7 = y1,Ys = y9,...,Y, = vy, is
n
gamma(n + m, 3 + t) where t = Z Yi -
=1
(b) Show that the (predictive) density of Y, 1 given the n observations Y1 = y;,Ys =
Y2, ooy Yn =Yp I8
(n+m)(B +t)"tm
(Ynt1 + B+ H)mtm

ﬂ-(yn+1|y17 cee ,yn)

(c) Find the joint (predictive) density of ¥;,11 and Y;, 10 given Y1 = 41, Y5 =y, ..., Y, = yp.

Solution:

(a) Here
Fy|A) = Are A Zizy:

and

w(A) = %)\m_le_ﬂ’\

The posterior is

T(Aly) o f(y[A) x@(A)
o AMtn=1o=XB+Tl i)

Clearly Ny ~ Gamma(m +n,8+ > 1, yi)-

(b)
We have f(yni1]|A) = e ¥+, Now

Fnily) = [5° f(ynta])) m(Aly)dr

_ f \e —)\yn+1(,8-(|-t)m+)"Am+n—1 —(B+t)A
_ (lqzrrz;";“ [0 yment1-1 o~ (B+t+ynt1)A
(ﬂ+t)m+n T'(m+n+1)

I'(m-+n) (ﬂ+t+yn+1)m+"

(n+m)(B+t)"+™

(yn+1+ﬁ+t)n+m+1 bl




where y, 11 > 0.

We have f(Yni2,Yni1|A) = AN2e A nt24¥n41) since V;, 19 and Yy, are conditionally indepen-
dent given A\. Now

FWnso, Yns1ly) = f()oo F(Yna2, Yns1|A) T(Aly)dA
fooo A2¢~AUn+2tynt1) 7(?”) T ymen Lo (B+E)A

m
m+n)
(n+m+1)(ntm)(B+t)"+™
(yn+2 +Yn+1 +ﬂ+t)n+m+2 ?

where y,12 > 0 and yp4+1 > 0.



MAG676: Bayesian Methods — Exercise Sheet 2

1. Let X1, Xo,...,Xs be a sequence of independent, identically distributed Bernoulli random
variables with parameter 6, and suppose that 1 = 29 = z3 =24 = z5 = 1 and z¢ = 0.
Derive the posterior model probabilities for Model 0 : 6 = % and Model 1: 8 > %, assuming
the following prior distributions:

(a) P(My) =0.5, P(My) =0.5, m(0) =2; 0€(3,1).
(b) P(My) = 0.8, P(M;) =0.2, w1 (6) =8(1—6); 0 € (3,1).
(c) P(Mp) =0.2, P(M;) =08, m(0) =48 (0 — %) (1-6); 6 ¢€ (5,1).
Solution:
Recall that POM) f(x|M5)
P(Mj|x) = EASS e
k) = P FociMo) + POL) F M)
where
f(x|M;) = /f(x|9,Mi) x m;(0)df
and P(M;) is the prior probability of model i. We have
Model 0 Model 1
=3 ;<0<1
fxl0=3)=(3)° | f(x|0) = 95(11— 9)
F(x[Mo) = (3)° | f(xIMy) = [16°(1—0) m(0) db
Now we calculate the model probabilities.
Model 0 Model 1 P(My|x)
P(Mp) = 3 P(Ml):%1
f(x|My) = &5 | f(x[My) = f% 65(1—0) 2do = > P(My|x) = 0.26
P(My) =08 | P(M;)=0.2
fx|My) = & | f(x|My) = f} 0°(1 —0) 8(1 — ) do = {35 P(Mp|x) = 0.60
P(My) =02 | P(M;)=0.8
f(x|My) = &5 | f(x[My) = fél 65(1 —0) 48(60 — 3)(1 — 6) dd = 0.051 | P(Mp|x) = 0.07

2. Suppose that:

MO : Xl,XQ,... ,ano ~ f0($|91) = 90(1 - 00)5”, T = 0,1,... .

M : X1, Xo,..., X,|00 ~ fi(z]6:) = e 0% /2!, 2=0,1,....




