MA676: Bayesian Methods - Exercise Sheet 1

1. Suppose that X_1, \ldots, X_n is a random sample from the distribution with pdf

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1} & \text{if } 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose also that the value of the parameter θ is unknown ($\theta > 0$) and that the prior distribution of θ is a gamma distribution with parameters α and β ($\alpha > 0$ and $\beta > 0$). Determine the posterior distribution of θ and hence obtain the Bayes estimator of θ under a squared error loss function.

Solution:

Likelihood: $f(\mathbf{x}|\theta) = \theta^n (x_1 \cdots x_n)^{\theta-1}$

Prior:
$$\pi(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}$$

$$\pi(\theta|\mathbf{x}) \propto \theta^{n+\alpha-1} e^{-\beta\theta+\theta\sum \log x_i}$$

$$= \theta^{n+\alpha-1} e^{-\theta(\beta-\sum\log x_i)}$$

Hence $\theta | \mathbf{x} \sim \operatorname{Gamma}(n + \alpha, \beta - \sum \log x_i)$.

Therefore the Bayes estimator under squared error loss is

$$E(\theta|\mathbf{x}) = \frac{n+\alpha}{\beta - \sum \log x_i}.$$

2. A Bayes estimator is required for θ under the loss function

$$L(a, \theta) = e^{c(a-\theta)} - c(a-\theta) - 1,$$

where c is a positive constant. As the constant c varies, the loss function varies from very asymmetric to almost symmetric. This is called the LINEX (LINear-EXponential) loss.

By minimising the expected loss, show that the Bayes estimator is

$$\hat{\theta} = \frac{-1}{c} \log E \left(e^{-c \theta} | \mathbf{x} \right),$$

where the expectation is under the posterior distribution $\pi(\theta|\mathbf{x})$.

Suppose that X_1, \ldots, X_n is a random sample from the normal distribution $N(\theta, \sigma^2)$ where σ^2 is known. A priori θ follows the normal distribution with mean μ and variance τ^2 where both μ and τ^2 are known. Find the Bayes estimators of θ under the above loss function and

under the squared error loss. Compare the two estimators. **Hint:** Recall the definition and the expression for the moment generating function of a normal distribution.

Solution:

(a)

We first find the expected loss.

$$E[L(a,\theta)] = \int_{-\infty}^{\infty} L(a,\theta)\pi(\theta|\mathbf{x})d\theta$$

$$= \int_{-\infty}^{\infty} \left\{ e^{c(a-\theta)} - c(a-\theta) - 1 \right\} \pi(\theta|\mathbf{x})d\theta$$

$$= \int_{-\infty}^{\infty} e^{c(a-\theta)}\pi(\theta|\mathbf{x})d\theta - c(a-\theta)\pi(\theta|\mathbf{x})d\theta - 1$$

$$= e^{ca}E\left[e^{-c\theta}|\mathbf{x}\right] - c\left\{a - E(\theta|\mathbf{x})\right\} - 1$$

$$= g(a), \text{ say}$$

It is easy to see that

$$g'(a) = ce^{ca}E\left[e^{-c\theta}|\mathbf{x}\right] - c$$
 and $g''(a) = c^2e^{ca}E\left[e^{-c\theta}|\mathbf{x}\right]$.

Hence

$$g'(a) = 0$$

$$\implies ce^{ca}E\left[e^{-c\theta}|\mathbf{x}\right] - c = 0$$

$$\implies e^{ca}E\left[e^{-c\theta}|\mathbf{x}\right] = 1$$

$$\implies ca + \log E\left[e^{-c\theta}|\mathbf{x}\right] = 0$$

$$\implies a = -\frac{1}{c}\log E\left[e^{-c\theta}|\mathbf{x}\right].$$

Therefore the Bayes estimator is

$$\hat{\theta} = -\frac{1}{c} \log E \left[e^{-c\theta} | \mathbf{x} \right].$$

(b)

From notes we have,

$$\theta | \mathbf{x} \sim N \left(\lambda = \frac{n\bar{x}/\sigma^2 + \mu/\tau^2}{n/\sigma^2 + 1/\tau^2}, \rho^2 = \frac{1}{n/\sigma^2 + 1/\tau^2} \right).$$

Note that

 $E\left[e^{-c\theta}|\mathbf{x}\right]=$ the moment generating function function of $N(\lambda,\rho^2)$ evaluated at t=-c.

However, we know that

$$M_X(t) = E(e^{tX}) = e^{\mu t + \sigma^2 t^2/2}$$
 if $X \sim N(\mu, \sigma^2)$.

Hence

$$E\left[e^{-c\theta}|\mathbf{x}\right] = e^{\lambda(-c)+\rho^2c^2/2}$$
$$= e^{-\lambda c+\rho^2c^2/2}$$

Therefore,

$$\log E\left[e^{-c\theta}|\mathbf{x}\right] = -\lambda c + \rho^2 c^2/2,$$

and the Bayes estimator is

$$\hat{\theta} = \lambda - \rho^2 c/2 = \frac{n\bar{x}/\sigma^2 + \mu/\tau^2}{n/\sigma^2 + 1/\tau^2} - \frac{c}{2(n/\sigma^2 + 1/\tau^2)}.$$

(c)

The Bayes estimator under squared error loss is

$$\tilde{\theta} = \frac{n\bar{x}/\sigma^2 + \mu/\tau^2}{n/\sigma^2 + 1/\tau^2}.$$

Here we see that $\hat{\theta} < \tilde{\theta}$ since c > 0.

3. A random variable X has a gamma distribution gamma (m, β) with pdf

$$f(x) = \frac{\beta^m}{\Gamma(m)} x^{m-1} \exp(-\beta x)$$
 $x > 0$.

Show that if Y = 1/X then Y has p.d.f.

$$f(y) = \frac{\beta^m}{\Gamma(m)} \frac{1}{y^{m+1}} \exp(-\beta/y) \qquad y > 0.$$

This is the inverse gamma distribution.

A particular measuring device has normally distributed error with mean zero and unknown variance σ^2 . In an experiment to estimate σ^2 , n independent evaluations of this error are obtained.

If the prior distribution for σ^2 is inverse gamma with parameters β and m, show that the posterior distribution is also inverse gamma, with parameters β^* and m^* , and derive expressions for β^* and m^* . Show that the predictive distribution for the error, X_{n+1} , of a further observation made by this device has p.d.f.

$$f(x_{n+1}) \propto \left(1 + \frac{x_{n+1}^2}{2\beta^*}\right)^{-m^* - \frac{1}{2}}, \quad x_{n+1} \in \mathbb{R}.$$

Solution:

(a)

Here $y = 1/x \Longrightarrow x = 1/y = r(y)$, say.

Therefore, $\frac{dx}{dy} = -\frac{1}{y^2}$ and the pdf of Y is

$$f(y) = f(r(y)) \left| \frac{dx}{dy} \right|$$

$$= \frac{\beta^m}{\Gamma(m)} \frac{1}{y^{m-1}} \exp(-\beta/y) \frac{1}{y^2},$$

$$= \frac{\beta^m}{\Gamma(m)} \frac{1}{y^{m+1}} \exp(-\beta/y), \quad y > 0.$$

(b)

We have $X_1, \ldots X_n \stackrel{iid}{\sim} N(0, \sigma^2)$. Therefore,

$$f(\mathbf{x}|\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} x_i^2}$$
$$= \frac{1}{(2\pi)^{n/2} (\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2}$$

Prior for σ^2 is

$$\pi(\sigma^2) = \frac{\beta^m}{\Gamma(m)} \frac{1}{(\sigma^2)^{m+1}} e^{-\beta/\sigma^2}.$$

Therefore, the posterior density is:

$$\pi(\sigma^{2}|\mathbf{x}) \propto \frac{1}{(\sigma^{2})^{n/2}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}} \frac{1}{(\sigma^{2})^{m+1}} e^{-\beta/\sigma^{2}},$$

$$= \frac{1}{(\sigma^{2})^{n/2+m+1}} e^{-\frac{1}{\sigma^{2}} (\beta + \frac{1}{2} \sum_{i=1}^{n} x_{i}^{2})}, \quad \sigma^{2} > 0.$$

Clearly this is the density of the inverse gamma distribution with parameters $m^* = n/2 + m$ and $\beta^* = \beta + \frac{1}{2} \sum_{i=1}^{n} x_i^2$.

(c) We proceed as follows for the posterior predictive distribution.

$$f(x_{n+1}|\mathbf{x}) = \int_{-\infty}^{\infty} f(x_{n+1}|\theta)\pi(\theta|\mathbf{x})d\theta$$

=
$$\int_{0}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}}x_{n+1}^{2}} \frac{(\beta^{*})^{m^{*}}}{\Gamma(m^{*})} \frac{1}{(\sigma^{2})^{m^{*}+1}} e^{-\beta^{*}/\sigma^{2}} d\sigma^{2},$$

\times
$$\int_{0}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}}} \frac{1}{(\sigma^{2})^{m^{*}+\frac{1}{2}+1}} e^{-\frac{1}{\sigma^{2}}(\beta^{*}+\frac{1}{2}x_{n+1}^{2})} d\sigma^{2}.$$

Now the integrand looks like the inverse gamma density with $\tilde{m} = m^* + \frac{1}{2}$ and $\tilde{\beta} = \beta^* + \frac{1}{2}x_{n+1}^2$

$$f(x_{n+1}|\mathbf{x}) \propto \frac{\Gamma(\tilde{m})}{(\tilde{\beta})\tilde{m}} = \frac{\Gamma(m^* + \frac{1}{2})}{(\beta^* + \frac{1}{2}x_{n+1}^2)^{m^* + \frac{1}{2}}} \\ \propto (\beta^* + \frac{1}{2}x_{n+1}^2)^{-m^* - \frac{1}{2}} \\ \propto \left(1 + \frac{x_{n+1}^2}{2\beta^*}\right)^{-m^* - \frac{1}{2}}.$$

4. Assume Y_1, Y_2, \ldots, Y_n are independent observations which have the normal distribution with mean βx_i and variance σ^2 , where the x_i s and σ^2 are known constants, and β is an unknown parameter, which has a normal prior distribution with mean β_0 and variance τ^2 , where β_0 and τ^2 are known constants.

- (a) Derive the posterior distribution of β .
- (b) Show that the mean of the posterior distribution is a weighted average of the prior mean β_0 , and the maximum likelihood estimator of β .
- (c) Find the limit of the posterior distribution as $\tau^2 \to \infty$, and discuss the result.
- (d) How would you predict a future observation from the population $N(\beta x_{n+1}, \sigma^2)$, where x_{n+1} is known?

Solution:

We have $Y_1, \ldots, Y_n \stackrel{iid}{\sim} N(\beta x_i, \sigma^2)$.

Therefore,

$$f(y_1, \dots, y_n | \beta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - \beta x_i)^2} \\ \propto e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta x_i)^2}.$$

Prior is

$$\pi(\beta) = \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{1}{2\tau^2}(\beta - \beta_0)^2}$$

Therefore, posterior is:

$$\pi(\beta|\mathbf{y}) \propto e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \beta x_i)^2 - \frac{1}{2\tau^2}(\beta - \beta_0)^2}$$

$$= e^{-\frac{1}{2}\left\{\frac{1}{\sigma^2}\sum_{i=1}^n (y_i - \beta x_i)^2 + \frac{1}{\tau^2}(\beta - \beta_0)^2\right\}}$$

$$= e^{-\frac{1}{2}M}, \text{ say.}$$

Now

$$\begin{array}{lcl} M & = & \frac{\sum y_i^2}{\sigma^2} - 2\beta \frac{\sum y_i x_i}{\sigma^2} + \beta^2 \frac{\sum x_i^2}{\sigma^2} + \beta^2 \frac{1}{\tau^2} - 2\beta \frac{\beta_0}{\sigma^2} + \frac{\beta_0^2}{\tau^2} \\ & = & \beta^2 \left(\frac{\sum x_i^2}{\sigma^2} + \frac{1}{\tau^2} \right) - 2\beta \left(\frac{\sum y_i x_i}{\sigma^2} + \frac{\beta_0}{\tau^2} \right) + \frac{\sum y_i^2}{\sigma^2} + \frac{\beta_0^2}{\tau^2} \\ & = & \beta^2 \left(\frac{1}{\sigma_1^2} \right) - 2\beta \frac{\beta_1}{\sigma_1^2} + \frac{\sum y_i^2}{\sigma^2} + \frac{\beta_0^2}{\tau^2} \\ & = & \frac{(\beta - \beta_1)^2}{\sigma_1^2} - \frac{1}{\sigma_1^2} \left(\frac{\sum y_i x_i}{\sigma^2} + \frac{\beta_0}{\tau^2} \right)^2 + \frac{\sum y_i^2}{\sigma^2} + \frac{\beta_0^2}{\tau^2} \end{array}$$

where

$$\sigma_1^2 = \frac{1}{\frac{\sum x_i^2}{\sigma^2} + \frac{1}{\tau^2}} \quad \text{and} \quad \beta_1 = \sigma_1^2 \left(\frac{\sum y_i x_i}{\sigma^2} + \frac{\beta_0}{\tau^2} \right).$$

Clearly,

$$\beta | \mathbf{y} \sim N(\beta_1, \sigma_1^2).$$

(b)