Suppose that 6y and 6; are both unknown. Assume that my(6p) is the beta distribution with
parameters ap and Sy and 71(61) is the Gamma distribution with parameters «; and f;.
Compute the (prior) predictive means under the two models. Obtain the Bayes factor. Hence
study the dependence of the Bayes factor on prior data combinations. Calculate numerical
values for n = 2 and for two data sets 1 = o = 0 and 1 = z9 = 2 and two sets of prior
parameters ag = 1,60 = 2, a1 = 2,61 = 1 and o = 30, 8y = 60, a1 = 60, 81 = 30.

Solution:
Here 1_0o
E(X;|60) = % %, B(X;|01) = 61
We have
0y ~ Beta(ap, Bo), 61 ~ Gamma(ay, p1)
Therefore,
E(Xi|Mo) = [y 15000 Blao, Baon o (L= 00)% " dy

= rasg Jo 007 (1= 60)0 ! doo

_ Bgao 1,80+1)

- B(ao,60)

— 0

ag—1"

Now E(X;|My) = E(61) where 0, ~ Gamma(ay, B1). Therefore, E(X;|M1) = 3.

Two predictive means are equal if

o _a
ag—1 B
The Bayes factor for Model 0 is
f(x[Mo)
B
6= Fan)

where f(x|M;) is the marginal likelihood under Model s.
Let t =) z;. Here
f(X'MO) = fO 9” meao 1(1 - 00)’60 1d90
= B fO 0n+a0 1(1 90)t+,30 1d90
Bgn+a01 t+ﬂ0)

B(ao, Bo)

For the Poisson model

no gt a -
FEIM) =[5 fl Fson e g,

= IJ“Z

- IIF llw[vral JoTorrerTtemtnth e,

1 ﬁl F(H‘Ofl)
17—y @i Dea) (ntB1)tter

We now calculate numerical values of the Bayes factor.

10



ap =1, =2 | ap = 30,59 = 60
a7 :2,,31 =1 a0:60,ﬂ0:30

r1 = T = 0 1.5 2.7
Ty =129 =2 0.29 0.38
O
3. Suppose that Xi,...,X,, is a sample from the negative binomial distribution which has the

probability mass function,
-1
f(|r,0) = (Hx )m(l—a)w, £=0,1,...:0<0<1,
T

where 7 > 0 is a known integer. Suppose also that a-priori # has a beta(a, () distribution

with the pdf,
1

(a, B)

(a) Find the posterior distribution of 6.

(0) = 5 0" 1(1-0)"1 0<0<1.

(b) Suppose further that » = 2,n = 1, and we observe that z; = 1. Of the two hypotheses
H,:0 <0.5 and Hy : 8 > 0.5, which has greater posterior probability under the uniform
prior.

¢) What is the Bayes factor in favor of Hy? Does it suggest strong evidence in favor of this
Y g8 g
hypothesis?

Solution:

Here
fxlo) =TIk, (75 hera - o)
= oA — o) T T, (TreY)

Z;

Let t = ) z;. The posterior distribution is

m(0]x) o 6"(1—9)ge1(1— )P
gnr-l—a—l(l _ 9)t—|—,3—1
That is 0|x ~ Beta(nr + a,t + ).
We have n=1,r=2,a=p=1and 1 = 1.
Therefore, §|x ~ Beta(3,2).

Now 1
Pr{H, is true|x} = [ @93_1(1 —0)>~do
= 0.3125.

Since, H; and Hy are complementary

Pr{Hsis true|x} = 1 — Pr {H; is true|x} = 0.6875.

11



Therefore, Hy has greater posterior probability.
We first find the marginal likelihoods. Here

f(x|Hy)

f(x[Hz)

The Bayes factor in favor of Hs is

By (z1) =

= o
= o
— 4

f(x|Hs) _ 0.6875

NM—‘ N[ =

[262(1—0) do

ff192 (1-6)22do

= 4f1021—0)d0

f(x|H;)  0.3125

Therefore, there is some evidence in favor of Ho.

f(z1]0) m1(0) df
62(1— )2 2 do

[1 f(21]0) m2(0) dO

=2.2.

a

4. In an experiment to compare two measuring devices n1 objects are measured with the first

device, the mearsurements errors being recorded as z1, ...
with the second device, the mearsurements errors being recorded as =, +1, ...