Define

$$\hat{\beta} = \frac{\sum y_i x_i}{\sum x_i^2}$$

which is the maximum likelihood estimate of β . We have

$$\beta_{1} = \sigma_{1}^{2} \left(\frac{\sum y_{i}x_{i}}{\sigma^{2}} + \frac{\beta_{0}}{\tau^{2}} \right)$$

$$= \frac{\sum y_{i}x_{i}}{\sigma^{2}} + \frac{\beta_{0}}{\tau^{2}}$$

$$= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} + \frac{1}{\tau^{2}}$$

$$= \frac{\tau^{2} \sum y_{i}x_{i} + \sigma^{2}\beta_{0}}{\tau^{2} \sum x_{i}^{2} + \sigma^{2}}$$

$$= \frac{\tau^{2} \sum y_{i}x_{i}^{2} + \sigma^{2}\beta_{0}}{\tau^{2} + \frac{\sigma^{2}}{\sum x_{i}^{2}}}$$

$$= \frac{y_{1}\hat{\beta} + y_{2}\beta_{0}}{y_{1} + y_{2}}$$

where

$$w_1 = \tau^2 \text{ and } w_2 = \frac{\sigma^2}{\sum x_i^2}.$$

 (\mathbf{c})

As $\tau^2 \to \infty$, $\sigma_1^2 \to \frac{\sigma^2}{\sum x_i^2}$. That is

$$eta | \mathbf{y} \sim N\left(\hat{eta}, \; rac{\sigma^2}{\sum x_i^2}
ight) \ i.e. \; \; eta | \mathbf{y} \sim N\left(\hat{eta}, \; \mathrm{var}(\hat{eta})
ight).$$

Hence inference for β using the posterior will be same as that based on the maximum likelihood estimate.

(c) We want

$$f(y_{n+1}|\mathbf{y}) = \int_{-\infty}^{\infty} f(y_{n+1}|\beta)\pi(\beta|\mathbf{y})d\beta.$$

Although this can be derived from the first principles, we take a different approach to solve this.

We use two results on conditional expectation:

$$E(X) = EE(X|Y), \quad var(X) = Evar(X|Y) + var E(X|Y).$$

We take $X = Y_{n+1}$ and $Y = \beta$. We also have $Y_{n+1}|\beta \sim N(\beta x_{n+1}, \sigma^2)$ and $\beta|\mathbf{y} \sim N(\beta_1, \sigma_1^2)$. Now

$$E(Y_{n+1}|\mathbf{y}) = E(\beta x_{n+1}) = \beta_1 x_{n+1}.$$

$$var(Y_{n+1}|\mathbf{y}) = E[var(Y_{n+1}|\beta)] + var[E(Y_{n+1}|\beta)]$$

$$= E[\sigma^2] + var[\beta x_{n+1}]$$

$$= \sigma^2 + x_{n+1}^2 \sigma_1^2$$

Also we can write

$$Y_{n+1}|\mathbf{y} = x_{n+1}\beta|\mathbf{y} + \epsilon$$

where $\beta|\mathbf{y}$ follows $N(\beta_1, \sigma_1^2)$ and ϵ follows $N(0, \sigma^2)$ independently. Hence $Y_{n+1}|\mathbf{y}$ follows a normal distribution. Therefore,

$$Y_{n+1}|\mathbf{y} \sim N(\beta_1 x_{n+1}, \sigma^2 + x_{n+1}^2 \sigma_1^2).$$

5. Let Y_1, Y_2, \ldots, Y_n be a sequence of independent, identically distributed random variables with probability density function

$$f(y|\lambda) = \begin{cases} \lambda e^{-\lambda y}, & y > 0\\ 0, & \text{otherwise} \end{cases}$$

where λ is an unknown, positive parameter with a gamma (m,β) prior distribution (see above).

- (a) Show that the posterior distribution of λ given $Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n$ is $\operatorname{gamma}(n+m,\beta+t)$ where $t = \sum_{i=1}^n y_i$.
- (b) Show that the (predictive) density of Y_{n+1} given the *n* observations $Y_1 = y_1, Y_2 = y_2, \ldots, Y_n = y_n$ is

$$\pi(y_{n+1}|y_1,\ldots,y_n) = \frac{(n+m)(\beta+t)^{n+m}}{(y_{n+1}+\beta+t)^{n+m+1}}.$$

(c) Find the joint (predictive) density of Y_{n+1} and Y_{n+2} given $Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n$.

Solution:

(a) Here

$$f(\mathbf{y}|\lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n y_i}$$

and

$$\pi(\lambda) = \frac{\beta^m}{\Gamma(m)} \lambda^{m-1} e^{-\beta \lambda}$$

The posterior is

$$\pi(\lambda|\mathbf{y}) \propto f(\mathbf{y}|\lambda) \times \pi(\lambda) \\ \propto \lambda^{m+n-1} e^{-\lambda(\beta + \sum_{i=1}^{n} y_i)}.$$

Clearly $\lambda | \mathbf{y} \sim Gamma(m+n, \beta + \sum_{i=1}^{n} y_i)$.

(b)

We have $f(y_{n+1}|\lambda) = \lambda e^{-\lambda y_{n+1}}$. Now

$$f(y_{n+1}|\mathbf{y}) = \int_{0}^{\infty} f(y_{n+1}|\lambda) \, \pi(\lambda|\mathbf{y}) d\lambda$$

$$= \int_{0}^{\infty} \lambda e^{-\lambda y_{n+1}} \frac{(\beta+t)^{m+n}}{\Gamma(m+n)} \lambda^{m+n-1} e^{-(\beta+t)\lambda}$$

$$= \frac{(\beta+t)^{m+n}}{\Gamma(m+n)} \int_{0}^{\infty} \lambda^{m+n+1-1} e^{-(\beta+t+y_{n+1})\lambda}$$

$$= \frac{(\beta+t)^{m+n}}{\Gamma(m+n)} \frac{\Gamma(m+n+1)}{(\beta+t+y_{n+1})^{m+n}}$$

$$= \frac{(n+m)(\beta+t)^{n+m}}{(y_{n+1}+\beta+t)^{n+m+1}},$$

where $y_{n+1} > 0$.

We have $f(y_{n+2}, y_{n+1}|\lambda) = \lambda^2 e^{-\lambda(y_{n+2}+y_{n+1})}$, since Y_{n+2} and Y_{n+1} are conditionally independent given λ . Now

$$f(y_{n+2}, y_{n+1}|\mathbf{y}) = \int_0^\infty f(y_{n+2}, y_{n+1}|\lambda) \pi(\lambda|\mathbf{y}) d\lambda$$

$$= \int_0^\infty \lambda^2 e^{-\lambda(y_{n+2} + y_{n+1})} \frac{(\beta+t)^{m+n}}{\Gamma(m+n)} \lambda^{m+n-1} e^{-(\beta+t)\lambda}$$

$$= \frac{(n+m+1)(n+m)(\beta+t)^{n+m}}{(y_{n+2} + y_{n+1} + \beta+t)^{n+m+2}},$$

where $y_{n+2} > 0$ and $y_{n+1} > 0$.

MA676: Bayesian Methods - Exercise Sheet 2

1. Let X_1, X_2, \ldots, X_6 be a sequence of independent, identically distributed Bernoulli random variables with parameter θ , and suppose that $x_1 = x_2 = x_3 = x_4 = x_5 = 1$ and $x_6 = 0$.

Derive the posterior model probabilities for Model $0: \theta = \frac{1}{2}$ and Model $1: \theta > \frac{1}{2}$, assuming the following prior distributions:

(a)
$$P(M_0) = 0.5$$
, $P(M_1) = 0.5$, $\pi_1(\theta) = 2$; $\theta \in (\frac{1}{2}, 1)$.

(b)
$$P(M_0) = 0.8$$
, $P(M_1) = 0.2$, $\pi_1(\theta) = 8(1 - \theta)$; $\theta \in (\frac{1}{2}, 1)$.

(c)
$$P(M_0) = 0.2$$
, $P(M_1) = 0.8$, $\pi_1(\theta) = 48 \left(\theta - \frac{1}{2}\right) (1 - \theta)$; $\theta \in \left(\frac{1}{2}, 1\right)$.

Solution:

Recall that

$$P(M_i|\mathbf{x}) = rac{P(M_i)f(\mathbf{x}|M_i)}{P(M_0)f(\mathbf{x}|M_0) + P(M_1)f(\mathbf{x}|M_0)}$$

where

$$f(\mathbf{x}|M_i) = \int f(\mathbf{x}| heta, M_i) imes \pi_i(heta) d heta$$

and $P(M_i)$ is the prior probability of model i. We have

Model 0	Model 1
$ heta=rac{1}{2}$	$\frac{1}{2} < \theta < 1$
$f(\mathbf{x} \theta = \frac{1}{2}) = (\frac{1}{2})^6$	$f(\mathbf{x} \theta) = \theta^5(1-\theta)$
$f(\mathbf{x} M_0)=(rac{1}{2})^6$	$f(\mathbf{x} M_1) = \int_{rac{1}{2}}^1 heta^5 (1- heta) \ \pi_1(heta) d heta$

Now we calculate the model probabilities.

Model 0	Model 1	$P(M_0 \mathbf{x})$
$P(M_0) = \frac{1}{2}$	$P(M_1)=rac{1}{2}$	
$f(\mathbf{x} M_0) = rac{1}{64}$	$f(\mathbf{x} M_1) = \int_{\frac{1}{2}}^{1} \theta^5 (1-\theta) \ 2 d\theta = \frac{5}{112}$	$P(M_0 \mathbf{x}) = 0.26$
$P(M_0) = 0.8$	$P(M_1) = 0.2$	
$f(\mathbf{x} M_0)=rac{1}{64}$	$f(\mathbf{x} M_1) = \int_{\frac{1}{2}}^{1} \theta^5 (1-\theta) \ 8(1-\theta) \ d\theta = \frac{73}{1792}$	$P(M_0 \mathbf{x}) = 0.60$
$P(M_0) = 0.2$	$P(M_1) = 0.8$	
$f(\mathbf{x} M_0) = rac{1}{64}$	$f(\mathbf{x} M_1) = \int_{\frac{1}{2}}^{1} \theta^5 (1-\theta) \ 48(\theta - \frac{1}{2})(1-\theta) \ d\theta = 0.051$	$P(M_0 \mathbf{x}) = 0.07$

2. Suppose that:

$$M_0: X_1, X_2, \dots, X_n | \theta_0 \sim f_0(x|\theta_1) = \theta_0(1-\theta_0)^x, \quad x = 0, 1, \dots$$

$$M_1: X_1, X_2, \dots, X_n | \theta_1 \sim f_1(x|\theta_1) = e^{-\theta_1} \theta_1^x / x!, \quad x = 0, 1, \dots$$

Suppose that θ_0 and θ_1 are both unknown. Assume that $\pi_0(\theta_0)$ is the beta distribution with parameters α_0 and β_0 and $\pi_1(\theta_1)$ is the Gamma distribution with parameters α_1 and β_1 . Compute the (prior) predictive means under the two models. Obtain the Bayes factor. Hence study the dependence of the Bayes factor on prior data combinations. Calculate numerical values for n=2 and for two data sets $x_1=x_2=0$ and $x_1=x_2=2$ and two sets of prior parameters $\alpha_0=1,\beta_0=2,\ \alpha_1=2,\beta_1=1$ and $\alpha_0=30,\beta_0=60,\ \alpha_1=60,\beta_1=30$.

Solution:

Here

$$E(X_i| heta_0)=rac{1- heta_0}{ heta_0},\,\,E(X_i| heta_1)= heta_1.$$

We have

$$\theta_0 \sim Beta(\alpha_0, \beta_0), \quad \theta_1 \sim Gamma(\alpha_1, \beta_1)$$

Therefore,

$$E(X_{i}|M_{0}) = \int_{0}^{1} \frac{1-\theta_{0}}{\theta_{0}} \frac{1}{B(\alpha_{0},\beta_{0})} \theta_{0}^{\alpha_{0}-1} (1-\theta_{0})^{\beta_{0}-1} d\theta_{0}$$

$$= \frac{1}{B(\alpha_{0},\beta_{0})} \int_{0}^{1} \theta_{0}^{\alpha_{0}-1-1} (1-\theta_{0})^{\beta_{0}+1-1} d\theta_{0}$$

$$= \frac{B(\alpha_{0}-1,\beta_{0}+1)}{B(\alpha_{0},\beta_{0})}$$

$$= \frac{\beta_{0}}{\alpha_{0}-1}.$$

Now $E(X_i|M_1) = E(\theta_1)$ where $\theta_1 \sim Gamma(\alpha_1, \beta_1)$. Therefore, $E(X_i|M_1) = \frac{\alpha_1}{\beta_1}$.

Two predictive means are equal if

$$\frac{\beta_0}{\alpha_0 - 1} = \frac{\alpha_1}{\beta_1}.$$

The Bayes factor for Model 0 is

$$B_{01}(\mathbf{x}) = \frac{f(\mathbf{x}|M_0)}{f(\mathbf{x}|M_1)}$$

where $f(\mathbf{x}|M_i)$ is the marginal likelihood under Model i.