, Tn,, and ng objects are measured
S S

assumed that measurement errors are normally distributed with zero mean. Two models are

proposed.

The first model assumes that the measuring devices are identical and variance of both devices
is ¢ (unknown). That is z1, ..., Zn,+n, is a sample of i.i.d. observations from N (0, ¢).

The second model allows for a difference between the variances, with zi,...

sample of i.i.d. observations from N (0

a¢1) and Tpnyg+41y--

Ty +n, from N(

,Tp, being a

O, ¢2)

Assume that the prior distributions for ¢, ¢1 and ¢2 are all inverse gamma distributions

(g = -

with the same m and (3 for each case.

1
T(m) ¢+l €

Obtain the Bayes factor for comparing the models.

Solution:

Consider Model 1 first. We have X7, ..

xp(=B/¢),  ¢>0
Xn1+nz 'sz\(j N(O ¢)
Zn1+n2 2

_ 1 1 ~ 34
f(x|¢) - (27r)(n1+n2)/2¢(n1+n2)/26 2¢

b

S2
2

=

1 1
@m) (1 Fn2)/2 g1 +n)/z €

12



where §? = 37112 42 The prior is:

B L s

() = T(m) gm+i°

Therefore

fx() = [57 f(x|g)m(¢) d
— 1 1 _ 157 m 1 _
= fOOO (27_r)(n1+n2)/2 ¢(n1+n2)/2e ¢ 2 Fﬂ(m) We ﬂ/d) d¢
1 S2

¥

1 g f 1 e
(2m)(m1+n2)/2 T(m) JO gm+(ni+na)/24q
— 1 pm__L(mt(ni4n2)/2)
(27)(n1+n2)/2 T(m) (/3_}_ 52)m+(n1+nz)/2

Now consider Model 2. Here X1, ..., Xn, % N(0,¢1), and Xpn,11,- -+, Xny4ny o N(0, ¢2)

and the two sets are independent. Now

1 ny 2 1 ni 2
1 1 — 5 Z': xT* 1 — Z
f(.’El, e ,.’L'n1+n2 |¢1, ¢2) = (27()("14’“2)/2 w173 e 2¢1 i=1"4 We 2¢9 i=1 n1+1
é; , 5 \
1 PR - S W
= b1 2 do 2
(27r)(n1+n2)/2 ¢;L1/2e ! ¢;2/26 2
where S? = Y™, 22 and S3 = S5? — S?. The prior is:
52m 1 B/61—B/¢
- 1— 2
(¢1’¢2) ( ) ¢m+1¢m+1e -
1 2
Therefore

fxIMy) = [ 5 f X\¢1a¢2) (¢1)7(h2) dprds
: 1+ - Ig m I‘(m—l—nli?) 7 F(m—}-’ngiZ) 73
(2m)(r1tn2 (m )<ﬂ+572> 1 (ﬂ+%§> 2

Hence the Bayes factor for Model 1 is:

2\ m+ni/2 2\ mtna/2
Bia(x) = (m) T(m+ (n1+n2)/2) (6+%> ( +%)
12 ,Bm P(m+n1/2)F(m +TL2/2) (ﬁ.*. 5_2)m+(n1+n2)/2
2

a

. Suppose that Yi,...,Y, are independently distributed as N (Bz;,0?) where 0? and x;’s are
known constants. Assume that § follows N(0,72) a-priori. Find the Bayes factor where one
model corresponds to S = 0 and the other model does not specify any particular value of
B. Hence, show that the Bayes factor is a function of the classical test statistic for testing
H() : ,8 =0.