Let $t = \sum x_i$. Here

$$f(\mathbf{x}|M_0) = \int_0^1 \theta_0^n (1-\theta_0)^t \frac{1}{B(\alpha_0, \beta_0)} \theta_0^{\alpha_0-1} (1-\theta_0)^{\beta_0-1} d\theta_0$$

$$= \frac{1}{B(\alpha_0, \beta_0)} \int_0^1 \theta_0^{n+\alpha_0-1} (1-\theta_0)^{t+\beta_0-1} d\theta_0$$

$$= \frac{B(n+\alpha_0, t+\beta_0)}{B(\alpha_0, \beta_0)}$$

For the Poisson model

$$\begin{array}{lcl} f(\mathbf{x}|M_1) & = & \int_0^\infty \frac{e^{-n\theta_1}\theta_1^t}{\prod_{i=1}^n x_i!} \frac{\beta_1^{\alpha_1}}{\Gamma(\alpha_1)} \theta_1^{\alpha_1-1} e^{-\beta_1\theta_1} d\theta_1 \\ & = & \frac{1}{\prod_{i=1}^n x_i!} \frac{\beta_1^{\alpha_1}}{\Gamma(\alpha_1)} \int_0^\infty \theta_1^{t+\alpha_1-1} e^{-\theta(n+\beta_1)} d\theta_1 \\ & = & \frac{1}{\prod_{i=1}^n x_i!} \frac{\beta_1^{\alpha_1}}{\Gamma(\alpha_1)} \frac{\Gamma(t+\alpha_1)}{(n+\beta_1)^{t+\alpha_1}} \end{array}$$

We now calculate numerical values of the Bayes factor.

	$\alpha_0 = 1, \beta_0 = 2$	$ \alpha_0 = 30, \beta_0 = 60 $ $ \alpha_0 = 60, \beta_0 = 30 $		
	$\alpha_1=2,\beta_1=1$	$\alpha_0 = 60, \beta_0 = 30$		
$x_1 = x_2 = 0$	1.5	2.7		
$x_1 = x_2 = 2$	0.29	0.38		

3. Suppose that X_1, \ldots, X_n is a sample from the negative binomial distribution which has the probability mass function,

$$f(x|r,\theta) = {r+x-1 \choose x} \theta^r (1-\theta)^x, \quad x = 0, 1, \dots; \ 0 < \theta < 1,$$

where r > 0 is a known integer. Suppose also that a-priori θ has a beta(α , β) distribution with the pdf,

$$\pi(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}, \ 0 < \theta < 1.$$

- (a) Find the posterior distribution of θ .
- (b) Suppose further that r = 2, n = 1, and we observe that $x_1 = 1$. Of the two hypotheses $H_1: \theta \leq 0.5$ and $H_2: \theta > 0.5$, which has greater posterior probability under the uniform prior.
- (c) What is the Bayes factor in favor of H_2 ? Does it suggest strong evidence in favor of this hypothesis?

Solution:

Here

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} {r+x_i-1 \choose x_i} \theta^r (1-\theta)^{x_i}$$

= $\theta^{nr} (1-\theta)^{\sum x_i} \prod_{i=1}^{n} {r+x_i-1 \choose x_i}$

Let $t = \sum x_i$. The posterior distribution is

$$\pi(\theta|\mathbf{x}) \propto \theta^{nr} (1-\theta)^t \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

= $\theta^{nr+\alpha-1} (1-\theta)^{t+\beta-1}$

That is $\theta | \mathbf{x} \sim Beta(nr + \alpha, t + \beta)$.

We have $n = 1, r = 2, \alpha = \beta = 1$ and $x_1 = 1$.

Therefore, $\theta | \mathbf{x} \sim Beta(3, 2)$.

Now

$$Pr\{H_1 \text{ is true}|\mathbf{x}\} = \int_0^{\frac{1}{2}} \frac{1}{B(3,2)} \theta^{3-1} (1-\theta)^{2-1} d\theta$$

= = 0.3125.

Since, H_1 and H_2 are complementary

$$Pr\{H_2 \text{ is true}|\mathbf{x}\} = 1 - Pr\{H_1 \text{ is true}|\mathbf{x}\} = 0.6875.$$

Therefore, H_2 has greater posterior probability.

We first find the marginal likelihoods. Here

$$f(\mathbf{x}|H_1) = \int_0^{\frac{1}{2}} f(x_1|\theta) \, \pi_1(\theta) \, d\theta$$

$$= \int_0^{\frac{1}{2}} \theta^2 (1-\theta) 2 \, 2 \, d\theta$$

$$= 4 \int_0^{\frac{1}{2}} \theta^2 (1-\theta) \, d\theta$$

$$f(\mathbf{x}|H_2) = \int_{\frac{1}{2}}^{\frac{1}{2}} f(x_1|\theta) \, \pi_2(\theta) \, d\theta$$

$$= \int_{\frac{1}{2}}^{\frac{1}{2}} \theta^2 (1-\theta) 2 \, 2 \, d\theta$$

$$= 4 \int_{\frac{1}{2}}^{\frac{1}{2}} \theta^2 (1-\theta) \, d\theta$$

The Bayes factor in favor of H_2 is

$$B_{21}(x_1) = \frac{f(\mathbf{x}|H_2)}{f(\mathbf{x}|H_1)} = \frac{0.6875}{0.3125} = 2.2.$$

Therefore, there is some evidence in favor of H_2 .

4. In an experiment to compare two measuring devices n_1 objects are measured with the first device, the measurements errors being recorded as x_1, \ldots, x_{n_1} , and n_2 objects are measured with the second device, the measurements errors being recorded as $x_{n_1+1}, \ldots, x_{n_1+n_2}$. It is assumed that measurement errors are normally distributed with zero mean. Two models are proposed.

The first model assumes that the measuring devices are identical and variance of both devices is ϕ (unknown). That is $x_1, \ldots, x_{n_1+n_2}$ is a sample of i.i.d. observations from $N(0, \phi)$.

The second model allows for a difference between the variances, with x_1, \ldots, x_{n_1} being a sample of i.i.d. observations from $N(0, \phi_1)$ and $x_{n_1+1}, \ldots, x_{n_1+n_2}$ from $N(0, \phi_2)$.

Assume that the prior distributions for ϕ , ϕ_1 and ϕ_2 are all inverse gamma distributions

$$\pi(\phi) = \frac{\beta^m}{\Gamma(m)} \frac{1}{\phi^{m+1}} \exp(-\beta/\phi), \qquad \phi > 0$$

with the same m and β for each case.

Obtain the Bayes factor for comparing the models.

Solution:

Consider Model 1 first. We have $X_1, \ldots, X_{n_1+n_2} \stackrel{iid}{\sim} N(0, \phi)$.

$$\begin{array}{lcl} f(\mathbf{x}|\phi) & = & \frac{1}{(2\pi)^{(n_1+n_2)/2}} \frac{1}{\phi^{(n_1+n_2)/2}} e^{-\frac{1}{2\phi} \sum_{i=1}^{n_1+n_2} x_i^2} \\ & = & \frac{1}{(2\pi)^{(n_1+n_2)/2}} \frac{1}{\phi^{(n_1+n_2)/2}} e^{-\frac{1}{\phi} \frac{S^2}{2}} \end{array}$$

where $S^2 = \sum_{i=1}^{n_1 + n_2} x_i^2$. The prior is:

$$\pi(\phi) = rac{eta^m}{\Gamma(m)} rac{1}{\phi^{m+1}} e^{-eta/\phi}.$$

Therefore

$$f(\mathbf{x}|M_{1}) = \int_{0}^{\infty} f(\mathbf{x}|\phi)\pi(\phi) d\phi$$

$$= \int_{0}^{\infty} \frac{1}{(2\pi)^{(n_{1}+n_{2})/2}} \frac{1}{\phi^{(n_{1}+n_{2})/2}} e^{-\frac{1}{\phi}\frac{S^{2}}{2}} \frac{\beta^{m}}{\Gamma(m)} \frac{1}{\phi^{m+1}} e^{-\beta/\phi} d\phi$$

$$= \frac{1}{(2\pi)^{(n_{1}+n_{2})/2}} \frac{\beta^{m}}{\Gamma(m)} \int_{0}^{\infty} \frac{1}{\phi^{m+(n_{1}+n_{2})/2}+1} e^{-\frac{1}{\phi}(\beta+\frac{S^{2}}{2})} d\phi$$

$$= \frac{1}{(2\pi)^{(n_{1}+n_{2})/2}} \frac{\beta^{m}}{\Gamma(m)} \frac{\Gamma(m+(n_{1}+n_{2})/2)}{\left(\beta+\frac{S^{2}}{2}\right)^{m+(n_{1}+n_{2})/2}}.$$

Now consider Model 2. Here $X_1, \ldots, X_{n_1} \stackrel{iid}{\sim} N(0, \phi_1)$, and $X_{n_1+1}, \ldots, X_{n_1+n_2} \stackrel{iid}{\sim} N(0, \phi_2)$ and the two sets are independent. Now

$$f(x_1, \dots, x_{n_1+n_2}|\phi_1, \phi_2) = \frac{1}{(2\pi)^{(n_1+n_2)/2}} \frac{1}{\phi_1^{n_1/2}} e^{-\frac{1}{2\phi_1} \sum_{i=1}^{n_1} x_i^2} \frac{1}{\phi_2^{n_2/2}} e^{-\frac{1}{2\phi_2} \sum_{i=1}^{n_1} x_{n_1+i}^2}$$

$$= \frac{1}{(2\pi)^{(n_1+n_2)/2}} \frac{1}{\phi_1^{n_1/2}} e^{-\frac{1}{\phi_1} \frac{S_1^2}{2}} \frac{1}{\phi_2^{n_2/2}} e^{-\frac{1}{\phi_2} \frac{S_2^2}{2}}$$

where $S_1^2 = \sum_{i=1}^{n_1} x_i^2$ and $S_2^2 = S^2 - S_1^2$. The prior is:

$$\pi(\phi_1,\phi_2) = rac{eta^{2m}}{\Gamma^2(m)} rac{1}{\phi_1^{m+1}\phi_2^{m+1}} e^{-eta/\phi_1-eta/\phi_2}.$$

Therefore

$$\begin{array}{lcl} f(\mathbf{x}|M_2) & = & \int_0^\infty \int_0^\infty f(\mathbf{x}|\phi_1,\phi_2) \pi(\phi_1) \pi(\phi_2) \ d\phi_1 d\phi_2 \\ & = & \frac{1}{(2\pi)^{(n_1+n_2)/2}} \frac{\beta^{2m}}{\Gamma^2(m)} \frac{\Gamma(m+n_1/2)}{\left(\beta + \frac{S_1^2}{2}\right)^{m+n_1/2}} \frac{\Gamma(m+n_2/2)}{\left(\beta + \frac{S_2^2}{2}\right)^{m+n_2/2}}. \end{array}$$

Hence the Bayes factor for Model 1 is:

$$B_{12}(\mathbf{x}) = \frac{\Gamma(m)}{\beta^m} \frac{\Gamma(m + (n_1 + n_2)/2)}{\Gamma(m + n_1/2)\Gamma(m + n_2/2)} \frac{\left(\beta + \frac{S_1^2}{2}\right)^{m + n_1/2} \left(\beta + \frac{S_2^2}{2}\right)^{m + n_2/2}}{\left(\beta + \frac{S^2}{2}\right)^{m + (n_1 + n_2)/2}}.$$

5. Suppose that Y_1, \ldots, Y_n are independently distributed as $N(\beta x_i, \sigma^2)$ where σ^2 and x_i 's are known constants. Assume that β follows $N(0, \tau^2)$ a-priori. Find the Bayes factor where one model corresponds to $\beta = 0$ and the other model does not specify any particular value of β . Hence, show that the Bayes factor is a function of the classical test statistic for testing $H_0: \beta = 0$.

Solution:

We have

$$f(y_1, \dots, y_n | eta) = rac{1}{(2\pi\sigma^2)^{n/2}} e^{-rac{1}{2\sigma^2} \sum (y_i - eta x_i)^2}$$

and

$$\pi(\beta) = \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{1}{2\tau^2}\beta^2}.$$

Model 0 assumes that $\beta = 0$, hence

$$f(y_1,\ldots,y_n|M_0) = rac{1}{(2\pi\sigma^2)^{n/2}}e^{-rac{1}{2\sigma^2}\sum y_i^2}.$$

Model 1 leaves β unspecified. Let

$$\sigma_1^2 = \frac{1}{\frac{\sum x_i^2}{\sigma^2} + \frac{1}{\tau^2}}$$
 and $\beta_1 = \frac{\sigma_1^2}{\sigma^2} \sum y_i x_i$.

Therefore,

$$f(\mathbf{y}|M_1) = \int_{-\infty}^{\infty} \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum (y_i - \beta x_i)^2} \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{1}{2\tau^2} \beta^2} d\beta$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \frac{1}{\sqrt{2\pi\tau^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^2} \sum (y_i - \beta x_i)^2 - \frac{1}{2\tau^2} \beta^2} d\beta$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \frac{1}{\sqrt{2\pi\tau^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} \left\{ \frac{(\beta - \beta_1)^2}{\sigma_1^2} + \frac{\sum y_i^2}{\sigma^2} - \frac{\beta_1^2}{\sigma_1^2} \right\}} d\beta$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{1}{2\sigma^2} \sum y_i^2 + \frac{1}{2\sigma_1^2} \beta_1^2} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma_1^2} (\beta - \beta_1)^2} d\beta$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{1}{2\sigma^2} \sum y_i^2 + \frac{1}{2\sigma_1^2} \beta_1^2} \sqrt{2\pi\sigma_1^2}$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \sqrt{\frac{\sigma_1^2}{\tau^2}} e^{-\frac{1}{2\sigma^2} \sum y_i^2 + \frac{1}{2\sigma_1^2} \beta_1^2}.$$

Therefore,

$$B_{01}(\mathbf{x}) = \sqrt{\frac{\tau^2}{\sigma_1^2}} \exp\left\{-\frac{1}{2}\frac{\beta_1^2}{\sigma_1^2}\right\}.$$

The first term in the above expression does not involve the observations y_1, \ldots, y_n .