Solution:

13



We have

1 1 - Br:)2
Flyr,- .. ynlB) = T oLy S(i—Br:)
and . 1
2
7['(’8) = _2T2ﬂ

Model 0 assumes that 8 = 0, hence
1 _ 1 2
Fs-e e Y Mo) = e 207 20
Model 1 leaves 8 unspecified. Let

1 0'2

2 1
0 = ———— and 1= 5 i Lq.
1 Y 2?2 | B B § YiZs

0-2 7-2
Therefore,
1 2 1
_ [ 1 =57 2(yi—Bzi) 1 =3y
f(y‘Ml) N ffoo (27TU2)n/26 v 1 @e 12T2
- 1 1 0 =5 Y(yi—Bzi)’— 558
= G [ N g
_1fe-p)? Tl 8}
— 1 1 foo e 2 o2 o2 ;%_
(2mo?)"/? Vomr? J =00 ) .
B 1 1 —20_—223/?4-;175% o 5z (B—B1)?
- (27r0-2)n/2 /27”_26 ) . f—ooe
1 2, 1 p2
_ 1 1w Xitefl oy
T (@2ma?)n/? onr2 1
7 1 1
_ 1 07 "3,z LY t5,2h1
T~ (@re?)n2V 72 o
Therefore,

[ T2 152
Byi(x) = o exp{—ﬁa—é}.
1 i

The first term in the above expression does not involve the observations yi, ...

Recall that > )
A YiZi A o

= , and var(f) = .
> x? P

Now consider the exponent.
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The second term varies with the observations, y1,...,y, and Byi(x) will be small if (b)°

var(B) 15
large.

This is the connection with the classical test of hypothesis. In their setup one rejects Hy if

(IR
var(d) large.
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MAG676: Bayesian Methods — Exercise Sheet 3

Suppose the problem is to simulate from 7(y). This 7(y) is to be seen as the likelihood times
the prior in the Bayesian setup. The Metropolis-Hastings algorithm makes a transition as follows.
Suppose X() = z is the current value of the chain.

1. Generate y from ¢(y|z).

2. Calculate a(z,y) = min {1’ %}_

3. Generate u from the uniform distribution in (0, 1).
4. If u < a(z,y) then set z(+1D) =y otherwise set z(*t1) = .

We need to note two special cases. The first is called the Metropolis algorithm. This corresponds
to the case q(y|z) = q(z|y). The acceptance probability of Metropolis algorithm is given by:

a(m,y):mm{ %}

The second case is a special case of the independence sampler. Suppose that the target posterior
distribution is

7(0) o< L(0) x mo(6),

where L(0) is the likelihood function and 7 (@) is the prior distribution. Suppose further that we
take the proposal distribution to be the prior distribution, i.e. ¢(0|¢) = my(f). Then

a(¢,0) = minil %}
= mi ”(9 7r0(¢>)
_ . L(O)x 7o(o
= minq1 m}
= min 1,% )

That is, if the proposal distribution is taken as the prior distribution then the Metropolis-
Hastings acceptance ratio is the ratio of the likelihood function.

1. Code (write computer programme) the Metropolis algorithm for obtaining samples from (i)
N(5,1.5%), (ii) Gamma(a = 0.5, = 1). Study the sensitivity of the algorithm with respect
to the chosen proposal scaling.

Solution:

We only give the details for part (i). Here (z) o exp { (115) (z — 5)2} . We take ¢q(y|z) =

2

N(z,0?), where o2 is called the proposal scaling. You can try different choices, e.g. 1, 2 etc.

Now
o) = win{1, 58}
exp{ - a2 - ) }

= min ]. exp{ 2(15)2(z 52}

16



which can be further simplified. Work out the gamma example yourself. See Splus program
on the web.

a

. Suppose that z1,...,z, are i.i.d. observations from a Bernoulli distribution with mean 6. A
logistic normal prior distribution is proposed for # (a normal distribution for log 10%0). Show
that if the prior mean and variance for log 10%0 are 0 and 1 respectively then the prior density
function for 0 is

0 = g (1))

As this prior distribution is not conjugate, the Bayes estimator E(f|z1,...,z,) is not di-
rectly available. It is proposed to estimate it using a Monte Carlo sample generated by the
Metropolis-Hastings method. One possible algorithm involves generating proposals from the
prior distribution, independently of the current observation. Suppose n = 10, Z%ﬁl z; = 8.
Write a Splus programme and run it to obtain the posterior mean.