Recall that

$$\hat{\beta} = \frac{\sum y_i x_i}{\sum x_i^2}$$
, and $\operatorname{var}(\hat{\beta}) = \frac{\sigma^2}{\sum x_i^2}$.

Now consider the exponent.

$$\begin{array}{rcl} \frac{\beta_{1}^{2}}{\sigma_{1}^{2}} & = & \sigma_{1}^{2} \left(\frac{\sum y_{i}x_{i}}{\sigma^{2}} \right)^{2} \\ & = & \frac{\sigma_{1}^{2}}{\sigma^{4}} \left(\sum y_{i}x_{i} \right)^{2} \\ & = & \frac{\sigma_{1}^{2}}{\sigma^{4}} \left(\sum x_{i}^{2} \right)^{2} \left(\frac{\sum y_{i}x_{i}}{\sum x_{i}^{2}} \right)^{2} \\ & = & \sigma_{1}^{2} \left(\frac{\sum x_{i}^{2}}{\sigma^{2}} \right) \left(\frac{\sum x_{i}^{2}}{\sigma^{2}} \right) \hat{\beta}^{2} \\ & = & \sigma_{1}^{2} \frac{\sum x_{i}^{2}}{\sigma^{2}} \frac{(\hat{\beta})^{2}}{\text{var}(\hat{\beta})} \\ & = & \frac{\sum \frac{x_{i}^{2}}{\sigma^{2}}}{\sum \frac{x_{i}^{2}}{\sigma^{2}} + \frac{1}{\tau^{2}}} \frac{(\hat{\beta})^{2}}{\text{var}(\hat{\beta})}. \end{array}$$

The second term varies with the observations, y_1, \ldots, y_n and $B_{01}(\mathbf{x})$ will be small if $\frac{(\hat{\beta})^2}{\operatorname{var}(\hat{\beta})}$ is large.

This is the connection with the classical test of hypothesis. In their setup one rejects H_0 if $\frac{(\hat{\beta})^2}{\text{var}(\hat{\beta})}$ is large.

MA676: Bayesian Methods - Exercise Sheet 3

Suppose the problem is to simulate from $\pi(y)$. This $\pi(y)$ is to be seen as the likelihood times the prior in the Bayesian setup. The Metropolis-Hastings algorithm makes a transition as follows. Suppose $X^{(t)} = x$ is the current value of the chain.

- 1. Generate y from q(y|x).
- 2. Calculate $\alpha(x, y) = \min \left\{ 1, \frac{\pi(y)q(x|y)}{\pi(x)q(y|x)} \right\}$.
- 3. Generate u from the uniform distribution in (0, 1).
- 4. If $u < \alpha(x,y)$ then set $x^{(t+1)} = y$ otherwise set $x^{(t+1)} = x$.

We need to note two special cases. The first is called the Metropolis algorithm. This corresponds to the case q(y|x) = q(x|y). The acceptance probability of Metropolis algorithm is given by:

$$\alpha(x,y) = \min\left\{1, \frac{\pi(y)}{\pi(x)}\right\}.$$

The second case is a special case of the independence sampler. Suppose that the target posterior distribution is

$$\pi(\theta) \propto L(\theta) \times \pi_0(\theta)$$

where $L(\theta)$ is the likelihood function and $\pi_0(\theta)$ is the prior distribution. Suppose further that we take the proposal distribution to be the prior distribution, i.e. $q(\theta|\phi) = \pi_0(\theta)$. Then

$$\alpha(\phi, \theta) = \min \left\{ 1, \frac{\pi(\theta)q(\phi|\theta)}{\pi(\phi)q(\theta|\phi)} \right\}$$

$$= \min \left\{ 1, \frac{\pi(\theta)\pi_0(\phi)}{\pi(\phi)\pi_0(\theta)} \right\}$$

$$= \min \left\{ 1, \frac{L(\theta)\times\pi_0(\theta)\pi_0(\phi)}{L(\phi)\times\pi_0(\phi)\pi_0(\theta)} \right\}$$

$$= \min \left\{ 1, \frac{L(\theta)}{L(\phi)} \right\}.$$

That is, if the proposal distribution is taken as the prior distribution then the Metropolis-Hastings acceptance ratio is the ratio of the likelihood function.

1. Code (write computer programme) the Metropolis algorithm for obtaining samples from (i) $N(5, 1.5^2)$, (ii) Gamma($\alpha = 0.5, \beta = 1$). Study the sensitivity of the algorithm with respect to the chosen proposal scaling.

Solution:

We only give the details for part (i). Here $\pi(x) \propto \exp\left\{-\frac{1}{2(1.5)^2}(x-5)^2\right\}$. We take $q(y|x) = N(x, \sigma^2)$, where σ^2 is called the proposal scaling. You can try different choices, e.g. 1, 2 etc. Now

$$\alpha(x,y) = \min\left\{1, \frac{\pi(y)}{\pi(x)}\right\}$$

$$= \min\left\{1, \frac{\exp\left\{-\frac{1}{2(1.5)^2}(y-5)^2\right\}}{\exp\left\{-\frac{1}{2(1.5)^2}(x-5)^2\right\}}\right\}$$

which can be further simplified. Work out the gamma example yourself. See Splus program on the web.

2. Suppose that x_1, \ldots, x_n are i.i.d. observations from a Bernoulli distribution with mean θ . A logistic normal prior distribution is proposed for θ (a normal distribution for $\log \frac{\theta}{1-\theta}$). Show that if the prior mean and variance for $\log \frac{\theta}{1-\theta}$ are 0 and 1 respectively then the prior density function for θ is

$$\pi(\theta) = \frac{1}{\sqrt{2\pi}\theta(1-\theta)} \exp\left(-\frac{1}{2}\left(\log\frac{\theta}{1-\theta}\right)^2\right)$$

As this prior distribution is not conjugate, the Bayes estimator $E(\theta|x_1,\ldots,x_n)$ is not directly available. It is proposed to estimate it using a Monte Carlo sample generated by the Metropolis-Hastings method. One possible algorithm involves generating proposals from the prior distribution, independently of the current observation. Suppose n=10, $\sum_{i=1}^{10} x_i=8$. Write a Splus programme and run it to obtain the posterior mean.