Solution:

Let ¢ = log %. It is given that ¢ ~ N(0,1). Therefore

(6) = e (—59°)

The question asks us to find the pdf of §. We calculate the Jacobian

dold dp 1
dnew df  6(1-06)
Therefore )
1 1 0
0) = —————exp | — (1 ,
") = Jomea o) exP( 2 <°g1—9> )
if0<0<1.

Since X1,..., X, ~ Bernoulli(§) we have the likelihood
LO)=0'(1—-0""

where t = ) x;.

Since the proposal distribution is the prior distribution the Metropolis-Hastings acceptance
ratio is the ratio of the likelihood function, i.e.

a(z,y) = min {1,
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3. Assume that X3, Xs,...,X,, are independent identically distributed N(#,1) observations.
Suppose that the prior distribution for # is Cauchy with density

1 1
) =——= —00<0 <00
(6) w1+ 62
Derive, upto a constant of proportionality, the posterior density of 6. Suppose that the im-
portance sampling distribution is the prior distributions given above. Obtain the acceptance
probability for the rejection method and the Metropolis-Hastings independence sampler. Sup-
pose that n = 10 and £ = 1.5. Code the two methods and find the Bayes estimate for € under

squared error loss.
Solution:

Here ) )
L(O) = @nnr? €Xp (—5 Z(wz - 9)2)

= exp(—%(6-12)?),

and the prior is

1 1
)= ———.
() w1+ 62
Let us write ¢ = z and = = € then we have the posterior
1 1
7T(.T) X exXp (—g((ﬂ — 0)2) X ;m.
In the rejection method g(z) = %ﬁ Therefore
M = SUP_o<z<oo %

= SUP_co<z<oo €XP (—%(.’B - G')Z)
= 1,

since the supremum is achieved at x = a. The acceptance probability of the rejection method
is

1 7(z) n

M g(z) = exp [—5(30 — a)2] .

Now we consider the Metropolis-Hastings algorithm. Since the proposal distribution is the
prior distribution, the Metropolis-Hastings acceptance ratio is the ratio of the likelihood

a(x = min il [_ v = G)Z]
(@) = {Lexp [——(x—a)Z]}'

function, i.e.

BALE

N

a

4. Assume that X1, Xs,...,X, are independent identically distributed N(6,0?) observations.

Suppose that the joint prior distribution for # and o is
1

n(0,0%) = pox

18



Derive, upto a constant of proportionality, the joint posterior density of § and o2.

(a
(b

)

) Derive the conditional posterior distributions of  given 02 and o? given 6.
(c¢) Derive the marginal posterior density of 6.

)

(d) Write a Splus programme for Gibbs sampling from the joint posterior distribution of 6
and o2. Hence obtain the estimates of E(6|z1,...,z,) and Var(f|z1,...,z,). For your
own data set verify that the estimates are close to the true values.

Solution:
Here ) .
2 2
Therefore,
(0, 0%x) o Wexp[ 557 Z(m, —6) ] =
= (02)7},/2+1 €Xp [ % 2 Z Z; — 9 ]
Since
(@i — 0= (3 —2)* +n(0 - 7)
we have
6|02, x ~ N(z,02/n).
Also

02|0,x~IG( —n/2,8 =" (zi—0) /2)

IG denote the inverse gamma distribution.

0x) = [;°=(0 02|x do?
I W exp [— %; S (zi — 6)?] do?

K

where @« =n — 1 and

and now

Clearly we see that
0—z

NG

follows the Student t-distribution with n — 1 df.
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Therefore 8|x ~ t-distribution with n — 1 df and

Efx) =z
and ) ) .
s s*n —
-2 ) == if .
var(6|x) p var(t,—1) o3 ifn >3
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