Solution:

Let $\phi = \log \frac{\theta}{1-\theta}$. It is given that $\phi \sim N(0,1)$. Therefore

$$\pi(\phi) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\phi^2\right)$$

The question asks us to find the pdf of θ . We calculate the Jacobian

$$\frac{d \text{ old}}{d \text{ new}} = \frac{d\phi}{d\theta} = \frac{1}{\theta(1-\theta)}.$$

Therefore

$$\pi(\theta) = \frac{1}{\sqrt{2\pi}\theta(1-\theta)} \exp\left(-\frac{1}{2}\left(\log\frac{\theta}{1-\theta}\right)^2\right),$$

if $0 < \theta < 1$.

Since $X_1, \ldots, X_n \sim Bernoulli(\theta)$ we have the likelihood

$$L(\theta) = \theta^t (1 - \theta)^{n - t}$$

where $t = \sum x_i$.

Since the proposal distribution is the prior distribution the Metropolis-Hastings acceptance ratio is the ratio of the likelihood function, i.e.

$$\alpha(x,y) = \min \left\{ 1, \frac{y^t (1-y)^{n-t}}{x^t (1-x)^{n-t}} \right\}.$$

3. Assume that X_1, X_2, \ldots, X_n are independent identically distributed $N(\theta, 1)$ observations. Suppose that the prior distribution for θ is Cauchy with density

$$\pi(\theta) = \frac{1}{\pi} \frac{1}{1 + \theta^2} - \infty < \theta < \infty.$$

Derive, upto a constant of proportionality, the posterior density of θ . Suppose that the importance sampling distribution is the prior distributions given above. Obtain the acceptance probability for the rejection method and the Metropolis-Hastings independence sampler. Suppose that n=10 and $\bar{x}=1.5$. Code the two methods and find the Bayes estimate for θ under squared error loss.

Solution:

Here

$$L(\theta) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\sum (x_i - \theta)^2\right)$$

= $\exp\left(-\frac{n}{2}(\theta - \bar{x})^2\right)$,

and the prior is

$$\pi(\theta) = \frac{1}{\pi} \frac{1}{1 + \theta^2}.$$

Let us write $a = \bar{x}$ and $x = \theta$ then we have the posterior

$$\pi(x) \propto \exp\left(-\frac{n}{2}(x-a)^2\right) \times \frac{1}{\pi} \frac{1}{1+x^2}.$$

In the rejection method $g(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. Therefore

$$M = \sup_{-\infty < x < \infty} \frac{\pi(x)}{g(x)}$$
$$= \sup_{-\infty < x < \infty} \exp\left(-\frac{n}{2}(x-a)^2\right)$$
$$= 1.$$

since the supremum is achieved at x = a. The acceptance probability of the rejection method is

$$\frac{1}{M}\frac{\pi(x)}{g(x)} = \exp\left[-\frac{n}{2}(x-a)^2\right].$$

Now we consider the Metropolis-Hastings algorithm. Since the proposal distribution is the prior distribution, the Metropolis-Hastings acceptance ratio is the ratio of the likelihood function, i.e.

$$\alpha(x,y) = \min \left\{ 1, \frac{\exp\left[-\frac{n}{2}(y-a)^2\right]}{\exp\left[-\frac{n}{2}(x-a)^2\right]} \right\}.$$

4. Assume that X_1, X_2, \ldots, X_n are independent identically distributed $N(\theta, \sigma^2)$ observations. Suppose that the joint prior distribution for θ and σ^2 is

$$\pi(\theta, \sigma^2) = \frac{1}{\sigma^2}.$$

- (a) Derive, upto a constant of proportionality, the joint posterior density of θ and σ^2 .
- (b) Derive the conditional posterior distributions of θ given σ^2 and σ^2 given θ .
- (c) Derive the marginal posterior density of θ .
- (d) Write a Splus programme for Gibbs sampling from the joint posterior distribution of θ and σ^2 . Hence obtain the estimates of $E(\theta|x_1,\ldots,x_n)$ and $Var(\theta|x_1,\ldots,x_n)$. For your own data set verify that the estimates are close to the true values.

Solution:

Here

$$L(\theta, \sigma^2) \propto \frac{1}{(\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum (x_i - \theta)^2\right]$$

Therefore,

$$\pi(\theta, \sigma^2 | \mathbf{x}) \propto \frac{1}{(\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum (x_i - \theta)^2\right] \frac{1}{\sigma^2}$$
$$= \frac{1}{(\sigma^2)^{n/2+1}} \exp\left[-\frac{1}{2\sigma^2} \sum (x_i - \theta)^2\right]$$

Since

$$\sum (x_i - \theta)^2 = \sum (x_i - \bar{x})^2 + n(\theta - \bar{x})^2$$

we have

$$\theta | \sigma^2, \mathbf{x} \sim N(\bar{x}, \sigma^2/n).$$

Also

$$\sigma^2 | \theta, \mathbf{x} \sim IG \left(m = n/2, \beta = \sum (x_i - \theta)^2 / 2 \right),$$

IG denote the inverse gamma distribution.

$$\pi(\theta|\mathbf{x}) = \int_{0}^{\infty} \pi(\theta, \sigma^{2}|\mathbf{x}) d\sigma^{2}$$

$$\propto \int_{0}^{\infty} \frac{1}{(\sigma^{2})^{n/2+1}} \exp\left[-\frac{1}{2\sigma^{2}} \sum (x_{i} - \theta)^{2}\right] d\sigma^{2}$$

$$= \frac{\Gamma(n/2)}{\left[\sum (x_{i} - \theta)^{2}/2\right]^{n/2}}$$

$$\propto \left[\sum (x_{i} - \theta)^{2}\right]^{-n/2}$$

$$= \left[\sum (x_{i} - \bar{x})^{2} + n(\theta - \bar{x})^{2}\right]^{-n/2}$$

$$\propto \left[1 + \frac{n(\theta - \bar{x})^{2}}{\sum (x_{i} - \bar{x})^{2}}\right]^{-n/2} = \left[1 + \frac{t^{2}}{\alpha}\right]^{-\frac{\alpha + 1}{2}},$$

where $\alpha = n - 1$ and

$$t^{2} = \frac{n(n-1)(\theta - \bar{x})^{2}}{\sum (x_{i} - \bar{x})^{2}} = \frac{n(\theta - \bar{x})^{2}}{s^{2}},$$

and now

$$s^{2} = \frac{1}{n-1} \sum_{i} (x_{i} - \bar{x})^{2}.$$

Clearly we see that

$$t = \frac{\theta - \bar{x}}{s / \sqrt{n}}$$

follows the Student t-distribution with n-1 df.

Therefore $\theta|\mathbf{x}\sim t\text{-distribution}$ with n-1 df and

$$E(\theta|\mathbf{x}) = \bar{x}$$

 $\quad \text{and} \quad$

$$var(\theta|\mathbf{x}) = \frac{s^2}{n}var(t_{n-1}) = \frac{s^2}{n}\frac{n-1}{n-3}, \text{ if } n > 3.$$